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Abstract

LiDAR-camera fusion methods have shown impressive
performance in 3D object detection. Recent advanced
multi-modal methods mainly perform global fusion, where
image features and point cloud features are fused across
the whole scene. Such practice lacks fine-grained region-
level information, yielding suboptimal fusion performance.
In this paper, we present the novel Local-to-Global fusion
network (LoGoNet), which performs LiDAR-camera fusion
at both local and global levels. Concretely, the Global Fu-
sion (GoF) of LoGoNet is built upon previous literature,
while we exclusively use point centroids to more precisely
represent the position of voxel features, thus achieving bet-
ter cross-modal alignment. As to the Local Fusion (LoF),
we first divide each proposal into uniform grids and then
project these grid centers to the images. The image features
around the projected grid points are sampled to be fused
with position-decorated point cloud features, maximally uti-
lizing the rich contextual information around the proposals.
The Feature Dynamic Aggregation (FDA) module is further
proposed to achieve information interaction between these
locally and globally fused features, thus producing more
informative multi-modal features. Extensive experiments
on both Waymo Open Dataset (WOD) and KITTI datasets
show that LoGoNet outperforms all state-of-the-art 3D de-
tection methods. Notably, LoGoNet ranks 1st on Waymo
3D object detection leaderboard and obtains 81.02 mAPH
(L2) detection performance. It is noteworthy that, for the
first time, the detection performance on three classes sur-
passes 80 APH (L2) simultaneously. Code will be available
at https://github.com/sankin97/LoGoNet.

*Corresponding author

1. Introduction
3D object detection, which aims to localize and clas-

sify the objects in the 3D space, serves as an essential

perception task and plays a key role in safety-critical au-

tonomous driving [1, 20, 58]. LiDAR and cameras are

two widely used sensors. Since LiDAR provides accu-

rate depth and geometric information, a large number of

methods [24, 48, 63, 68, 72, 73] have been proposed and

achieve competitive performance in various benchmarks.

However, due to the inherent limitation of LiDAR sensors,

point clouds are usually sparse and cannot provide sufficient

context to distinguish between distant regions, thus causing

suboptimal performance.

To boost the performance of 3D object detection, a nat-

ural remedy is to leverage rich semantic and texture in-

formation of images to complement the point cloud. As

shown in Fig. 1 (a), recent advanced methods introduce the

global fusion to enhance the point cloud with image fea-

tures [2, 5, 7, 8, 22, 23, 25, 27, 34, 54, 55, 60, 69, 71]. They

typically fuse the point cloud features with image features

across the whole scene. Although certain progress has been

achieved, such practice lacks fine-grained local informa-

tion. For 3D detection, foreground objects only account for

a small percentage of the whole scene. Merely performing

global fusion brings marginal gains.

To address the aforementioned problems, we propose a

novel Local-to-Global fusion Network, termed LoGoNet,

which performs LiDAR-camera fusion at both global and

local levels, as shown in Fig. 1 (b). Our LoGoNet is

comprised of three novel components, i.e., Global Fusion

(GoF), Local Fusion (LoF) and Feature Dynamic Aggrega-

tion (FDA). Specifically, our GoF module is built on previ-

ous literature [8,25,34,54,55] that fuse point cloud features

and image features in the whole scene, where we use the

point centroid to more accurately represent the position of
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Figure 1. Comparison between (a) global fusion and (b) local fusion. Global fusion methods perform fusion of point cloud features and

image features across the whole scene, which lacks fine-grained region-level information. The proposed local fusion method fuses features

of two modalities on each proposal, complementary to the global fusion methods. (c) Performance comparison of various methods in

Waymo 3D detection leaderboard [51]. Our LoGoNet attains the top 3D detection performance, clearly outperforming all state-of-the-art

global fusion based and LiDAR-only detectors. Please refer to Table 1 for a detailed comparison with more methods.

each voxel feature, achieving better cross-modal alignment.

And we use the global voxel features localized by point cen-

troids to adaptively fuse image features through deformable

cross-attention [75] and adopt the ROI pooling [9, 48] to

generate the ROI-grid features.

To provide more fine-grained region-level information

for objects at different distances and retain the original po-

sition information within a much finer granularity, we pro-

pose the Local Fusion (LoF) module with the Position In-

formation Encoder (PIE) to encode position information of

the raw point cloud in the uniformly divided grids of each

proposal and project the grid centers onto the image plane to

sample image features. Then, we fuse sampled image fea-

tures and the encoded local grid features through the cross-

attention [53] module. To achieve more information inter-

action between globally fused features and locally fused

ROI-grid features for each proposal, we propose the FDA

module through self-attention [53] to generate more infor-

mative multi-modal features for second-stage refinement.

Our LoGoNet achieves superior performance on two 3D

detection benchmarks, i.e., Waymo Open Dataset (WOD)

and KITTI datasets. Notably, LoGoNet ranks 1st on Waymo

3D object detection leaderboard and obtains 81.02 mAPH

(L2) detection performance. Note that, for the first time, the

detection performance on three classes surpasses 80 APH

(L2) simultaneously.

The contributions of our work are summarized as fol-

lows:

• We propose a novel local-to-global fusion network,

termed LoGoNet , which performs LiDAR-camera fu-

sion at both global and local levels.

• Our LoGoNet is comprised of three novel components,

i.e., GoF, LoF and FDA modules. LoF provides fine-

grained region-level information to complement GoF.

FDA achieves information interaction between glob-

ally and locally fused features, producing more infor-

mative multi-modal features.

• LoGoNet achieves state-of-the-art performance on

WOD and KITTI datasets. Notably, our Lo-

GoNet ranks 1st on Waymo 3D detection leaderboard

with 81.02 mAPH (L2).

2. Related Work
Image-based 3D Detection: Since cameras are much

cheaper than the LiDAR sensors, many researchers are de-

voted to performing 3D object detection by taking images

as the sole input signal [14,17,35,36,70]. For image-based

3D object detection, since depth information is not directly

accessible from images, some works [40, 45, 56, 70] first

conduct depth estimation to generate pseudo-LiDAR repre-

sentations or lift 2D features into the 3D space, then perform

object detection in the 3D space. Lately, some works have

introduced transformer-based architectures [53] to leverage

3D object queries and 3D-2D correspondence in the detec-

tion pipelines [21, 30, 32, 57]. Since estimating accurate

depth information from images is extremely difficult, the

performance of image-based methods is still inferior to the
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Figure 2. A schematic overview of LoGoNet. The input point cloud is first voxelized and fed into a 3D backbone and the region proposal

network (RPN) to produce initial proposals. And the input multi-camera images are processed by a well-pretrained 2D detector to produce

the image features FI . The multi-level voxel features FV of the 3D backbone and image features FI are then sent to the proposed local-

to-global cross-modal fusion module. The local-to-global fusion mainly consists of Global Fusion (GoF), Local Fusion (LoF), and Feature

Dynamic Aggregation (FDA) modules. Finally, the fused multi-modal features are used to refine the coarse bounding box proposals and

their confidence scores, respectively.

LiDAR-based approaches.

LiDAR-based 3D Detection: According to the type of

used point cloud representations, contemporary LiDAR-

based approaches can be roughly divided into three cat-

egories: point-based, voxel-based, and point-voxel fusion

methods. The point-based methods [43, 44, 49, 50] directly

take raw point cloud as input and employ stacked Multi-

Layer Perceptron (MLP) layers to extract point features.

These voxel-based approaches [6, 9, 18, 29, 37, 62, 63, 73]

tend to convert the point cloud into voxels and utilize 3D

sparse convolution layers to extract voxel features. Several

recent works [11, 13, 15, 38, 47] have introduced the trans-

former [53] to capture long-range relationships between

voxels. The point-voxel fusion methods [16, 29, 48, 65] uti-

lize both voxel-based and point-based backbones [43,44] to

extract features from different representations of the point

cloud.

Multi-modal 3D Detection: Multi-modal fusion has

emerged as a promising direction as it leverages the mer-

its of both images and point cloud. AVOD [23], MV3D [5]

and F-Pointnet [42] are the pioneering proposal-level fusion

works that perform the feature extraction of two modali-

ties independently and simply concatenate multi-modal fea-

tures via 2D and 3D RoI directly. CLOCs [39] directly

combine the detection results from the pre-trained 2D and

3D detectors without integrating the features. They main-

tain instance semantic consistency in cross-modal fusion,

while suffering from coarse feature aggregation and in-

teraction. Since then, increasing attention has been paid

to globally enhancing point cloud features through cross-

modal fusion. Point decoration approaches [54,55,60] aug-

ment each LiDAR point with the semantic scores or im-

age features extracted from the pre-trained segmentation

network. 3D-CVF [69] and EPNet [22] explore cross-

modal feature fusion with a learned calibration matrix. Re-

cent studies [25–27, 34] have explored global fusion in the

shared representation space based on the view transforma-

tion in the same way [40]. These methods are less effec-

tive in exploiting the spatial cues of point cloud, and po-

tentially compromise the quality of camera bird’s-eye view

(BEV) representation and cross-modal alignment. Besides,

many concurrent approaches [8, 28, 41, 71] introduce the

cross-attention [53] module to adaptively align and fuse

point cloud features with image features through the learned

offset matrices. In this work, we propose the local-to-

global cross-modal fusion method in the two-stage refine-

ment stage to further boost the performance.

3. Methodology

3.1. Framework overview

As illustrated in Fig. 2, the inputs to LoGoNet are the

point cloud and its associated multi-camera images which

are defined as a set of 3D points P = {(xi, yi, zi)|fi}Ni=1
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and I = {Ij∈ R
HI×WI×3}Tj=1 from T cameras, respec-

tively. Here, (xi, yi, zi) is the spatial coordinate of i-th
point, fi ∈ R

Cp are additional features containing the inten-

sity or elongation of each point, N is the number of points

in the point cloud, HI and WI are the height and width of

the input image, respectively.

For the point cloud branch, given the input point cloud,

we use a 3D voxel-based backbone [63, 73] to produce

1×, 2×, 4× and 8× downsampled voxel features FV ∈
R

X×Y×Z×CV , where the CV is the number of channels

of each voxel feature and (X, Y, Z) is the grid size of

each voxel layer. Then, we use a region proposal net-

work [63, 68] to generate initial bounding box proposals

B = {B1, B2, ..., Bn} from the extracted hierarchical voxel

features. As to the image branch, the original multi-camera

images are processed by a 2D detector [33, 46] to produce

the dense semantic image features FI ∈ R
HI
4 ×WI

4 ×CI ,

where CI is the number of channels of image features. Fi-

nally, we apply local-to-global cross-modal fusion to the

two-stage refinement, where multi-level voxel features FV ,

image features FI and local position information derived

from the raw point cloud are adaptively fused.

Our local-to-global fusion method is mainly comprised

of Global Fusion (GoF), Local Fusion (LoF) and Feature

Dynamic Aggregation modules (FDA). In the following

sections, we will have a detailed explanation of these mod-

ules.

3.2. Global Fusion Module

Previous global fusion methods [7,8,22,25,28,54,55,69]

typically use the voxel center to represent the position of

each voxel feature. However, such a practice inevitably ig-

nores the actual distribution of points within each voxel.

As observed by KPConv and PDV [18, 52], voxel point

centroids are much closer to the object’s scanned surface.

They provide the original geometric shape information and

scale to large-scale point cloud more efficiently. There-

fore, we design the Centroid Dynamic Fusion (CDF) mod-

ule to adaptively fuse point cloud features with image fea-

tures in the global voxel feature space. And we utilize these

voxel point centroids to represent the spatial position of

non-empty voxel features. And these voxel features as well

as their associated image features are fused adaptively by

the deformable cross attention module [53,75], as shown in

Fig. 3.

More formally, given the set of non-empty voxel features

FV = {Vi, fVi
}NV
i=1 and the image features FI , where Vi is

the voxel index, fVi ∈ R
CV is the non-empty voxel feature

vector and NV is the number of non-empty voxels. The

point centroid ci of each voxel feature fVi
is then calculated

by averaging the spatial positions of all points within the

Centroid Point 
Projection Q

K

V

Trans.

C

CDF

Dynamic Offset 

ROI Pooling

Linear
Linear

0.4 0.3 0.2 0.1

Aggregate

Figure 3. Global fusion module. We first calculate point centroids

of non-empty voxel features, then project these point centroids

onto the image plane and aggregate semantic features in image

features FI through learnable dynamic offset. Then, we fuse sam-

pled image features F̂ i
I and voxel features by the cross-attention

module to produce the cross-modal features F ∗
V . Finally, the ROI-

grid features F g
B are produced by the RoI pooling operation.

same voxel Vi:

ci =
1

|P(Vi)|
∑

pi∈P(Vi)

pi, (1)

where pi = (xi, yi, zi) is the spatial coordinate and |P(Vi)|
is the number of points within the voxel Vi.

Next, we follow [18, 52] to assign a voxel grid index to

each calculated voxel point centroid and match the associ-

ated voxel feature through the hash table. Then, we com-

pute the reference point pi in the image plane from each

calculated voxel point centroid ci using the camera projec-

tion matrix M:

pi = M · ci, (2)

where M is the product of the camera intrinsic matrix and

the extrinsic matrix, and operation · is matrix multiplication.

Based on the reference points, we generate the aggre-

gated image features F̂ i
I by weighting a set of image fea-

tures F k
I around the reference points, which are produced

by applying the learned offsets to image features FI . We

denote each voxel feature as Query Qi, and the sampled

features F̂ i
I as the Key and Value. The whole centroid dy-

namic fusion process is formulated as:

F k
I = FI(pi +Δpmik),

CDF(Qi, F̂
i
I ) =

M∑
m=1

Wm

[
K∑

k=1

Amik · (W ′
mF k

I )

]
,

(3)

where Wm and W
′
m are the learnable weights, M is the

number of self-attention heads and K is the total number

of sampled points. Δpmik and Amik denote the sampling

offset and attention weight of the k-th sampling point in

the m-th attention head, respectively. Both of them are ob-

tained via the linear projection over the query feature Qi.

We concatenate the image-enhanced voxel features and the

original voxel features to acquire the fused voxel features

F̂ ∗
V ∈ R

N×2CV . Then, we adopt a FFN on F̂ ∗
V to reduce
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Figure 4. Local fusion module. It uniformly samples grid points

within each 3D proposal and encodes position information of raw

point cloud through PIE to generate grid features. Then, we project

the calculated grid centroids to the image plane and sample image

features by the learned offsets. Finally, we fuse these grid features

and sampled image features based on the cross-attention module

to produce the locally fused ROI-grid features F l
B .

the number of channels and obtain the final fused feature

F ∗
V ∈ R

N×CV from the CDF module, where FFN denotes

a feed-forward network. Finally, we perform the ROI pool-

ing [9, 18] on F ∗
V to generate proposal features F g

B for the

subsequent proposal refinement.

3.3. Local Fusion Module

To provide more local and fine-grained geometric in-

formation during multi-modal fusion, we propose the Lo-

cal Fusion (LoF) module with Grid point Dynamic Fusion

(GDF) that dynamically fuses the point cloud features with

image features at the proposal level.

Specifically, given each bounding box proposal Bi, we

divide it into u × u × u regular voxel grids Gj , where j
indexes the voxel grid. The center point zj is taken as the

grid point of the corresponding voxel grid Gj . Firstly, we

use a Position Information Encoder (PIE) to encode asso-

ciated position information and generate each grid feature

F j
G for each bounding box proposal. The grid of each pro-

posal is processed by PIE and gets a local grid-ROI feature

F p
B = {F 1

G, F
2
G, ...F

u3

G }. The PIE for each grid feature F j
G

is then calculated as:

F j
G = MLP(γ, cB , log(

∣∣NGj

∣∣+ τ)), (4)

where γ = zj − cB is the relative position of each grid from

the bounding box proposal centroid cB , |NGj | is the number

of points in each voxel grid Gj and τ is a constant offset.

This information in each grid provides the basis for building

fine-grained cross-modal fusion in region proposals.

In addition to using the position information of raw point

cloud within each voxel grid, we also propose a Grid Dy-

namic Fusion (GDF) module that enables the model to ab-

sorb associated image features into the local proposal adap-

tively with these encoded local ROI-grid features F p
B . Next,

we project each center point zj of grid point G onto the

multi-view image plane similar to the GoF module and ob-

Grid Features

…
Q

K

V

Trans.

FFN

RCB

Q

Figure 5. Feature dynamic aggregation module, it performs self-

attention on the grid features to build relationships between differ-

ent grid points.

tain several reference points O ∈ R
u3

for each box proposal

to sample image features for local multi-modal feature fu-

sion. And we use cross-attention to fuse the locally sam-

pled image features and the encoded local ROI-grid feature

F p
B . The query feature Q is generated from the ROI-grid

feature F p
B with encoded position information of local raw

point cloud, the key and value features K,V are the image

features FI that are sampled by reference points and their

dynamic offsets with the same operations as Eqn. 3. Then,

we concatenate the image-enhanced local grid features and

original local grid features to obtain fused grid features F̂ l
B .

Finally, we employ a FFN on F̂ l
B to reduce the number of

channels and produce the final fused ROI-grid feature F l
B .

3.4. Feature Dynamic Aggregation Module

After the LoF, GoF and PIE modules, we obtain three

features, i.e., F p
B , F l

B and F g
B . These features are inde-

pendently produced and have less information interaction

and aggregation. Therefore, we propose the Feature Dy-

namic Aggregation (FDA) module which introduces the

self-attention [53] to build relationships between different

grid points adaptively. Concretely, we first obtain the aggre-

gated feature FS for all encoded grid points in each bound-

ing box proposal as Eqn. 5:

FS = F p
B + F l

B + F g
B . (5)

Then, a self-attention module is introduced to build interac-

tion between the non-empty grid point features with a stan-

dard transformer encoder layer [53] and Residual Connec-

tion Block (RCB), as shown in Fig. 5. Finally, we use the

shared flattened features generated from the FDA module to

refine the bounding boxes.

3.5. Training Losses

In LoGoNet, the weights of the image branch are frozen

and only the LiDAR branch is trained. The overall training

loss L consists of the RPN loss LRPN [68], the confidence

prediction loss Lconf and the box regression loss Lreg [9,

48]:

L = LRPN + Lconf + αLreg, (6)
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where α is the hyper-parameter for balancing different

losses and is set as 1 in our experiment. We follow the train-

ing settings in [9, 68] to optimize the whole network.

4. Experiments
Datasets. Following the practice of popular 3D detection

models, we conduct experiments on the WOD [51] and the

KITTI [12] benchmarks. The WOD dataset is one of the

largest and most diverse autonomous driving datasets, con-

taining 798 training sequences, 202 validation sequences

and 150 testing sequences. Each sequence has approxi-

mately 200 frames and each point cloud has five RGB im-

ages. We evaluate the performance of different models us-

ing the official metrics, i.e., Average Precision (AP) and Av-

erage Precision weighted by Heading (APH), and report the

results on both LEVEL 1 (L1) and LEVEL 2 (L2) difficulty

levels. The LEVEL 1 evaluation only includes 3D labels

with more than five LiDAR points and LEVEL 2 evaluation

includes 3D labels with at least one LiDAR point. Note that

mAPH (L2) is the main metric for ranking in the Waymo

3D detection challenge. As to the KITTI dataset, it contains

7, 481 training samples and 7, 518 testing samples, and uses

standard average precision (AP) on easy, moderate and hard

levels. We follow [4] to adopt the standard dataset partition

in our experiments.

Settings. For the WOD dataset [51], the detection range

is [-75.2m, 75.2m] for the X and Y axes, and [-2m, 4m]

for the Z axis. We divide the raw point cloud into voxels

of size (0.1m, 0.1m, 0.15m). Since the KITTI dataset [12]

only provides annotations in front camera’s field of view,

we set the point cloud range to be [0, 70.4m] for the X axis,

[-40m, 40m] for the Y axis, and [-3m, 1m] for the Z axis.

We set the voxel size to be (0.05m, 0.05m, 0.1m). We set

the number of attention heads M as 4 and the number of

sampled points K as 4. GoF module uses the last two voxel

layers of the 3D backbone to fuse voxel features and image

features. The learnable weights W
′
m and Wm are randomly

initialized. Weight parameters of the linear projection for

predicting Amik and Δpmik are initialized to zero. Fol-

lowing [9, 18, 48], the grid size u of GoF and LoF module

is set as 6. The self-attention module in FDA module only

uses one transformer encoder layer with a single attention

head. We select CenterPoint [68] and Voxel-RCNN [9] as

backbones for the WOD and KITTI datasets, respectively.

For the image branch, we use Swin-Tiny [33] and FPN [31]

as the backbone and initialize it from the public detection

model. To save the computation cost, we rescale images

to 1/2 of their original size and freeze the weights of the

image branch during training. The number of channels

of the output image features will be reduced to 64 by the

feature reduction layer. We adopt commonly used data

augmentation strategies, including random flipping, global

scaling with scaling factor [0.95, 1.05] and global rotations

about the Z axis between
[− 1

4π,
1
4π

]
. For post-processing,

we adopt NMS with the threshold of 0.7 for WOD and 0.55

for KITTI to remove redundant boxes.

Training details. For WOD, we adopt the two-stage

training strategy. We first follow the official training strat-

egy to train the single-stage detector [68] for 20 epochs.

Then, in the second stage, the whole LoGoNet is trained

for 6 epochs. Batch size is set as 8 per GPU and we do

not use GT sampling [63] data augmentation. As for the

KITTI dataset, we follow [63] to train the whole model for

80 epochs. Batch size is set as 2 per GPU and we use the

multi-modal GT sampling [7, 27] during training.

4.1. Results

Waymo. We summarize the performance of LoGoNet and

state-of-the-art 3D detection methods on WOD val and test
sets in Table 1 and Table 2. As shown in Table 1, Lo-

GoNet achieves the best results on Waymo 3D detection

challenge. Specifically, LoGoNet Ens obtains 81.02 mAPH

(L2) detection performance. Note that this is the first time

for a 3D detector to achieve performance over 80 APH (L2)

on vehicle, pedestrian, and cyclist simultaneously. And Lo-

GoNet Ens surpasses 1.05 mAPH (L2) compared with pre-

vious state-of-the-art method BEVFusion TTA [34]. In ad-

dition, we also report performance without using test-time

augmentations and model ensemble. LoGoNet achieves

77.10 mAPH (L2) and outperforms all competing non-

ensembled methods [6,34,74] on the leaderboard at the time

of submission. Especially, LoGoNet is 0.77% higher than

the multi-modal method BEVFusion [34] and 1.43% higher

than the LiDAR-only method MPPNet [6] with 16-frame on

mAPH (L2) of three classes.

We also compare different methods on the val set in Ta-

ble 2. LoGoNet significantly outperforms existing methods,

strongly demonstrating the effectiveness of our approach.

In addition, we also provide the detailed performance of Lo-

GoNet with multi-frame input. Our method still has advan-

tages over both single-frame and multi-frame methods on

mAPH (L2). Specifically, LoGoNet with 3-frame input can

surpass the competitive MPPNet [6] with 16-frame, and Lo-

GoNet with 5-frame surpasses MPPNet by 0.69% in terms

of mAPH (L2).

KITTI. Table 3 shows the results on the KITTI val set. Our

LoGoNet achieves state-of-the-art multi-class results. Our

multi-modal network surpasses the LiDAR-only method

PDV [18] 1.47% mAP and recent multi-modal method

VFF [27]. The performance comparison on KITTI test set

is reported on Table 4. Compared with previous methods,

LoGoNet achieves the state-of-the-art mAP performance

at three difficulty levels on car and cyclist. Notably, for

the first time, LoGoNet outperforms existing LiDAR-only

methods by a large margin on both car and cyclist, and sur-
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Table 1. Performance comparison on the Waymo 3D detection leaderboard. L and I represent the LiDAR point cloud and images,

respectively. † means these entries use the test time augmentations and model ensemble.

Method Ranks Modality
ALL (mAPH) VEH (AP/APH) PED (AP/APH) CYC (AP/APH)

L2 L1 L2 L1 L2 L1 L2

LoGoNet Ens† (Ours) 1 L+I 81.02 88.33/87.87 82.17/81.72 88.98/85.96 84.27/81.28 83.10/82.16 80.93/80.06
BEVFusion TTA† [34] 2 L+I 79.97 87.96/87.58 81.29/80.92 87.64/85.04 82.19/79.65 82.53/81.67 80.17/79.33

LidarMultiNet TTA† [67] 3 L 79.94 87.64/87.26 80.73/80.36 87.75/85.07 82.48/79.86 82.77/81.84 80.50/79.59

MPPNet Ens† [6] 4 L 79.60 87.77/87.37 81.33/80.93 87.92/85.15 82.86/80.14 80.74/79.90 78.54/77.73

MT-Net Ens† [3] 8 L 78.45 87.11/86.69 80.52/80.11 86.50/83.55 80.95/78.08 80.50/79.43 78.22/77.17

DeepFusion Ens† [28] 9 L+I 78.41 86.45/86.09 79.43/79.09 86.14/83.77 80.88/78.57 80.53/79.80 78.29/77.58

AFDetV2 Ens† [19] 12 L 77.64 85.80/85.41 78.71/78.34 85.22/82.16 79.71/76.75 81.20/80.30 78.70/77.83

INT Ens† [62] 14 L 77.21 85.63/85.23 79.12/78.73 84.97/81.87 79.35/76.36 79.76/78.65 77.62/76.54

HorizonLiDAR3D Ens† [10] 17 L+I 77.11 85.09/84.68 78.23/77.83 85.03/82.10 79.32/76.50 79.73/78.78 77.91/76.98

LoGoNet (Ours) 18 L+I 77.10 86.51/86.10 79.69/79.30 86.84/84.15 81.55/78.91 76.06/75.25 73.89/73.10

BEVFusion [34] 20 L+I 76.33 84.97/84.55 77.88/77.48 84.72/81.97 79.06/76.41 78.49/77.54 76.00/75.09

CenterFormer [74] 21 L 76.29 85.36/84.94 78.68/78.28 85.22/82.48 80.09/77.42 76.21/75.32 74.04/73.17

MPPNet [6] 25 L 75.67 84.27/83.88 77.29/76.91 84.12/81.52 78.44/75.93 77.11/76.36 74.91/74.18

DeepFusion [28] 26 L+I 75.54 83.25/82.82 76.11/75.69 84.63/81.80 79.16/76.40 77.81/76.82 75.47/74.51

Table 2. Performance comparison on the Waymo val set for 3D vehicle (IoU = 0.7), pedestrian (IoU = 0.5) and cyclist (IoU = 0.5) detection.

‡ is reproduced by us based on the officially released CenterPoint [68] with the RCNN refinement module.

Method Frames Modality
ALL (mAPH) VEH (AP/APH) PED (AP/APH) CYC (AP/APH)

L2 L1 L2 L1 L2 L1 L2

SECOND [63] 1 L 57.23 72.27/71.69 63.85/63.33 68.70/58.18 60.72/51.31 60.62/59.28 58.34/57.05

PointPillars [24] 1 L 57.53 71.60/71.00 63.10/62.50 70.60/56.70 62.90/50.20 64.40/62.30 61.90/59.90

LiDAR-RCNN [29] 1 L 60.10 73.50/73.00 64.70/64.20 71.20/58.70 63.10/51.70 68.60/66.90 66.10/64.40

PV-RCNN [48] 1 L 63.33 77.51/76.89 68.98/68.41 75.01/65.65 66.04/57.61 67.81/66.35 65.39/63.98

CenterPoint [68] 1 L 65.46 - -/66.20 - -/62.60 - -/67.60

PointAugmenting [55] 1 L+I 66.70 67.4/- 62.7/- 75.04/- 70.6/- 76.29/- 74.41/-

Pyramid-PV [37] 1 L - 76.30/75.68 67.23/66.68 - - - -

PDV [18] 1 L 64.25 76.85/76.33 69.30/68.81 74.19/65.96 65.85/58.28 68.71/67.55 66.49/65.36

Graph-RCNN [64] 1 L 70.91 80.77/80.28 72.55/72.10 82.35/76.64 74.44/69.02 75.28/74.21 72.52/71.49

3D-MAN [66] 16 L - 74.50/74.00 67.60/67.10 71.70/67.70 62.60/59.00 - -

Centerformer [74] 8 L 73.70 78.80/78.30 74.30/73.80 82.10/79.30 77.80/75.00 75.20/74.40 73.20/72.30

DeepFusion [28] 5 L+I - 80.60/80.10 72.90/72.40 85.80/83.00 78.70/76.00 - -

MPPNet [6] 4 L 74.22 81.54/81.06 74.07/73.61 84.56/81.94 77.20/74.67 77.15/76.50 75.01/74.38

MPPNet [6] 16 L 74.85 82.74/82.28 75.41/74.96 84.69/82.25 77.43/75.06 77.28/76.66 75.13/74.52

Baseline [68]‡ 1 L 69.38 78.19/77.25 70.43/69.90 80.31/74.61 72.49/67.01 75.62/74.45 72.85/71.23

LoGoNet (Ours) 1 L+I 71.38 78.95/78.41 71.21/70.71 82.92/77.13 75.49/69.94 76.61/75.53 74.53/73.48

LoGoNet (Ours) 3 L+I 74.86 82.64/82.18 74.60/74.17 85.60/82.72 78.62/75.79 78.34/77.49 75.44/74.61

LoGoNet (Ours) 5 L+I 75.54 83.21/82.72 75.84/75.38 85.80/83.14 78.97/76.33 78.58/77.79 75.67/74.91

passes the recent multi-modal method SFD [59] method

1.07% mAP on the car. Besides, LoGoNet ranks 1st in

many cases, particularly for the hard level both in the val
and test set. At the hard level, there are many small and dis-

tant objects or extreme occlusions that require multi-modal

information to detect them accurately, which is fully ex-

plored by the local-to-global cross-modal fusion structures

of LoGoNet.

In addition, we report the performance gains brought

by the proposed local-to-global fusion on different back-

bones [9, 68]. As shown in Table 2 and Table 3, on WOD,

the proposed local-to-global fusion improves 3D mAPH

(L2) performance by +0.81%, +2.93%, and +2.25% on ve-

hicle, pedestrian and cyclist, respectively. For KITTI, the

proposed fusion method can bring +0.70%, +4.83%, and

+3.66% performance gains in mAP on car, pedestrian, and

cyclist, respectively. These results strongly demonstrate the

effectiveness and generalizability of the proposed local-to-

global fusion method.

4.2. Ablation studies

We perform ablation studies to verify the effect of each

component, different fusion variants on the final perfor-

mance. All models are trained on 20% of the WOD training

set and evaluation is conducted in the full validation set.

Effect of each component. As shown in Table 5. Firstly,

we follow the single-modal refinement module [9] and re-

port its performance for fair comparison with LoGoNet.

The GoF module brings performance gain of 0.97%, 1.68%

and 0.97%. The voxel point centroids are much closer

to the object’s scanned surface, voxel point centroids can

provide the original geometric shape information in cross-
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Table 3. Comparison with state-of-the-art approaches on the KITTI val set with AP calculated by 40 recall positions. ∗ denotes our

reproduced results based on the officially released codes with some modifications. Best in bold.

Method Modality
Car Pedestrian Cyclist

mAP
Easy Mod. Hard mAP Easy Mod. Hard mAP Easy Mod. Hard mAP

SECOND [63] L 88.61 78.62 77.22 81.48 56.55 52.98 47.73 52.42 80.58 67.15 63.10 70.28 68.06

PointPillars [24] L 86.46 77.28 74.65 79.46 57.75 52.29 47.90 52.65 80.05 62.68 59.70 67.48 66.53

PointRCNN [49] L 88.72 78.61 77.82 81.72 62.72 53.85 50.25 55.60 86.84 71.62 65.59 74.68 70.67

PV-RCNN [48] L 92.10 84.36 82.48 86.31 64.26 56.67 51.91 57.61 88.88 71.95 66.78 75.87 73.26

Voxel-RCNN [9] L 92.38 85.29 82.86 86.84 - - - - - - - - -

SE-SSD [72] L 90.21 86.25 79.22 85.23 - - - - - - - - -

PDV [18] L 92.56 85.29 83.05 86.97 66.90 60.80 55.85 61.18 92.72 74.23 69.60 78.85 75.67

MV3D [5] L+I 71.29 62.68 56.56 63.51 - - - - - - - - -

AVOD-FPN [23] L+I 84.41 74.44 68.65 75.83 - 58.80 - - - 49.70 - - -

PointFusion [61] L+I 77.92 63.00 53.27 64.73 33.36 28.04 23.38 28.26 49.34 29.42 26.98 35.25 42.75

F-PointNet [42] L+I 83.76 70.92 63.65 72.78 70.00 61.32 53.59 61.64 77.15 56.49 53.37 62.34 65.58

CLOCs [39] L+I 89.49 79.31 77.36 82.05 62.88 56.20 50.10 56.39 87.57 67.92 63.67 73.05 70.50

3D-CVF [69] L+I 89.67 79.88 78.47 82.67 - - - - - - - - -

EPNet [22] L+I 88.76 78.65 78.32 81.91 66.74 59.29 54.82 60.28 83.88 65.60 62.70 70.69 70.96

FocalsConv [7] L+I 92.26 85.32 82.95 86.84 - - - - - - - - -

CAT-Det [71] L+I 90.12 81.46 79.15 83.58 74.08 66.35 58.92 66.45 87.64 72.82 68.20 76.22 75.42

VFF [27] L+I 92.31 85.51 82.92 86.91 73.26 65.11 60.03 66.13 89.40 73.12 69.86 77.46 76.94

Baseline [9]∗ L 92.24 84.52 82.54 86.43 65.51 59.67 53.73 59.63 90.72 70.94 66.88 76.18 74.08

LoGoNet (Ours) L+I 92.04 85.04 84.31 87.13 70.20 63.72 59.46 64.46 91.74 75.35 72.42 79.84 77.14

Table 4. Comparison of different methods on KITTI test set for

car and cyclist.

Method Modality
Car Cyclist

Easy Mod. Hard mAP Easy Mod. Hard mAP

SECOND [63] L 83.34 72.55 65.82 73.90 71.33 52.08 45.83 56.41

PointPillars [24] L 82.58 74.31 68.99 75.29 77.10 58.65 51.92 62.56

STD [65] L 87.95 79.71 75.09 80.92 78.69 61.59 55.30 65.19

SE-SSD [72] L 91.49 82.54 77.15 83.73 - - - -

M3DETR [13] L 90.28 81.73 76.96 82.99 83.83 66.74 59.03 69.87

PV-RCNN [48] L 90.25 81.43 76.82 82.83 78.60 63.71 57.65 66.65

PDV [18] L 90.43 81.86 77.36 83.21 83.04 67.81 60.46 70.44

PointPainting [54] L+I 82.11 71.70 67.08 73.63 77.63 63.78 55.89 65.77

EPNet [22] L+I 89.81 79.28 74.59 81.23 - - - -

3D-CVF [69] L+I 89.20 80.05 73.11 80.79 - - - -

SFD [59] L+I 91.73 84.76 77.92 84.80 - - - -

Graph-VoI [64] L+I 91.89 83.27 77.78 84.31 - - - -

VFF [27] L+I 89.50 82.09 79.29 83.62 - - - -

HMFI [25] L+I 88.90 81.93 77.30 82.71 84.02 70.37 62.57 72.32

CAT-Det [71] L+I 89.87 81.32 76.68 82.62 83.68 68.81 61.45 71.31

LoGoNet (Ours) L+I 91.80 85.06 80.74 85.87 84.47 71.70 64.67 73.61

modal fusion. And the LoF module brings an improvement

of +1.22%, +2.93%, and +1.50% for the vehicle, pedestrian

and cyclist, respectively. It can provide the local location

and geometric information from the raw point cloud for

each proposal and dynamically fuse associated image fea-

tures to generate better multi-modal features for refinement.

We first simply combine the GoF and LoF in our experi-

ments, and we find that the performance gain is so limited

even bring a small drop in cyclist. The FDA module brings a

performance gain of 0.55%, 0.25% and 0.46% APH (L2) for

the vehicle, pedestrian and cyclist, respectively. Finally, we

report that all three components in LoGoNet surpass single-

modal RCNN-only module performance of 1.85%, 3.19%

and 1.63% on APH (L2) for each class.

Table 5. Effect of each component in LoGoNet on WOD val set.

RCNN means only using single-modal two stage refinement mod-

ule [9]

RCNN GoF LoF FDA
3D APH L2

VEH PED CYC

65.04 61.04 66.93

� 67.04 64.04 67.73

� � 68.01 65.72 68.70

� � 68.26 66.97 69.23

� � � 68.34 66.98 68.90

� � � � 68.89 67.23 69.36

5. Conclusion
In this paper, we propose a novel multi-modal network,

called LoGoNet , with the local-to-global cross-modal fea-

ture fusion to deeply integrate point cloud features and im-

age features and provide richer information for accurate

detection. Extensive experiments are conducted on WOD

and KITTI datasets, LoGoNet surpasses previous methods

on both benchmarks and achieves the first place on the

Waymo 3D detection leaderboard. The impressive perfor-

mance strongly demonstrates the effectiveness and general-

izability of the proposed framework.
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