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Abstract

In this paper we present Mask DINO, a unified object
detection and segmentation framework. Mask DINO extends
DINO (DETR with Improved Denoising Anchor Boxes) by
adding a mask prediction branch which supports all im-
age segmentation tasks (instance, panoptic, and semantic).
It makes use of the query embeddings from DINO to dot-
product a high-resolution pixel embedding map to predict
a set of binary masks. Some key components in DINO are
extended for segmentation through a shared architecture
and training process. Mask DINO is simple, efficient, and
scalable, and it can benefit from joint large-scale detec-
tion and segmentation datasets. Our experiments show that
Mask DINO significantly outperforms all existing special-
ized segmentation methods, both on a ResNet-50 backbone
and a pre-trained model with SwinL backbone. Notably,
Mask DINO establishes the best results to date on instance
segmentation (54.5 AP on COCO), panoptic segmentation
(59.4 PQ on COCO), and semantic segmentation (60.8 mloU
on ADE20K) among models under one billion parameters.
Code is available at https://github.com/IDEA-
Research/MaskDINO.

1. Introduction

Object detection and image segmentation are fundamen-
tal tasks in computer vision. Both tasks are concerned with
localizing objects of interest in an image but have differ-
ent levels of focus. Object detection is to localize objects
of interest and predict their bounding boxes and category

*Equal contribution.
TWork done when Feng Li and Hao Zhang were interns at IDEA.
Corresponding author.

labels, whereas image segmentation focuses on pixel-level
grouping of different semantics. Moreover, image segmenta-
tion encompasses various tasks including instance segmen-
tation, panoptic segmentation, and semantic segmentation
with respect to different semantics, e.g., instance or category
membership, foreground or background category.

Remarkable progress has been achieved by classical
convolution-based algorithms developed for these tasks with
specialized architectures, such as Faster RCNN [24] for ob-
ject detection, Mask RCNN [9] for instance segmentation,
and FCN [21] for semantic segmentation. Although these
methods are conceptually simple and effective, they are tai-
lored for specialized tasks and lack the generalization ability
to address other tasks. The ambition to bridge different tasks
gives rise to more advanced methods like HTC [2] for object
detection and instance segmentation and Panoptic FPN [14],
K-net [33] for instance, panoptic, and semantic segmenta-
tion. Task unification not only helps simplify algorithm
development but also brings in performance improvement in
multiple tasks.

Recently, DETR-like [|] models developed based on
Transformers [27] have achieved inspiring progress on many
detection and segmentation tasks. As an end-to-end object
detector, DETR adopts a set-prediction objective and elimi-
nates hand-crafted modules such as anchor design and non-
maximum suppression. Although DETR addresses both the
object detection and panoptic segmentation tasks, its segmen-
tation performance is still inferior to classical segmentation
models. To improve the detection and segmentation perfor-
mance of Transformer-based models, researchers have devel-
oped specialized models for object detection [15,18,32,35],
image segmentation [3, 4, 33], instance segmentation [7],
panoptic segmentation [23], and semantic segmentation [12].

Among the efforts to improve object detection,
DINO [32] takes advantage of the dynamic anchor box for-
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mulation from DAB-DETR [ 18] and query denoising train-
ing from DN-DETR [15], and further achieves the SOTA
result on the COCO object detection leaderboard for the
first time as a DETR-like model. Similarly, for improving
image segmentation, MaskFormer [4] and Mask2Former [3]
propose to unify different image segmentation tasks using
query-based Transformer architectures to perform mask clas-
sification. Such methods have achieved remarkable perfor-
mance improvement on multiple segmentation tasks.

However, in Transformer-based models, the best-
performing detection and segmentation models are still not
unified, which prevents task and data cooperation between
detection and segmentation tasks. As an evidence, in CNN-
based models, Mask-R-CNN [9] and HTC [2] are still widely
acknowledged as unified models that achieve mutual cooper-
ation between detection and segmentation to achieve superior
performance than specialized models. Though we believe
detection and segmentation can help each other in a unified
architecture in Transformer-based models, the results of sim-
ply using DINO for segmentation and using Mask2Former
for detection indicate that they can not do other tasks well, as
shown in Table 1 and 2. Moreover, trivial multi-task training
can even hurt the performance of the original tasks. It nat-
urally leads to two questions: 1) why cannot detection and
segmentation tasks help each other in Transformer-based
models? and 2) is it possible to develop a unified architecture
to replace specialized ones?

To address these problems, we propose Mask DINO,
which extends DINO with a mask prediction branch in par-
allel with DINO’s box prediction branch. Inspired by other
unified models [3,4, 28] for image segmentation, we reuse
content query embeddings from DINO to perform mask clas-
sification for all segmentation tasks on a high-resolution
pixel embedding map (1/4 of the input image resolution)
obtained from the backbone and Transformer encoder fea-
tures. The mask branch predicts binary masks by simply
dot-producting each content query embedding with the pixel
embedding map. As DINO is a detection model for region-
level regression, it is not designed for pixel-level alignment.
To better align features between detection and segmentation,
we also propose three key components to boost the segmenta-
tion performance. First, we propose a unified and enhanced
query selection. It utilizes encoder dense prior by predicting
masks from the top-ranked tokens to initialize mask queries
as anchors. In addition, we observe that pixel-level segmen-
tation is easier to learn in the early stage and propose to use
initial masks to enhance boxes, which achieves task cooper-
ation. Second, we propose a unified denoising training for
masks to accelerate segmentation training. Third, we use a
hybrid bipartite matching for more accurate and consistent
matching from ground truth to both boxes and masks.

Mask DINO is conceptually simple and easy to imple-
ment under the DINO framework. To summarize, our contri-

butions are three-fold. 1) We develop a unified Transformer-
based framework for both object detection and segmentation.
As the framework is extended from DINO, by adding a mask
prediction branch, it naturally inherits most algorithm im-
provements in DINO including anchor box-guided cross
attention, query selection, denoising training, and even a
better representation pre-trained on a large-scale detection
dataset. 2) We demonstrate that detection and segmenta-
tion can help each other through a shared architecture de-
sign and training method. Especially, detection can signifi-
cantly help segmentation tasks, even for segmenting back-
ground "stuff" categories. Under the same setting with a
ResNet-50 backbone, Mask DINO outperforms all exist-
ing models compared to DINO (4-0.8 AP on COCO de-
tection) and Mask2Former (42.6 AP, +1.1 PQ, and +1.5
mloU on COCO instance, COCO panoptic, and ADE20K
semantic segmentation). 3) We also show that, via a uni-
fied framework, segmentation can benefit from detection
pre-training on a large-scale detection dataset. After de-
tection pre-training on the Objects365 [26] dataset with a
SwinL [20] backbone, Mask DINO significantly improves
all segmentation tasks and achieves the best results on in-
stance (54.5 AP on COCO), panoptic (59.4 PQ on COCO),
and semantic (60.8 mIoU on ADE20K) segmentation among
models under one billion parameters.

2. Related Work

Detection: Mainstream detection algorithms have been dom-
inated by convolutional neural network-based frameworks,
until recently Transformer-based detectors [, 15, 18, 32]
achieve great progress. DETR [1] is the first end-to-end
and query-based Transformer object detector, which adopts
a set-prediction objective with bipartite matching. DAB-
DETR [18] improves DETR by formulating queries as 4D
anchor boxes and refining predictions layer by layer. DN-
DETR [15] introduces a denoising training method to accel-
erate convergence. Based on DAB-DETR and DN-DETR,
DINO [32] proposes several new improvements on denois-
ing and anchor refinement and achieves new SOTA results
on COCO detection. Despite the inspiring progress, DETR-
like detection models are not competitive for segmentation.
Vanilla DETR incorporates a segmentation head in its archi-
tecture. However, its segmentation performance is inferior
to specialized segmentation models and only shows the feasi-
bility of DETR-like detection models to deal with detection
and segmentation simultaneously.

Segmentation: Segmentation mainly includes instance, se-
mantic, and panoptic segmentation. Instance segmentation
is to predict a mask and its corresponding category for each
object instance. Semantic segmentation requires to classify
each pixel including the background into different semantic
categories. Panoptic segmentation [ 4] unifies the instance
and semantic segmentation tasks and predicts a mask for
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each object instance or background segment. In the past
few years, researchers have developed specialized architec-
tures for the three tasks. For example, Mask-RCNN [9]
and HTC [2] can only deal with instance segmentation be-
cause they predict the mask of each instance based on its
box prediction. FCN [21] and U-Net [25] can only perform
semantic segmentation since they predict one segmentation
map based on pixel-wise classification. Although models for
panoptic segmentation [ 13, 30] unifies the above two tasks,
they are usually inferior to specialized instance and semantic
segmentation models. Until recently, some image segmenta-
tion models [3,4,33] are developed to unify the three tasks
with a universal architecture. For instance, Mask2Former [3]
improves MaskFormer [4] by introducing masked-attention
to Transformer. Mask2Former has a similar architecture as
DETR to probe image features with learnable queries but
differs in using a different segmentation branch and some
specialized designs for mask prediction. However, while
Mask2Former shows a great success in unifying all segmen-
tation tasks, it leaves object detection untouched and our
empirical study shows that its specialized architecture de-
sign is not suitable for predicting boxes.

Unified Methods: As both object detection and segmen-
tation are concerned with localizing objects, they naturally
share common model architectures and visual representa-
tions. A unified framework not only helps simplify the
algorithm development effort, but also allows to use both
detection and segmentation data to improve representation
learning. There have been several previous works to unify
segmentation and detection tasks, e.g., Mask RCNN [9],
HTC [2], and DETR [1]. Mask RCNN extends Faster RCNN
and pools image features from Region Of Interest (ROI) pro-
posed by RPN. HTC further proposes an interleaved way of
predicting boxes and masks. However, these two models can
only perform instance segmentation. DETR predicts boxes
and masks together in an end-to-end manner. However, its
segmentation performance largely lags behind other models.
According to Table 2, adding DETR’s segmentation head
to DINO results in inferior instance segmentation results.
How to attain mutual assistance between segmentation and
detection has long been an important problem to solve.

3. Mask DINO

Mask DINO is an extension of DINO [32]. On top of
content query embeddings, DINO has two branches for box
prediction and label prediction. The boxes are dynamically
updated and used to guide the deformable attention in each
Transformer decoder. Mask DINO adds another branch for
mask prediction and minimally extends several key com-
ponents in detection to fit segmentation tasks. To better
understand Mask DINO, we start by briefly reviewing DINO
and then introduce Mask DINO.

3.1. Preliminaries: DINO

DINO is a typical DETR-like model, which is composed
of a backbone, a Transformer encoder, and a Transformer
decoder. The framework is shown in Fig. 1 (the blue-shaded
part without red lines). Following DAB-DETR [18], DINO
formulates each positional query in DETR as a 4D anchor
box, which is dynamically updated through each decoder
layer. Note that DINO uses multi-scale features with de-
formable attention [35]. Therefore, the updated anchor boxes
are also used to constrain deformable attention in a sparse
and soft way. Following DN-DETR [15], DINO adopts de-
noising training and further develops contrastive denoising
to accelerate training convergence. Moreover, DINO pro-
poses a mixed query selection scheme to initialize positional
queries in the decoder and a look-forward-twice method to
improve box gradient back-propagation.

3.2. Why a universal model has not replaced the
specialized models in DETR-like models?

Remarkable progress has been achieved by Transformer-
based detectors and segmentation models. For instance,
DINO [32] and Mask2Former [3] have achieved the best
results on COCO detection and panoptic segmentation, re-
spectively. Inspired by such progress, we attempted to simply
extend these specialized models for other tasks but found
that the performance of other tasks lagged behind the orig-
inal ones by a large margin, as shown in Table 1 and 2. It
seems that trivial multi-task training even hurts the perfor-
mance of the original task. However, in convolution-based
models, it has shown effective and mutually beneficial to
combine detection and instance segmentation tasks. For ex-
ample, detection models with Mask R-CNN head [9] is still
ranked the first on the COCO instance segmentation. We
will take DINO and Mask2Former as examples to discuss
the challenges in unifying Transformer-based detection and
segmentation.

—What are the differences between specialized detec-
tion and segmentation models? Image segmentation is
a pixel-level classification task, while object detection is
a region-level regression task. In DETR-based model, the
decoder queries are responsible for these tasks. For exam-
ple, Mask2Former uses such decoder queries to dot-product
the high-resolution feature maps to produce segmentation
masks, while DINO uses them to regress boxes. However,
as such queries in Mask2Former only have to compare per-
pixel similarity with the image features, they may not be
aware of the region-level position of each instance. On the
contrary, queries in DINO are not designed to interact with
such low-level features to learn pixel-level representation.
Instead, they encode rich positional information and high-
level semantics for detection.

—Why cannot Mask2Former do detection well? The
Transformer decoder of Mask2Former is designed for seg-
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Model | Box AP Mask AP
Mask2Former ‘ 46.2* 43.7
Mask2Former + detection head ‘ 21.6 41.3
DINO ‘ 50.7 -

Table 1. Simply adding a detection head to Mask2Former results in low
detection performance. * indicates the boxes are generated from the predicted

Model | Box AP Mask AP

DINO + Mask2Former segmentation head ‘ 49.9 40.2
DINO + DETR segmentation head 35.8

(finetune DINO pretrained on COCO detection) o
Mask2Former ‘ - 43.7

Table 2. Simply adding a segmentation head to DINO results in low instance segmentation

masks. The generated boxes from Mask2Former are also inferior to DINO performance. The predicted masks from DINO are also inferior to Mask2Former (-3.5 AP).

(-4.5 AP). The models are trained for 50 epochs.

mentation tasks and does not suit detection for three reasons.
First, its queries follow the design in DETR [1] without
being able to utilize better positional priors as studied in
Conditional DETR [22], Anchor DETR [29], and DAB-
DETR [18]. For example, its content queries are semanti-
cally aligned with the features from the Transformer encoder,
whereas its positional queries are just learnable vectors as
in vanilla DETR instead of being associated with a single-
mode position . If we remove its mask branch, it reduces
to a variant of DETR [1], whose performance is inferior to
recently improved DETR models. Second, Mask2Former
adopts masked attention (multi-head attention with atten-
tion mask) in Transformer decoders. The attention masks
predicted from a previous layer are of high resolution and
used as hard-constraints for attention computation. They
are neither efficient nor flexible for box prediction. Third,
Mask2Former cannot explicitly perform box refinement
layer by layer. Moreover, its coarse-to-fine mask refinement
in decoders fails to use multi-scale features from the encoder.
As shown in Table 1, the generated box AP from mask is
4.5 AP worse than DINO and trivial multi-task learning by
adding a detection head is not working 2.

—Why cannot DETR/DINO do segmentation well? As
shown in Table 2, simply 1) adding DETR’s segmentation
head or 2) adding Mask2Former’s segmentation head result
in inferior performance compared to Mask2Former. We ana-
lyze the reasons as follows. The reason for 1) is that DETR’s
segmentation head is not optimal. The vanilla DETR lets
each query embedding dot-product with the smallest fea-
ture map to compute attention maps and then upsamples
them to get the mask predictions. This design lacks an in-
teraction between queries and larger feature maps from the
backbone. In addition, the head is too heavy to use mask
auxiliary loss for mask refinement. The reason for 2) is
that features in improved detection models are not aligned
with segmentation. For example, DINO inherits many de-
signs from [18, 32, 35] like query formulation, denoising
training, and query selection. However, these components
are designed to strengthen region-level representation for
detection, which is not optimal for segmentation.

'We refer the interested readers to discussions in Sec. 3 in DAB-
DETR [18]

2We also notice there are issues in official Mask2Former Github
(https://github.com/facebookresearch/Mask2Former/issues/43) that fail to
make Mask2Former work well by adding a detection head.

The models are trained for 50 epochs.

3.3. Our Method: Mask DINO

Mask DINO adopts the same architecture design for de-
tection as in DINO with minimal modifications. In the Trans-
former decoder, Mask DINO adds a mask branch for seg-
mentation and extends several key components in DINO for
segmentation tasks. As shown in Fig. 1, the framework in
the blue-shaded part is the original DINO model and the
additional design for segmentation is marked with red lines.

3.4. Segmentation branch

Following other unified models [3, 4, 28] for image seg-
mentation, we perform mask classification for all segmenta-
tion tasks. Note that DINO is not designed for pixel-level
alignment as its positional queries are formulated as anchor
boxes and its content queries are used to predict box offset
and class membership. To perform mask classification, we
adopt a key idea from Mask2Former [3] to construct a pixel
embedding map which is obtained from the backbone and
Transformer encoder features. As shown in Fig. 1, the pixel
embedding map is obtained by fusing the 1/4 resolution
feature map C}, from the backbone with an upsampled 1/8
resolution feature map C, from the Transformer encoder.
Then we dot-product each content query embedding g, from
the decoder with the pixel embedding map to obtain an out-
put mask m.

m = Q. (9 M(T(Cb) + ]:(Ce))v (])

where M is the segmentation head, 7 is a convolutional
layer to map the channel dimension to the Transformer hid-
den dimension, and F is a simple interpolation function to
perform 2x upsampling of C.. This segmentation branch
is conceptually simple and easy to implement in the DINO
framework, as shown in Fig. 1.

3.5. Unified and Enhanced Query Selection

Unified query selection for mask: Query selection has
been widely used in traditional two-stage models [24] and
many DETR-like models [32,35] to improve detection per-
formance. We further improve the query selection scheme
in Mask DINO for segmentation tasks.

The encoder output features contain dense features, which
can serve as better priors for the decoder. Therefore, we
adopt three prediction heads (classification, detection, and
segmentation) in the encoder output. Note that the three
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Figure 1. The framework of Mask DINO, which is based on DINO (the blue-shaded part) with extensions (the red part) for segmentation
tasks. *QS’ and "DN’ are short for query selection and denoising training, respectively.

heads are identical to the decoder heads. The classification
score of each token is considered as the confidence to select
top-ranked features and feed them to the decoder as con-
tent queries. The selected features also regress boxes and
dot-product with the high-resolution feature map to predict
masks. The predicted boxes and masks will be supervised by
the ground truth and are considered as initial anchors for the
decoder. Note that we initialize both the content and anchor
box queries in Mask DINO whereas DINO only initializes
anchor box queries.

Mask-enhanced anchor box initialization: As summarized
in Sec 3.2, image segmentation is a pixel-level classification
task while object detection is a region-level position regres-
sion task. Therefore, compared to detection, though segmen-
tation is a more difficult task with fine-granularity, it is easier
to learn in the initial stage. For example, masks are predicted
by dot-producting queries with the high-resolution feature
map, which only needs to compare per-pixel semantic sim-
ilarity. However, detection requires to directly regress the
box coordinates in an image. Therefore, in the initial stage
after unified query selection, mask prediction is much more
accurate than box (the qualitative AP comparison between
mask prediction and box prediction in different stages is also
shown in Table 8 and 9). Therefore, after unified query se-
lection, we derive boxes from the predicted masks as better
anchor box initialization for the decoder. By this effective
task cooperation, the enhanced box initialization can bring
in a large improvement to the detection performance.

3.6. Segmentation Micro Design

Unified denoising for mask: Query denoising in object
detection has shown effective [15,32] to accelerate conver-
gence and improve performance. It adds noises to ground-

truth boxes and labels and feed them to the Transformer
decoder as noised positional queries and content queries.
The model is trained to reconstruct ground truth objects
given their noised versions. We also extend this technique to
segmentation tasks. As masks can be viewed as a more fine-
grained representation of boxes, box and mask are naturally
connected. Therefore, we can treat boxes as a noised version
of masks, and train the model to predict masks given boxes
as a denoising task. The given boxes for mask prediction
are also randomly noised for more efficient mask denoising
training. The detailed noise and its hyperparameters used in
our model are shown in Appendix ??.

Hybrid matching: Mask DINO, as in some traditional mod-
els [2,9], predicts boxes and masks with two parallel heads
in a loosely coupled manner. Hence the two heads can pre-
dict a pair of box and mask that are inconsistent with each
other. To address this issue, in addition to the original box
and classification loss in bipartite matching, we add a mask
prediction loss to encourage more accurate and consistent
matching results for one query. Therefore, the matching
cost becomes A.jsLers + ApozLvor + Amask Lmask, Where
Leis, Loox, and L, 445 are the classification, box, and mask
loss and A are their corresponding weights. The detailed
losses used in our model and their corresponding weights
are shown in Appendix ??.

4. Experiments

We conduct extensive experiments and compare with
several specialized models for four popular tasks including
object detection, instance, panoptic, and semantic segmenta-
tion on COCO [17], ADE20K [34], and Cityscapes [5]. For
all experiments, we use batch size 16 and A100 GPUs with
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Model | Epochs | Querytype | Mask AP Box AP | APZsk  Appmiesk  Apmask  Appiask  Apmaesk | GFLOPS | Params | FPS
ResNet-50 backbone |

Mask-RCNN [6,8,9] 400 Dense anchors 42.5 48.2 — — 23.8 45.0 60.0 207 40M 10.3
HTC [2] 36 Dense anchors 39.7 44.9 61.4 43.1 22.6 42.2 50.6 441 80M 5
Querylnst [7] 36 300 queries 40.6 45.6 63.0 44.0 23.4 42.5 52.8 - - 7.0
DINO-4scale [32] 36 900 queries — 50.9 — - - - - 245 4™ 19.6
Mask2Former [3] 12 100 queries 38.7 - 59.8 41.2 18.2 41.5 59.8 226 44M 8.2
Mask DINO (ours) 12 300 queries 41.4+27) 45.7 62.9 44.6 21.1 44.2 61.4 286 52M 14.8
Mask DINO (ours) 24 300 queries 44.2(+05) 48.4 66.6 47.9 23.9 47.0 64.0 286 52M 14.8
Mask2Former* [3] 50 100 queries 43.7 46.27 66.0 46.9 234 47.2 64.8 226 44M 8.2
Mask DINO (ours) 50 100 queries 454 49.8 67.9 49.3 25.2 48.3 65.8 280 52M 15.2
Mask DINO (ours) 50 300 queries 46.0 50.5 68.9 50.3 26.0+26) 49.3¢2.1)  65.5:+0.7) 286 52M 14.8
Mask DINO* (ours) 50 300 queries 46.3+26) 51.7(+08) 69.0 50.7 26.1+27) 49.3¢21)  66.1(+1.3) 286 52M 14.2
SwinL backbone

HTC++ [2,20] 72 dense anchors 49.5 57.1 — — 31.0 52.4 67.2 1470 284M —
Mask2Former [3] 100 200 queries 50.1 — — — 299 53.9 72.1 868 216M 4.0
DINO [32] 36 900 queries - 58.5 - - - - — 1285 217 | 8.1
Mask2Former 100 200 queries 50.1 - — 29.9 53.9 72.1 868 216M 4.0
Mask DINO (ours) 50 300 queries 52.1 58.3 76.5 57.6 329 55.4 72.5 1326 223M | 6.1
Mask DINO# (ours) 50 300 queries 52.3(+22)  59.0(+0.5) 76.6 57.8 33.1 55.4 72.6 1326 223M 5.6

Table 3. Results for Mask DINO and other object detection and instance segmentation models with ResNet-50 and SwinL backbone on
], we use ResNet-50 with four feature scales by default, and use five
scales under large models with a SwinL backbone. We follow the common practice in DETR-like models to use 300 queries. * Mask2Former
using 300 queries is not listed as its performance will degenerate when using 300 queries. ' indicates the box AP is derived from mask

COCO val2017 without extra data or tricks. Following DINO [

prediction. *

of Mask2Former and Mask DINO on the A100 GPU using detectron?2.

we use the proposed mask-enhanced box initialization to further improve detection performance. We test the FPS and GFLOPS

Model | Epochs | Querytype | PQ pPQ™" PQS! | Box APZ"  Mask APZR
ResNet-50 backbone |

DETR [1] 500 + 25 | 100 queries 434 48.2 36 - 31.1
Panoptic Segformer [16] 24 353 queries 49.6 54.4 42.4 — 41.7
Mask2Former* [3] 50 100 queries 51.9/51.51 57.7 43.0 — 41.7
Mask DINO (ours) 50 100 queries 52.3 58.3 43.2 47.7 43.7
Mask DINO (ours) 50 300 queries | 53.0+1.1)  59.1+1.4)  43.9::09) 48.8 44.3(+2.6)
Mask DINO (ours) 24 300 queries 51.5 57.3 42.6 46.4 42.8
Mask2Former [3] 12 100 queries 46.9 52.5 38.4 — 37.2
Panoptic Segformer [16] 12 353 queries 48.0 52.3 41.5 - -
Mask DINO (ours) 12 300 queries | 49.0+1.0) 54.8 40.2 43.2 40.4(+32)
SwinL backbone

Mask2Former [3] 100 100 queries 57.8 64.2 48.1 — 48.6
OneFormer [11] 100 150 queries 57.9 64.4 48.0 — 49.0
Mask DINO (ours) 50 300 queries | 58.3+05) 65.1 48.0 56.2 50.6(+2.0)

Table 4. Results for Mask DINO and other panoptic segmentation models with a ResNet-50 backbone on COCO val2017. * Mask2Former
using 300 queries is not listed as its performance will degenerate when using 300 queries. T Our reproduced result.

40GB memory. We use a ResNet-50 [10] and a SwinL [20]
backbone for our main results and SOTA model. Under
ResNet-50, we use 4 A100 GPUs for all tasks without extra
data. The implementation details are in Appendix ??.

4.1. Main Results

Instance segmentation and object detection. In Table
3, we compare Mask DINO with other instance segmenta-
tion and object detection models. Mask DINO outperforms
both the specialized models such as Mask2Former [3] and
DINO [32] and hybrid models such as HTC [2] under the
same setting. Especially, the instance segmentation results
surpass the strong baseline Mask2Former by a large mar-
gin (+2.7 AP and +2.6 AP) on the 12-epoch and 50-epoch
settings. Moreover, Mask DINO significantly improves the
convergence speed, outperforming Mask2Former with less

than half training epochs (44.2 AP in 24 epochs). In ad-
dition, after using mask-enhanced box initialization, our
detection performance has been significantly improved (+1.2
AP), which even outperforms DINO by 0.8 AP. These results
indicate that task unification is beneficial. Without bells and
whistles, we achieve the best detection and instance segmen-
tation performance among DETR-like model with a SwinL
backbone without extra data.

Panoptic segmentation. We compare Mask DINO with
other models in Table 4. Mask DINO outperforms all previ-
ous best models on both the 12-epoch and 50-epoch settings
by 1.0 PQ and 1.1 PQ, respectively. This indicates Mask
DINO has the advantages of both faster convergence and
superior performance. One interesting observation is that
we outperform Mask2Former [3] in terms of both PQTh
and PQSt. However, instead of using dense and hard-
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Model Iterations Crop | mloU mloU mioU Model Iterations mioU mioU mioU
size | (mean)  (high) (reported) (mean)  (high) (reported)
Mask2Former [3] 160k 512 46.1 46.5 47.2 Mask2Former [3] 90k 78.7 79.0 79.4
Mask DINO (ours) 160k 512 | 477416 48722  48.7¢16 Mask DINO (ours) 90k 79.8:1n  80.0¢1.00  80.006)

Table 5. Results for Mask DINO and Mask2Former with 100 queries using
a ResNet-50 backbone on ADE20K val. We found the performance
variance on this dataset is high and run three times to report both the mean
and highest results for both models.

Table 6. Results for Mask DINO and Mask2Former with 100 queries using
a ResNet-50 backbone on Cityscapes val. We found the performance
variance on this dataset is high and run three times to report both the mean
and highest results for both models.

i . e 1
Method Params| Backbone Backbone Pre-training | Detection Pre-training va
Dataset Dataset w/o TTA  w/ TTA
Instance segmentation on COCO AP
Mask2Former [3] 216M SwinL IN-22K-14M — 50.1 —
Soft Teacher [31] 284M SwinL IN-22K-14M 0365 51.9 52.5
SwinV2-G-HTC++ [19] 3.0B | SwinV2-G | IN-22K-ext-70M [19] 0365 53.4 53.7
MasK DINO(Ours) 223M SwinL IN-22K-14M — 52.6 —
MasK DINO(Ours) 223M SwinL IN-22K-14M 0365 54.5(+1.1) —
Panoptic segmentation on COCO PQ
Panoptic SegFormer [16] -M SwinL IN-22K-14M - 55.8 -
Mask2Former [3] 216M SwinL IN-22K-14M . 57.8 —
MasK DINO (ours) 223M SwinL IN-22K-14M 58.4(+0.6) —
MasK DINO (ours) 223M SwinL IN-22K-14M 0365 59.4(+1.6) —
Semantic segmentation on ADE20K mloU
Mask2Former [3] 215M SwinL IN-22K-14M — 56.1 57.3
SeMask-L MSFaPN-Mask2Former [12]| —M | SwinL-FaPN IN-22K-14M - - 58.2
SwinV2-G-UperNet [19] 3.0B | SwinV2-G |IN-22K-ext-70M [19] — 59.3 59.9
MasK DINO (ours) 223M SwinL IN-22K-14M - 56.6 —
MasK DINO (ours) 223M SwinL IN-22K-14M 0365 59.5  60.8(+0.9)

Table 7. Comparison of the SOTA models on three segmentation tasks. Mask DINO outperforms all existing models. "TTA" means

test-time-augmentation. “O365” denotes the Objects365 [

constrained masked attention, we predict boxes and then
use them in deformable attention to extract query features.
Therefore, our box-oriented deformable attention also works
well with "stuff" categories, which makes our unified model
simple and efficient. In addition, we improve the mask
Angn by 2.6 to 44.3 AP, which is 0.6 higher than the spe-
cialized instance segmentation model Mask2Fomer (43.7
AP).

Semantic segmentation. In Table 5 and 6, we show the
performance of semantic segmentation with a ResNet-50
backbone. We use 100 queries for these small datasets. We
outperform Mask2Former on both ADE20K and Cityscapes
by 1.6 and 0.6 mIoU on the reported performance.

4.2. Comparison with SOTA Models

In Table 7, we compare Mask DINO with SOTA models
on three image segmentation tasks to show its scalability.
We use the SwinL [20] backbone and pre-train DINO on
the Objects365 [26] detection dataset. Even without using
extra data, we outperform Mask2Former on all three tasks,
especially on instance segmentation (+2.5 AP). As Mask
DINO is an extension of DINO, the pre-trained DINO model
can be used to fine-tune Mask DINO for segmentation tasks.
After fine-tuning Mask DINO on the corresponding tasks, we

] dataset.

achieve the best results on instance (54.5 AP), panoptic (59.4
PQ), and semantic (60.8 mloU) segmentation among model
under one billion parameters. Compared to SwinV2-G [19],
we significantly reduce the model size to 1/15 and backbone
pre-training dataset to 1/5. Our detection pre-training also
significantly helps all segmentation tasks including panoptic
and semantic with "stuff" categories. However, previous
specialized segmentation models such as Mask2Former can
not use detection datasets and adding a detection head to
it results in poor performance as shown in Table 1, which
severely limits the data scalability. By unifying four tasks
in one model, we only need to pre-train one model on a
large-scale dataset and finetune on all tasks for 10 to 20
epochs (Mask2Former needs 100 epochs), which is more
computationally efficient and simpler in model design.

4.3. Ablation Studies

We conduct ablation studies using a ResNet-50 backbone
to analyze Mask DINO on COCO val12017. Unless other-
wise stated, our experiments are based on object detection
and instance segmentation without Mask-enhanced anchor
box initialization.

Query selection. Table 8 shows the results of our query se-
lection for instance segmentation, where we additionally pro-
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Feature scale ‘ box AP mask AP

single scale(1/8) 45.8 45.1
3 scales 50.5 45.8
4 scales 50.5 46.0

test layer# ‘ Mask DINO  Mask2Former w/o ME w ME
layer# ‘ Box Mask ‘ Box Mask
layer O ‘ 39.6(+38.5) 1.1
layer 3 440 123 layer 0 ‘ 39.6 256 ‘ 39.8  41.2¢:15.6)
layer 6 45.9 43.3 layer9 | 46.0 50.5 | 463 51.7¢12
layer 9 46.0 43.7

Table 8. Effectiveness of our query selection for mask initialization. We
evaluate the instance segmentation performance from different decoder layers
in the same model after training for 50 epochs.

Table 9. Comparsion of our model with and without
Mask-enhanced anchor box initialization (ME). ME
enhances anchor box initialization and improves final
detection performance. Trained for 50 epochs.

Bo:aSll(vs[ask ‘ Box AP Mask AP Decoder layer# | Box AP Mask AP
3 43.1 40.7
v 50.1 - 6 44.3 41.1
v - 43.3 9 44.5 414
v v 50.5+04)  46.0¢+2.7) 12 44.8 41.1

Table 10. Comparison of multi-scale features for Trans-
former decoder under the 50-epoch setting. Both detection
and segmentation benefit from more feature scales.

Matching
Box Mask ‘ Box AP Mask AP
v 44.4 40.5
v 40.2 384
v v 4.5 414

Table 11. Task comparison under the 50-epoch setting. We train
the same Mask DINO with different tasks and validate that box
and mask can achieve mutual cooperation.

Table 12. Decoder layer number comparison under the 12-epoch
setting. Mask DINO benefits from more decoders, while DINO’s
performance will decrease with 9 decoders.

Table 13. Matching method comparison under the 12-epoch setting.
We train both tasks together but use different matching methods to
verify the effectiveness of hybrid matching.

| Box AP Mask AP
Mask DINO (ours) | 457 41.4
— Mask-enhanced anchor box initialization | 44.5¢-1.2) 41.4
— Unified query selection for masks 43.6¢2.1)  40.3¢L1
— Unified denoising for masks 44.4¢13 403 1
— Hybrid matching 44908  40.5 09
— remove all the above ‘ 41.7 (400 3852

Table 14. Effectiveness of the proposed components under the 12-epoch setting.

vide the performance of different decoder layers in one single
model. Mask2Former also predicts the masks of learnable
queries as initial region proposals. However, their perfor-
mance lags behind Mask DINO by a large margin (-38.5AP).
With our effective query selection scheme, the mask per-
formance achieves 39.6 AP without using the decoder. In
addition, our mask performance at layer six is already com-
parable to the final results with 9 layers. In Table 9, we
show that in query selection the predicted box is inferior to
mask, which indicates segmentation is easier to learn in the
initial stage. Therefore, our proposed mask-enhanced box
initialization enhances boxes with masks in query selection
to provide better anchor boxes (+15.6 AP) for the decoder,
which results in +1.2 AP improvement in the final detection
performance.

Feature scales. Mask2Former [3] shows that concatenating
multi-scale features as input to Transformer decoder layers
does not improve the segmentation performance. However,
in Table 10, Mask DINO shows that using more feature
scales in the decoder consistently improves the performance.
Object detection and segmentation help each other. To
validate task cooperation in Mask DINO, we use the same
model but train different tasks and report the 12 epoch and
50 epoch results. As shown in Table 11, only training one
task will lead to a performance drop. Although only training
object detection results in faster convergence in the early
stage for box prediction, the final performance is still infe-
rior to training both tasks together.

Decoder layer number. In DINO, increasing the decoder
layer number to nine will decrease the performance of box.
In Table 12, the result indicates that increasing the number of

decoder layers will contribute to both detection and segmen-
tation in Mask DINO. We hypothesize that the multi-task
training become more complex and require more decoders
to learn the needed mapping function.

Matching. In Table 13, we show that only using boxes or
masks to perform bipartite matching is not optimal in Mask
DINO. A unified matching objective makes the optimization
more consistent. In addition, after removing all the proposed
components, both detection and segmentation performance
drop by a large margin. This result indicates that if we
trivially add detection and segmentation tasks in one DETR-
based model, the features are not aligned for detection and
segmentation tasks to achieve mutual cooperation.

We also present visualization analysis in Appendix ??.

5. Conclusion

In this paper, we have presented Mask DINO as a uni-

fied Transformer-based framework for both object detection
and image segmentation. Conceptually, Mask DINO is a
natural extension of DINO from detection to segmentation
with minimal modifications on some key components. Mask
DINO outperforms previous specialized models and achieves
the best results on all three segmentation tasks (instance,
panoptic, and semantic) among models under one billion
parameters. Moreover, Mask DINO shows that detection
and segmentation can help each other in query-based models.
In particular, Mask DINO enables semantic and panoptic
segmentation to benefit from a better visual representation
pre-trained on a large-scale detection dataset. We hope Mask
DINO can provide insights for enabling task cooperation
and data cooperation towards designing a universal model
for more vision tasks.
Limitations: Different segmentation tasks fail to achieve
mutual assistance in Mask DINO in COCO panoptic seg-
mentation. For example, in COCO panoptic segmentation,
the mask AP still lags behind the model only trained with
instances.
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