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Abstract

Time-resolved non-line-of-sight (NLOS) imaging is
based on the multi-bounce indirect reflections from the hid-
den objects for 3D sensing. Reconstruction from NLOS
measurements remains challenging especially for compli-
cated scenes. To boost the performance, we present NLOST,
the first transformer-based neural network for NLOS recon-
struction. Specifically, after extracting the shallow features
with the assistance of physics-based priors, we design two
spatial-temporal self attention encoders to explore both lo-
cal and global correlations within 3D NLOS data by split-
ting or downsampling the features into different scales, re-
spectively. Then, we design a spatial-temporal cross atten-
tion decoder to integrate local and global features in the
token space of transformer, resulting in deep features with
high representation capabilities. Finally, deep and shallow
features are fused to reconstruct the 3D volume of hidden
scenes. Extensive experimental results demonstrate the su-
perior performance of the proposed method over existing
solutions on both synthetic data and real-world data cap-
tured by different NLOS imaging systems.

1. Introduction

Traditional imaging methods mainly focus on recover-
ing information in line-of-sight scenarios, where there are
no obstacles on the direct light path between the target and
the camera. In contrast, non-line-of-sight (NLOS) imaging
targets recovering the hidden scene beyond the direct line
of the cameras’ sight, where a diffuse relay surface scat-
ters the light from the scene with dramatic loss. Recently,
NLOS imaging has brought tremendous revolutions to au-
tonomous driving [2, 20, 35], disaster rescue [18,43], and
medical diagnosis [27].

The time-of-flight (ToF) based imaging scheme is a com-
mon configuration in NLOS [9, 14,21,29,36], where a laser
source projects a short-pulse light to the relay wall. The
light propagates from the relay wall to the hidden object,
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then reflects back to the relay wall and is finally captured
with a time-resolved single-photon avalanche diode (SPAD)
detector. The hidden volume could be reconstructed by
modeling the three bounces of the traveling light, achiev-
ing “seeing around corners”.

Existing NLOS reconstruction algorithms have achieved
decent results, but are still confronted with great challenges.
Methods based on filter back projection [17,41] or light
path transport [13, 14, 29] often impose restrictive condi-
tions, such as an ideal diffuse surface and no occlusions be-
hind the wall, resulting in detailed texture loss and heavy
noise. Methods based on wave propagation [21, 24] are
sensitive to the depth range of hidden objects, making dis-
tant regions indistinct. Recently, deep-learning-based meth-
ods [9, 10, 28, 36] have been introduced to NLOS recon-
struction with improved detailed textures and geometries.
However, there still remains a large room for boosting their
performance on complicated scenes and generalization ca-
pabilities toward different real-world systems.

Inspired by the success of transformer [25,40] in a va-
riety of vision tasks including 3D reconstruction [7, 19,

,42,45], we propose the first transformer-based method
for NLOS reconstruction, termed as NLOST. Our method
leverages the powerful representation capability of the
transformer for capturing local and global spatial-temporal
correlations in 3D NLOS measurements. Specifically, to
exploit these correlations, we design an end-to-end neu-
ral network with two elaborate attention mechanisms tai-
lored for NLOS reconstruction. The network first extracts
the shallow features from the NLOS measurements with a
feature extractor incorporating physics-based priors. Then,
two spatial-temporal self attention encoders built on trans-
formers are proposed to extract local and global information
from the shallow features, respectively. For the local en-
coder, the input features are split into patches, and the local
information is exploited in each patch along the spatial and
temporal dimensions, successively. For the global encoder,
the input features are downsampled to a smaller scale, and
the global information is exploited along spatial and tempo-
ral dimensions in the whole feature space. The complemen-
tary local and global information is further integrated with
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each other into the token space of transformers by the pro-
posed spatial-temporal cross attention decoder, generating
deep local and global features with high representation ca-
pabilities. Finally, the above-obtained shallow, deep local,
and deep global features are fused together to reconstruct
the 3D volume of hidden scenes.

Extensive experiments are performed on both synthetic
and real-world datasets. In addition to the publicly avail-
able data, we also capture a set of real-world measure-
ments with a self-built NLOS imaging system. Compared
with existing traditional and deep-learning-based solutions,
our method achieves superior reconstruction performance
as well as improved generalization capability to real-world
scenarios. Contributions are summarized as follows:

* We propose the first transformer-based neural network
for NLOS reconstruction.

* We exploit the complementary local and global corre-
lations in 3D NLOS measurements with two elaborate
spatial-temporal attention mechanisms.

* Our method achieves superior performance on both
synthetic data and real-world data from different imag-
ing systems.

* We capture a set of NLOS transient measurements with
a self-built confocal system and release them for future
researches in this field (https://github.com/
Depth2Wor1d/NLOST).

2. Related Work

NLOS Imaging System. Existing NLOS imaging sys-
tems can be divided into two categories: passive and ac-
tive. Passive systems [1, 3,4, 34, 44] seek to perform the
reconstruction solely with the light emitted from the am-
bient environment or the hidden object, which capture the
NLOS measurements with a conventional camera and re-
main very challenging for general scenes. Active systems
[14,15,21,24,29,41] illuminate the scene with a controlled
light source, usually a laser, and reconstruct the hidden
scenes from the active transient measurements. Generally,
the most effective and robust setup uses a pulsed illumina-
tion source and a fast SPAD detector to measure the ToF
measurements through the scenes.

Traditional NLOS Reconstruction. Many algorithms
have been developed for time-resolved NLOS reconstruc-
tion since Kirmani et al. [15] propose to recover the hid-
den object out of the visible line of sight. As a precur-
sory work in the field of NLOS, Velten et al. [41] pro-
pose a filtered back-projection (FBP) method to recover
the hidden objects from NLOS measurements. O’Toole et
al. [29] facilitate the light-cone transform (LCT) for NLOS
reconstruction under the following assumptions: light scat-
ters isotropically and only once behind the wall, and the
scene contains no occlusions. They simplify the transient

formation in a linear 3D convolution form, and the recon-
struction can be expressed as a deconvolution process and
solved efficiently. Following [29], Heide et al. [13] further
model the partial occlusions and surface normals in NLOS
imaging and develop a factorization approach for nonlin-
ear inverse time-resolved light transport. Recent researches
have transitioned from geometrical optics models to wave
propagation models [21,23]. Lindell et al. [21] introduce
a wave-based image formation model for NLOS imaging
and adopt frequency-wavenumber migration (FK). Liu er
al. [23] start from the phasor field formalism and present a
Rayleigh Sommerfeld Diffraction (RSD) algorithm for gen-
eral transient data. However, the traditional algorithms are
either restricted by the ideal assumptions or fragile for the
distant targets in real-world scenarios.

Deep NLOS Reconstruction. Recently, deep learning has
demonstrated success in computational imaging [8, 16,33,

], which sparks interest into NLOS reconstruction. Cho-
pite et al. [10] first employ a convolutional neural network
for NLOS depth estimation, with a 3D encoder and a 2D de-
coder in U-Net [ 1 1] architecture. Due to the lack of special
network design for the transient measurement, this model
behaves no better than physics-based solutions [21,23,29]
on synthetic data and fails to generalize to real-world sce-
narios. Chen et al. [9] propose a learned feature embedded
network (LFE) to reduce the domain gap between synthetic
and real-world datasets, which incorporates the physical-
based method [21] at the feature level and then projects the
features from 3D spatial domains to 2D planes directly to
reconstruct final intensity and depth maps. While promis-
ing results are achieved, the 3D to 2D projection may lead to
information loss, and LFE requires multi-view supervision
during training which burdens the training data generation.
Inspired by the recently proposed Neural Radiance Field
(NeRF), Shen ef al. [36] introduce Neural Transient Field
(NeTF) to recover the 3D volume from the transient mea-
surements, which uses the multi-layer perception to repre-
sent a 3D density volume. Nevertheless, NeTF suffers from
severe noise on smooth surfaces when recovering the geom-
etry. In addition, the transient field has to be rendered for
each measurement.

As the first transformer-based method, NLOST enjoys a
performance boost over previous solutions, thanks to our
specially designed attention mechanisms tailored for 3D
NLOS measurements. Instead of mapping the features to
the 2D images as in [9], our model works on 3D domains
all the way, which avoids information loss. In addition,
NLOST can be trained with single-view supervision and
also avoids test time rendering as required in [36].

3. Preliminary

Forward Model. In this paper, we focus on ToF-based
NLOS imaging, which mainly contains a laser source, a
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Figure 1. A schematic diagram of the NLOS imaging system.

time-resolved SPAD detector, a relay wall, and a hidden ob-
ject, shown in Fig. 1. The system works in a confocal man-
ner, where the laser projects short periodic light pulses §()
toward the relay wall at illumination point p;, from where
the light is diffusely scattered at time ¢ = 0 and targets the
hidden object. After integrated with the object at a certain
target point p,, a fraction of the light is reflected back to the
relay wall after time interval ¢ and finally captured by the
SPAD at the sampling point p,, resulting in a 3D spatial-
temporal volume 7(ps, pt,t), known as transient measure-
ment. The transient measurement, containing both geomet-
ric and photometric information of the hidden object, is a
function of illuminated point p;, sampling point p,, and tar-
get point p; and can be modeled as

7(ps,t) = ///Q PPr)  F(Mpimspes pi—sp.) - @ €))

“O(r+rs —t-c)dQ,

where () denotes the spherical surface of scattered pulse
light from the relay wall. p(-) denotes the albedo of the
hidden object. n,_,;, means the normalized direction from
point a to point b. f(-) represents the bidirectional re-
flectance distribution function, containing diffuse, specular,
and retroreflective components. c is the speed of light. r;
is the distance between the illumination point and the target
point, while r, is the distance between the sampling point
and the target point. ¢ is the geometry radiometric term
modeled as

(Mpi—spe " M) (Mpy—p,  Tp,) * Upispy * Upiosps )
where v,_,; represents the visibility of point a to point b
and n,, is the surface orientation of the target point p;.

(p:

This forward model is general and only assumes no inter-
reflections in the hidden scene. Similar to [9, 10, 29], we
model the photon detection of SPAD with an inhomoge-
neous Poisson process [38] and store the transient measure-
ment in the form of a histogram matrix H [n] with discrete
temporal bins as

H{[n] ~ Poisson (7(ps, t) + B), 3)
where n is the index of the temporal bins, and B is the noise
photon detections, including both background photons and
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Figure 2. An example of the local and global correlations in the
NLOS measurement. The patches and points in the scene indicate
the sampling locations on the corresponding relay wall.

dark counts [5] of SPAD sensors.

Local Correlation. For natural scenes, a certain location
usually has similar intensity and depth values to its neigh-
borhoods. This short-range correlation (denoted as local
correlation) generally holds in a small range of regions
and has been exploited in many vision tasks [33,37]. As
shown in Fig. 2, the histograms of two adjacent points in the
transient data are close to each other, which demonstrates
that the NLOS measurements also contain local correlation.
This kind of correlation is exploited by our spatial-temporal
self-attention encoder under the constraint of local continu-
ity for the reconstructed scene.

Global Correlation. For natural scenes, distant patches
with similar geometry may have similar intensity and depth
values. This long-range correlation (denoted as a global or
nonlocal correlation) generally exists in different regions of
the scene, which has also been exploited in many vision
tasks [12,22,31,32]. As shown in Fig. 2, if we average the
histograms of two patches with similar geometry in the tran-
sient data, the resulting curves are quite similar. It suggests
that the global correlation also holds in the NLOS measure-
ments. This kind of correlation is further exploited by our
spatial-temporal self-attention encoder under the constraint
of global consistency for the reconstructed scene.

4. Proposed Method

We propose the first transformer-based neural network
for NLOS reconstruction by fully exploiting the local and
global correlations in the transient measurements, as shown
in Fig. 3. Firstly, the input transient data is fed to a feature
extractor to extract the shallow features Fg and F§ with
physics-based priors. Then, two spatial-temporal self atten-
tion encoders exploit the local and global correlations along
spatial and temporal dimensions from the shallow features
Fg, respectively, and generate the local features I, and the
global features Fi;. After that, two spatial-temporal cross
attention decoders integrate the complementary local and
global features, respectively, and generate the deep local
features F} and the deep global features F%; with improved
representation capabilities. Finally, the shallow features F'g
and the deep features F'} and F, are fused together to re-
construct the 3D volume of hidden objects, generating the
intensity image and the depth map.
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Figure 3. The flowchart of our proposed transformer-based neural network for NLOS reconstruction from the input NLOS transient
measurement. “C” and “D” with rectangular blocks denote the 3D convolution and 3D dilated convolution, respectively, with their kernel
sizes behind. “C” with circular blocks denotes the concatenation. “DS” with a rectangular block denotes the downsampling operators
along the temporal dimension. “TU” with a rectangular block denotes the upsampling operator along the temporal dimension. “}” and “1”
with a circular block denote the downsampling and upsampling operators along the spatial dimension.
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Figure 4. An overview of spatial-temporal self attention encoder.

4.1. Shallow Feature Extraction

The shallow feature extractor consists of a feature ex-
traction layer, a feature transform layer, and a feature en-
hancement layer, as shown in Fig. 3. Given a transient
measurement, we first downsample the input in the tempo-
ral dimension and extend the channel dimension by several
residual convolutions with the feature extraction layer. In-
spired by the existing learning-based methods [9, 28], we
transform the spatial-temporal features to the 3D spatial do-
main with a physics-based prior FK [2 1] in the feature trans-
form layer. We further enhance the output features by sev-
eral interlaced 3D convolutions and 3D dilated convolutions
to enlarge the receptive field with the feature enhancement
layer, producing the shallow features F'g and F5, where
Fge REXWXTXC g W, T, and C denote the height,
width, time, and channel dimension of the feature volume.

4.2. Spatial-Temporal Self Attention Encoder

Local Correlation Exploration. To exploit the local cor-
relation in NLOS measurement, we design a local spatial-
temporal encoder based on the multi-head self attention
(MSA) mechanism. As shown in Fig. 4, the local encoder
consists of a spatial window-based MSA layer (W,-MSA),
a temporal window-based MSA layer (W;-MSA), and a
feed-forward network (FFN). Given the shallow features F's
previously extracted, the local encoder first partitions the

features into patches (with a size of Pf - T, a number of
Ns, = HW/P?) along spatial dimensions and processes
these patches with W4-MSA, individually. Then, the out-
put features are reshaped and partitioned into patches (with
a size of P, - HW, a number of N; = T/P,) along the
temporal dimensions again and processed by W;-MSA, in-
dividually. Finally, the output features are stitched and fed
into the FFN, generating the features with local information.
This process can be modeled as

Fr, = FEN{W;-MSA{W,-MSA{Fs}}}, (&
where F, € REXWXTXC denotes the output local features.
By partitioning the input features into patches and extract-
ing information within patches along spatial and temporal
dimensions successively, the local encoder maintains the
continuity of depth and intensity in a local region of the 3D
transient measurement, which helps to provide more details
for the reconstructions of hidden scenes.

Global Correlation Exploration. To exploit the global
correlations in NLOS measurements, we design a global
spatial-temporal encoder based on the MSA mechanism.
As shown in Fig. 4, the global encoder consists of a full
spatial MSA layer (F;-MSA), a full temporal MSA layer
(F;-MSA), and an FFN. Given the shallow features Fls, the
global encoder first downsamples the features along the spa-
tial dimensions and processes the features with Fs-MSA.
Then, the output features are reshaped and processed with
F;-MSA along the temporal dimension. Finally, the output
features are fed into the FFN, generating the features with
global information. This process can be modeled as

Fg = FEN{F,-MSA{F.-MSA{F}}}}, (5

where F; € R% X% *T*C denotes the output global fea-
tures and k denotes the downsampling factor. By downsam-
pling the input features to a smaller scale and extracting in-
formation within the whole feature space along spatial and
temporal dimensions successively, the global encoder main-
tains the consistency of depth and intensity in the whole
3D transient measurements, which helps to recover hidden
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scenes with large depth ranges and complicated geometries.

As demonstrated in the ablation study in Sec. 5.4, our
elaborate spatial-temporal self attention encoder effectively
captures the local and global correlations in NLOS mea-
surements, which improves the reconstruction performance
for challenging real-world scenes.

4.3. Spatial-Temporal Cross Attention Decoder

To integrate both local and global information, we fur-
ther design a spatial-temporal cross attention decoder to im-
prove the feature representation capability. The decoder
consists of a local branch and a global branch based on
our devised spatial-temporal cross attention (STCA) mech-
anism, as shown in Fig. 5. Both local and global branches
contain an STCA layer, and an FFN interleaved with nor-
malization. For the local branch, the local features F, and
the upsampled global features FCT; (with the same scale as
F1) are fed into the STCA and FFN in sequence, generat-
ing the deep local features F; € REXWXTXC g

Fi = FFN{STCA|[Q,K,V]},
Q=FLK=V=F. (6)

For the global branch, the upsampled global features Fg
and the local features F, are fed into STCA and FFN
in sequence generating the deep global features Iy, €
]RH XWxTxC as
FL=FFN{STCA|Q,K,V]},

Q=F,,K=V=F. (7)
As shown in Fig. 5, the STCA integrates the local and global
features in a 3D token space, where local and global fea-
tures are adopted as the query in turn. Given the two input
features, a 1 x1x1 convolution is conducted to produce the
query (Q), key (K), and value(V), respectively. The space
of Q, K, and V is reshaped to RHWXDXC (4 calculate the
spatial cross attention by matrix multiplication. After that,
the output features are fed into a 1 x 1x 1 convolution result-
ing in a new K, and a new V. The space of the initial Q, the
new K, and the new V is reshaped to RP*HWXC for calcu-
lating the temporal cross attention by matrix multiplication
as well. As such, the two input features are integrated, and
the local and global information complement each other si-
multaneously. The integration greatly improves the repre-
sentation capability of the output features and promotes the
reconstruction performance, as demonstrated in Sec. 5.4.

4.4. Shallow-Deep Feature Fusion

Finally, the deep local features F'/ and deep global fea-
tures F are fed to 3D deconvolutions to upsample the tem-
poral dimension (with the same scale as F'g). Then the up-
sampled deep local and global features, and the shallow fea-
tures F'g are concatenated along the channel dimension and
then fused with 3D convolutional layers to reconstruct the
3D volume V of the hidden scene. The intensity image Iis
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Figure 5. An overview of spatial-temporal cross attention decoder.

TR

x” with a circle denotes the matrix multiplication.

obtained with a max operator along the z axis, while depth
map D is obtained with an argmax operator along the z axis,
which can be modeled as
V = fusion[cat(F%, FyT, Fi5h],

I =max,(V), D = argmax_(V), (8)
where cat denotes the concatenation along the channel di-
mension, while fusion contains several 3D convolutions lay-
ers. The effectiveness of the shallow-deep feature fusion is
demonstrated in Sec. 5.4.

4.5. Loss Function

The loss function is twofold: the intensity loss £; and
the depth loss L. The former is defined as the Manhattan
distance between the reconstructed intensity image I and
the ground-truth I, while the latter is the Manhattan distance
between the reconstructed depth map D and the ground-
truth D, which can be denoted as

L1 D) =l = [, £0(D, D) = [D = D|,. 9
The final loss function to train the network is
L£=1Li(I,1)+alp(D,D), (10)
where « is a weighting factor.

5. Experiments on Simulated Data
5.1. Data Simulation and Evaluation Metrics

Following [9, 10, 28], we simulate the training and testing
data using the transient rasterizer [9] with default settings.
A total of 6925 transient measurements with correspond-
ing RGB images are rendered from the motorcycles in the
ShapeNet Core dataset [0]. Each measurement has a spatial
resolution of 128x128x512 with a bin width of 33 ps. A
total of 6250 samples are adopted for training while the re-
maining 675 samples are used for testing, denoted as Seen
testing data. To validate the generalization capability of our
network, we also render 500 transient measurements from
other objects (e.g. baskets, helmets, cars, and so on) , de-
noted as Unseen testing data.
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Figure 6. Reconstructed results from Seen and Unseen test sets on the simulated datasets. The odd and even rows are the intensity images
and the depth error maps, respectively. GT denotes the ground truth. The color bars show the value of depth and the error map.

The quantitative evaluation metrics are twofold. For the
intensity image, we compute the peak signal-to-noise ratio
(PSNR), and structural similarity metrics (SSIM) averaged
on the corresponding test samples. For the depth map, we
compute the root mean square error (RMSE) and mean ab-
solute distance (MAD) averaged on the test samples.

5.2. Implementation Details

We implement our method using PyTorch [30] and train
the network on the simulated data with a batch size of 4. We
initialize the network randomly and adopt the AdamW [26]
solver with a learning rate of 10~% and an exponential
decay of 0.95. The hyper-parameter « is set to 1. We
make comparisons with the existing baselines, including
physics-based methods: FBP [41], LCT [29], FK [21], and
RSD [23]; and deep-learning-based methods: UNet [10],
LFE [9] and NeTF [36]. The implementations of the base-
line methods follow their publicly available codes. UNet
and LFE are trained on the same simulated data as ours,
while NeTF [36] is directly trained on the test measurement.
We only include NeTF for real-world experiments due to
its computational burden for hundreds of simulated scenes.
See more details of the deep models in the supplement.

Table 1. Quantitative comparisons of different methods in terms of
reconstructing intensity images and depth maps on the Seen and
Unseen test sets.

Intensit Depth
Data | Methods e ssynvn RMSE¢pMAD¢
FBP[41] | 19.96 0.1846 | 0.7053 0.6694
LCT[29] | 19.78 0.4477 | 0.6694 0.6321
= | RSD[24] | 22.17 04257 | 0.7156 0.6846
& | FK[21] | 23.11 0.7996 | 0.5558 0.5332
UNet[10] | 2438 0.7792 | 0.0820 0.0317
LEE[9] | 2690 0.8661 | 0.0769 0.0455
Ours 28.17  0.9018 | 0.0666 0.0221
FBP[41] | 17.81 02114 | 0.6986 0.6479
LCT[29] | 18.54 0.4962 | 0.6604 0.6152
£ | RSD[24] | 19.58 0.4151 | 0.7335 0.6938
2 | FK[21] | 1992 07729 | 0.5896 0.5526
2 | UNet[10] | 17.87 0.6932 | 0.1326 0.0555
LFE [0] | 23.40 0.8100 | 0.1220 0.0561
Ours 23.99  0.8286 | 0.1107 0.0444

5.3. Simulated Results

We first evaluate our method on the Seen test set. The
quantitative results of different methods are listed in Ta-
ble 1. As can be seen, our method achieves the best perfor-
mance in both intensity and depth reconstruction and sig-
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Table 2. Ablation results on spatial-temporal attention. Spa and
Tem denote that the attention mechanism only operates on the spa-
tial or temporal dimension.

SA CA Intensity Depth
Spa Tem | Spa Tem | PSNR SSIM | RMSE MAD
v X | v v |2480 0.8738]0.0688 0.0247
X v | v v 2609 09065 |0.0674 0.0236
v o v | v X |2480 0.8739|0.0688 0.0247
v o v | X v 2560 0.9010 0.0676 0.0236
v o v v Vv |2641 0.9158 | 0.0640 0.0205

Table 3. Ablation results on local-global feature integration.

Integration Intensity Depth
PSNR SSIM RMSE MAD
Nolnt 25.82 0.8867 0.0718  0.0274
Glolnt 25.94 0.9013 0.0668  0.0244
Loclnt 26.06 0.9045 0.0652  0.0218
LGInt(Ours) 2641 0.9158 0.0640  0.0205

nificantly surpasses existing baselines. For the intensity im-
age, our method improves the reconstruction performance
by a large margin over the physics-based methods, i.e., 5.06
dB over FK and 6.00 dB over RSD in terms of PSNR, which
demonstrates the superiority of modeling the NLOS recon-
struction with transformer. Meanwhile, compared with the
deep-learning-based methods, our method achieves 1.27 dB
and 3.79 dB improvements over UNet and LFE, respec-
tively, which demonstrates the effectiveness of exploiting
local and global correlations in transient measurements. For
the depth map, our method decreases RMSE by 19% and
13% over UNet and LFE, respectively. In addition, we also
provide the quantitative results on the Unseen test set in Ta-
ble 1, which includes more complicated scenes. As can be
seen, our method also performs the best in both intensity
and depth reconstruction, demonstrating the superior gen-
eralization capability of our network to unseen objects.

In addition to the quantitative comparisons, we also pro-
vide qualitative results for reconstructed intensity images
and depth maps on exemplar Seen and Unseen objects, as
shown in Fig. 6. For the intensity image, FBP, LCT, and
UNet generate blurry results. FK and RSD recover main
structures but without details. LFE behaves better than
physics-based methods but still misses details. In contrast,
our network recovers both structures and fine details. For
the depth map, FBP, LCT, FK, and LFE can hardly recon-
struct the details, e.g. the wheel of the motorcycle. RSD and
UNet have difficulties in recovering even the main struc-
tures of the hidden objects. In contrast, our network recon-
structs as many as details, especially for the wheel of the
motorcycle. Moreover, our network generalizes well to un-
seen objects. See more qualitative results in the supplement.

5.4. Ablation Study

We conduct ablation experiments to further validate the
efficiency of the spatial-temporal attention mechanisms,

Table 4. Ablation results on shallow-deep feature fusion. Glo,
Loc, and Sha indicate the deep global features, deep local features,
and shallow features, respectively.

Feature Intensity Depth
Glo Loc Sha | PSNR SSIM | RMSE MAD
v X X | 2558 0.8736 | 0.0700 0.0256
v v X 26.33 09146 | 0.0646 0.0206
v v v | 2641 09158 | 0.0640 0.0205

SA-S SA-T CA-S CA-T Ours

Figure 7. Reconstructed intensity images from a real-world scene
under different attention mechanisms. “-S” and “-T” indicate that
the attention only operates on the spatial or temporal dimensions.

Nolnt Glolnt Loclnt

LGlInt (Ours) Scene

Figure 8. Reconstructed intensity images from a real-world scene
under different integration operations.

local-global feature integration, and shallow-deep feature
fusion. The models are trained in grayscale for quantitative
results on Seen test set and qualitative results on real-world
transient data.

Spatial-temporal Attention. The spatial-temporal self and
cross attention mechanisms are designed to exploit the lo-
cal and global correlations in 3D transient measurements in
both spatial and temporal dimensions. We thus investigate
the efficiency of individual spatial and temporal attention in
the self attention encoder and the cross attention decoder,
with results listed in Table 2 and Fig. 7. As can be seen,
spatial and temporal attentions contribute differently to the
reconstruction performance, and fusing both of them boosts
the performance.

Local-global Feature Integration. In the cross attention
decoder, the local and global features are integrated by
querying each other in the token space. We further investi-
gate the effectiveness of this integration (LGInt) by compar-
ing it with other alternatives: Nolnt (no integration between
two branches), LocInt (only integration on local branch),
and Glolnt (only integration on global branch). The results
are listed in Table 3 and Fig. 8. Nolnt performs the worst in
both intensity and depth, while the performance improves
with one kind of information being integrated. When both
local and global information is integrated, the performance
is further promoted.

Shallow-deep Feature Fusion. We fuse shallow and deep
features to recover the 3D volume of hidden objects. We
thus study their contributions to the reconstruction perfor-
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NeTF

Figure 9. Reconstructed hidden scenes from the public real-world dataset in [21]. Zoom in for details.

FBP LCT RSD
Figure 10. Reconstructed hidden scenes from real-world measurements captured by our NLOS imaging system. Zoom in for details.

mance in Tab. 4. As can be seen, the shallow and deep
features contribute differently to the intensity and depth re-
constructions, and fusing both of them further improves
the performance, which demonstrates the efficiency of our
shallow-deep fusion. Qualitative results tested on real-
world data can be seen in the supplementary material.

6. Experiments on Real-world Data

Data Preparation. In addition to the simulated data, we
also provide qualitative results on real-world data. Due to
the heavy workload to build an NLOS system, the real-
world data in this field is relatively scarce compared with
other fields. We first use the public real-world dataset from
Lindell et al. [21], which has 7 different scenes. To demon-
strate the generalization capability of our method, we then
capture 6 different scenes with a self-built confocal imaging
system. We release our data for future research in this field.
Real-world Results. The qualitative results on real-world
data are shown in Fig. 9 and Fig. 10, with more in the sup-
plement. As can be seen, our method generates promising
results with fine details and sharp boundaries of the hidden
scenes, especially the girder of the bike, the bookshelf, and
the pedestrian. FBP and LCT generate blurry results. FK
and RSD can reconstruct main structures but suffer from
heavy noise. NeTF can only recover cursory shapes. LFE
behaves better than the above methods but still misses some
details. The encouraging results produced by our method
demonstrate its superiority over existing solutions.

Further Analysis. Beyond improvement of the reconstruc-
tion performance, it is worth mentioning that: (a) Our net-

NeTF LFE Ours Scene

work is trained on the simulated data and directly adopted
to process the real-world measurements from two differ-
ent imaging systems, which demonstrates its superior gen-
eralization capability. (b) Our network can recover results
with fine details and large depth ranges far beyond the ex-
isting physics-based methods, which demonstrates its high
representation capability. (c) Our network is trained with-
out multi-view supervision and avoids test time rendering,
which alleviates the burdens in data simulation and infer-
ence computation encountered in previous deep networks.

7. Conclusions

In this paper, we present the first transformer-based neu-
ral network for NLOS reconstruction. By designing spatial-
temporal attention mechanisms tailored for 3D NLOS tran-
sient measurements to exploit the local and global cor-
relations, transformer is successfully adapted to the chal-
lenging NLOS reconstruction task for the first time. The
proposed method outperforms existing state-of-the-art ap-
proaches on both simulated data and real-world data from
different imaging systems. Our future work includes ex-
tending NLOST to the non-confocal imaging system and
the downstream tasks.
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