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Abstract

Problems such as equipment defects or limited view-
points will lead the captured point clouds to be incomplete.
Therefore, recovering the complete point clouds from the
partial ones plays an vital role in many practical tasks, and
one of the keys lies in the prediction of the missing part. In
this paper, we propose a novel point cloud completion ap-
proach namely ProxyFormer that divides point clouds into
existing (input) and missing (to be predicted) parts and each
part communicates information through its proxies. Specif-
ically, we fuse information into point proxy via feature and
position extractor, and generate features for missing point
proxies from the features of existing point proxies. Then,
in order to better perceive the position of missing points,
we design a missing part sensitive transformer, which con-
verts random normal distribution into reasonable position
information, and uses proxy alignment to refine the missing
proxies. It makes the predicted point proxies more sensitive
to the features and positions of the missing part, and thus
makes these proxies more suitable for subsequent coarse-to-
fine processes. Experimental results show that our method
outperforms state-of-the-art completion networks on sev-
eral benchmark datasets and has the fastest inference speed.

1. Introduction

3D data is used in many different fields, including
autonomous driving, robotics, remote sensing, and more
[5,12,14,17,43]. Point cloud has a very uniform struc-
ture, which avoids the irregularity and complexity of com-
position. However, in practical applications, due to the oc-
clusion of objects, the difference in the reflectivity of the
target surface material, and the limitation of the resolution
and viewing angle of the visual sensor, the collected point
cloud data is often incomplete. The resultant missing geo-
metric and semantic information will affect the subsequent
3D tasks [26]. Therefore, how to use a limited amount of in-

*Corresponding author.

]

gy

PoinTr

Figure 1. Visual comparison of point cloud completion results.
Compared with GRNet [38] and PoinTr [41]. ProxyFormer com-
pletely retains the partial input (blue bounding box) and restores
the missing part with details (purple bounding box).

complete data to complete point cloud and restore the orig-
inal shape has become a hot research topic, and is of great
significance to downstream tasks [3,4, 10, 19,34,39].

With the great success of PointNet [23] and PointNet++
[24], direct processing of 3D coordinates has become a
mainstream method for point cloud analysis. In recent
years, there have been many point cloud completion meth-
ods [, 11,37,38,41,42,48], and the emergence of these
networks has also greatly promoted the development of this
area. Many methods [1,38,42] adopt the common encoder-
decoder structure, which usually get global feature from the
incomplete input by pooling operation and map this feature
back to the point space to obtain a complete one. This kind
of feature can predict the approximate shape of the complete
point cloud. However, there are two drawbacks: (1) The
global feature is extracted from partial input and thus lack
the ability to represent the details of the missing part; (2)
These methods discard the original incomplete point cloud
and regenerate the complete shape after extracting features,
which will cause the shape of the original part to deform
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to a certain extent. Methods like [11,41] attempt to predict
the missing part separately, but they do not consider the fea-
ture connection between the existing and the missing parts,
which are still not ideal solutions to the first drawback. The
results of GRNet [38] and PoinTr [41] in Fig. 1 illustrate
the existence of these problems. GRNet failed to keep the
ring on the light stand while PoinTr incorrectly predicted
the straight edge of the lampshade as a curved edge. Be-
sides, some methods [16,37,41,48] are based on the trans-
former structure and use the attention mechanism for fea-
ture correlation calculation. However, this also brings up
two other problems: (3) In addition to the feature, the po-
sition encoding also has a great influence on the effect of
the transformer. Existing transformer-based methods, ei-
ther directly using 3D coordinates [9, 48] or using MLP to
upscale the coordinates [37,4 1], the position information of
the point cloud cannot be well represented; (4) It also leads
to the problem of excessive parameters or calculation. Fur-
thermore, we also note that most of the current supervised
methods do not make full use of the known data. During the
training process, the point cloud data we can obtain includes
incomplete input and Ground Truth (GT). This pair of data
can indeed undertake the point cloud completion task well,
but in fact, we can obtain a new data through these two data,
that is, the missing part of the point cloud, so as to increase
our prior knowledge.

In order to solve the above-mentioned problems, we pro-
pose a novel point cloud completion network dubbed Prox-
yFormer, which completely preserves the incomplete input
and has better detail recovery capability as shown in Fig.
1. Firstly, we design a feature and position extractor to
convert the point cloud to proxies, with a particular atten-
tion to the representation of point position. Then, we let
the proxies of the partial input interact with the generated
missing part proxies through a newly proposed missing part
sensitive transformer, instead of using the global feature ex-
tracted from incomplete input alone as in prior methods.
After mapping proxies back to the point space, we splice it
with the incomplete input points to 100% preserve the orig-
inal data. During training, we use the true missing part of
the point cloud to increase prior knowledge and for predic-
tion error refinement. Overall, the main contributions of our
work are as follows:

* We design a Missing Part Sensitive Transformer,
which focuses on the geometry structure and details
of the missing part. We also propose a new position
encoding method that aggregates both the coordinates
and features from neighboring points.

* We introduce Proxy Alignment into the training pro-
cess. We convert the true missing part into proxies,
which are used to enhance the prior knowledge while
refining the predicted missing proxies.

* Our proposed method ProxyFormer discards the trans-

former decoder adopted in most transformer based
completion methods such as PointTr, which achieves
SOTA performance compared to various baselines
while having considerably few parameters and the
fastest inference speed in terms of GFLOPs.

2. Related Work

3D shape completion. Traditional shape completion work
mainly includes two categories: geometric rule completion
[20,22,47] and template matching completion [13, 15,21].
However, these methods require the input to be as complete
as possible, and thus are not robust to new objects and en-
vironmental noise. VoxelNet [49] attempts to divide the
point cloud into voxel grids and applies convolutional neu-
ral networks, but the voxelization will lose the details of the
point cloud, and the increasing resolution of the voxel grid
will significantly increase the memory consumption. Yuan
et al. [42] designed PCN, which proposed a coarse-to-fine
method based on the PointNet [23] and FoldingNet [40], but
its decoder often fails to recover rare geometries of objects
such as seat backs with gaps, etc. Therefore, after PCN,
many other methods [11, 25, 28, 36] focus on multi-step
point cloud generation, which is helpful to recover a final
point cloud with fine-grained details. Furthermore, follow-
ing DGCNN [29], some researchers developed graph-based
methods [32,33,50] which consider regional geometric de-
tails. Although these methods provided better feature ex-
tractors and decoders, none of them considered the feature
connection between the incomplete input and the missing
part, which affects the quality of the completion result. Our
proposed ProxyFormer is not limited to the partial input but
also incorporates true missing points during training. We
generate features separately for the missing part and explore
the correlation with the features extracted from the partial
input via self-attention.

Transformers. The transformer structure originated in the
field of natural language processing, which is proposed
by Vaswani et al. [27] and applied to machine translation
tasks. Recently, this structure was introduced into point
cloud processing tasks due to its advantage in extracting
correlated features between points. Guo et al. [9] proposed
PCT and optimized the self-attention module, making the
transformer structure more suitable for point cloud learn-
ing, and achieved good performance in shape classification
and part segmentation. Point Transformer [46] designs a
vector attention for point cloud feature processing. PointTr
[41] and SeedFormer [48] treat the point cloud completion
as a set-to-set translation problem that share similar ideas
as ProxyFormer. PoinTr designs a geometry-aware block
that explicitly simulates local geometric relations to facil-
itate transformers to use better inductive bias. However,
it adopts a transformer encoder-decoder structure for point
cloud completion, which results in a large amount of pa-
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Figure 2. The pipeline of ProxyFormer is shown in the upper part. The completion of the point cloud is divided into two steps. First, we
simply convert the incomplete seed feature into a predicted coarse missing part. Second, we send the predicted missing proxies and the

coarse part into FoldingNet [

] to obtain the predicted dense missing part. True missing part is used for training only so that we block

its back-propagation and directly employ the pretrained FAPE on the incomplete point cloud to generate the proxy. (a) The feature and
position extractor is applied to obtain seed feature and position encoding which are combined to the so-called proxies. P represents the
count of points in the input point cloud. C'y and C is the dimensions of point cloud features. (b) The missing feature generator is used to
generate predicted seed feature from incomplete seed feature. N and M means the point count of the incomplete seed feature and predicted
seed feature. C' means the dimensions of the seed feature and is divided into U groups to speed up operations.

rameters. SeedFormer designs an upsample transformer by
extending the transformer structure into a basic operation in
point generators that effectively incorporates spatial and se-
mantic relationships between neighboring points. However,
the upsample transformer runs throughout its network, re-
sulting in excessive computation. Differently, ProxyFormer
discards the transformer decoder to reduce the number of
parameters, and modifies the query of transformer to make
it more suitable for the prediction of the missing part. In the
coarse-to-fine process, we still adopt the Foldingnet [40],
which greatly reduces the amount of calculation.

3. Method

The overall network structure of ProxyFormer is shown
in Fig. 2. We will introduce our method in detail as follows.

3.1. Proxy Formation

Proxy introduction. A proxy represents a local region of
the point clouds. All the proxies in this paper fuse two in-
formation: feature and position. The types of proxies are
defined as follows:

» Existing Proxies (EP): It combines incomplete seed
feature and incomplete position encoding. (obtained
by FAPE).

* Missing Proxies (MP): It combines predicted seed fea-
ture and random position encoding. During the train-
ing process, MP is also divided into:

- Predicted Missing Proxies (pre-MP): It is ob-
tained by Missing Part Sensitive Transformer

(Sec. 3.2).
- True Missing Proxies (true-MP): It combines

true missing seed feature and true missing posi-
tion encoding. (obtained by pre-trained FAPE).
It is only used for Proxy Alignment (Sec. 3.3).

For clarity, we next explain how to obtain the informa-
tion these proxies need.
Feature and position extractor (FAPE). For feature ex-
traction, as shown in Fig. 2a, the point cloud of dimension
(P, 3) is sent to point transformer block [46], and the center
point cloud of (%, 3) is obtained by farthest point sampling
twice. The feature of (1%, 02) is obtained through two vec-
tor attention calculations [40]. After that, we use a shared
MLP to convert the feature to final seed feature.
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Figure 3. Details of position extractor. n = %. K is the count
of neighbor points. C2 and Cy,+ are the dimension of point fea-
tures. Shared M LP means shared multi-layer perceptron and

attn means attention score calculation.

For position encoding, we found that directly con-
catenating the point coordinates with extracted features
[24, 29, 45] or simply using MLP to upgrade the three-
dimensional coordinates [41] are ineffective. So we de-
sign a new position extractor (as shown in Fig. 3) to
improve this. The coordinates and features of the cen-
ter points after feature extraction are used as input. For
each point, we take its adjacent K points, and use pF¥ =
pf — p; to calculate the relative position of the point. pf €
P = {p},p?,...,pX }, which means the neighbor point co-
ordinates of p;. We also perform neighbor points subtrac-
tion in the feature dimension using f¥ = |f¥ — f;|. Simi-
larly, fF € F={f}, f2,..., f}, which means the neigh-
bor point features of p;. After that, we get the coordi-
nate information of K x 3 and the feature information of
K x C5. Then we concatenate them and transform fea-
ture from K X (3 + C3) to K x Cyyy (the transition fea-
ture TF f for each neighboring point) using a shared MLP.
After obtaining TF¥, we use attention mechanism to learn
a unique attention score for each channel of point features
and then aggregate them. The attention score is calculated
and channel-wise multiplied with the feature and summed
to obtain the final PFE (i.e. position encoding) of each point.
This process can be represented by Eq. (1).

PE- i (s ({r)) {rm8)), )

where {TFiC } is the set of transition feature of K -neighbor

points and attn() is a shared function (per-point MLPs)
with learnable weights W;4),.

Incomplete point cloud and true missing part point cloud
are sent into FAPE to get EP and true-MP, and the imcom-
plete seed feature of EP is used to predict coarse missing
part at the same time.

3.2. Missing Part Sensitive Transformer

Usually, query, key and value come from the same in-
put. Many methods [37,41,48] attempt to modify the source
of value to adapt to the specific tasks (the left part of Fig.
4). Differently, we change the query source, taking the MP
with random position encoding as query conditions, to max-
imally mine the representation of the missing part from the
features and positions of existing proxies via self-attention
mechanism.

In order to change the query source to MP, we pro-
pose a Missing Feature Generator, which is specially used
to learn the missing part features from the existing fea-
tures. The generation process is shown in Fig. 2b. Specif-
ically, incomplete seed feature of N x C'is used as input,
and the C-dimensional channels are divided into U equal
length groups. Then, the change dimension of the convolu-
tion is determined by the point number M of the predicted
coarse missing part, which means that we convert each %
to % X % Lastly, we transform the transition feature into
predicted seed feature of M x C' through the reshape op-
eration. All channel groups use convolutional layers with
shared parameters, reducing the amount of parameters and
computation. Predicted missing feature is added with ran-
dom position encoding to get MP.
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I
1
4 1
Transformer Block :
T 1 7 !
Q K V :
_________________ 1
ane-8 [
i ( Add & Norm
Vanilla Transformer Block 1
______________ 1 1
1\ 1 [ Multi-Head Self-Attention ]
}
Transformer Block 1
1
T T T KNN$Pooling 1
1
Q K v v |
,,,,,,,,,,,,,,,,, 1

Existing Proxies

Missing Proxies

PoinTr Transformer Block Missing Part Sensitive Transformer

1
I
1
1
Figure 4. Details of Missing Part Sensitive Transformer. Com-
pared with vanilla transformer block and PoinTr transformer
block, we change the source of query to make it more suitable
for the prediction of the missing part.

In Sec. 3.1, we have obtained EP and true-MP, and
through the missing feature generator described above, we
have obtained MP. Then we design a Missing Part Sensitive
Transformer to further explore their relationship and learn
the representation of the missing points for subsequent com-
pletion work. Its structure is illustrated in Fig. 4, which
receives EP and MP as input and outputs pre-MP. EP is a
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matrix [E of NV x C, and MP is a matrix M of M x C. Output
pre-MP is a matrix P of M x C.

We use multi-head self-attention mechanism and add
residual connections to obtain pre-MP:

T=p@Q+EQKV)),

pre-MP =o(T)+ T, @

where Q = M x WO, K =Ex WKV, V =R x WKV,
1 means layer normalization. £ means multi-head attention
calculation. o means feed forward network. The attention
of each head is calculated with @;, K;, V; on head i:

T
attn; = softmax (CM\/I%)) Vi . 3)

This method predicts the proxies of the missing points,
which not only discovers feature associations between miss-
ing and existing parts, but also converts random positions
into meaningful position information. The pre-MP is next
used for proxy alignment with true-MP.

3.3. Proxy Alignment

In this subsection, we describe the Proxy Alignment
strategy and how this operation assists us in the point cloud
completion task.

The detailed computational graph of ProxyFormer is
plotted in Fig. 5. Therefore, pre-MP and true-MP can be
formulated as:

pre-MP =T (PER @ 0 (w (C})))

4
true-MP = PEr ® w (Cy,) @

In order to refine the prediction error in pre-MP, the
proxy alignment constraint is imposed on the model, which
can be formulated as:

l, = MSE (pre-MP, true-MP) , Q)

where [, means the alignment loss that we will apply to our
training loss (Sec. 3.4) and M S E means the mean squared
error. After correcting the pre-MP, it is used as a feature and
sent to FoldingNet [40] for coarse-to-fine conversion, and
then combined with the previously predicted coarse missing
part to obtain the dense missing part.

3.4. Training Loss

Chamfer Distance. We use the average Chamfer Dis-
tance(CD) [6] as the first type of our completion loss.
proxy alignment Loss. We use the M SE loss between
pre-MP and true-MP as the second type of loss.

To sum up, as shown in Fig. 5, the loss used in this
paper consists three parts: (1). .1, the CD between the pre-
dicted coarse missing part Cy.,, and the true center point

Figure 5. The computational graph for ProxyFormer. The part
framed by the blue dotted line is used for training only. For the
left part, we input incomplete point cloud C; and use FAPE (w)
to get feature Fe, in EP. F¢;, is not only sent to a linear projec-
tion layer x to generate predicted coarse missing part Cpem, but
also sent to missing feature generator (0) to generate feature Fi., .
Fymyp is added (@) with random position distribution PEr and
sent to missing part sensitive transformer (1) to get pre-MP. Then
pre-MP and Cp.r, are sent to FoldingNet (f), and the result is
spliced with input C; to form predicted complete point cloud Cpe.
For the right part, we input true missing part point cloud C, and
use the same FAPE (w) to get feature F},,;, and position PE7 in
true-MP. pre-MP is aligned with true-MP for correcting deviation
values. We also retain the center point Ct.p, obtained after C),
is downsampled by FAPE. l,, l.1 and [.» are the losses we use,
which will be detailed in the next subsection.

Clem, of the missing part; (2). I.2, the CD between the pre-
dicted complete point cloud Cj,. and the GT Cgy; (3) I, the
alignment loss between pre-MP and ture-MP. We use the
weighted sum of these three terms for network training (we
set v to 1.5 in experiments):

L=l + Lo+ (©)

4. Experiments

In this section, we use ProxyFormer for two common
point cloud completion benchmarks PCN [42] and KITTI
[7] to evaluate the completion ability of the network, and
then we also train and test on two other datasets, ShapeNet-
55 and ShapeNet-34 proposed by PoinTr [41]. Finally,
through ablation experiments, we demonstrate the effective-
ness of each module in the proposed ProxyFormer.

4.1. Point Cloud Completeion on PCN Dataset

Dataset and evaluation metric. The PCN dataset [42] is
created from ShapeNet dataset [2], including eight cate-
gories with a total of 30974 CAD models. When preparing
the data, we use missing part extractor to extract the miss-
ing part of the point cloud from the complete point cloud
and then downsample it to 3584 points as the true missing
part (This process is described in detail in the supplemen-
tary material).

We use the L1 CD to evaluate the results of each meth-
ods. In addition, We also use density-aware chamfer dis-
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Figure 6. The visualization results of each method on the PCN dataset, showing Cabinet, Car, Chair and Vessel from top to bottom.

tance (DCD) [35] as a quantitative evaluation criterion,
which can retain the measurement ability similar to CD but
also better judge the visual effect of the result.

Quantiative comparison. According to the results in Table
1, on the PCN dataset, our method has substantially sur-
passed PoinTr [41] and reaches lowest CD in the cabinet,
car, sofa and table categories. Further, as can be seen from
the DCD shown in Table 2, our method outperforms state-
of-the-art in all the categories, which means that our method
is more able to take into account the rationality of shape and
distribution density while complementing the object.

Table 1. Quantitative comparison of PCN dataset. Point resolu-
tions for the output and GT are 16384. For CD, lower is better.

. Chamfer Distance(10~7)

Methods Air | Cab Car Cha | Lam Sof Tab Ves Ave
FoldingNet [40] 9.49 | 1580 | 12.61 | 15.55 | 16.41 | 1597 | 13.65 | 14.99 | 14.31
TopNet [25] 7.61 | 1331 | 10.90 | 13.82 | 14.44 | 1478 | 11.22 | 11.12 | 12.15
AtlasNet [8] 6.37 | 11.94 | 10.10 | 12.06 | 12.37 | 12.99 | 10.33 | 10.61 | 10.85
PCN [42] 5.50 | 2270 | 10.63 | 8.70 | 11.00 | 11.34 | 11.68 | 8.59 | 9.64
GRNet [38] 6.45 | 1037 | 9.45 | 941 | 796 | 10.51 | 8.44 | 8.04 | 8.83
CRN [2§] 479 | 997 | 831 9.49 | 8.94 | 10.69 | 7.81 8.05 | 8.51
NSFA [44] 476 | 10.18 | 8.63 | 853 | 7.03 | 10.53 | 7.35 | 748 | 8.06
PMP-Net [30] 565 | 11.24 | 9.64 | 951 6.95 | 1083 | 872 | 725 | 873
PoinTr [41] 475 | 1047 | 8.68 | 939 | 7.75 | 1093 | 7.78 | 7.29 | 838
PMP-Net++ [31] | 439 | 996 | 853 | 809 | 6.06 | 982 | 7.17 | 6.52 | 7.56
SnowflakeNet [37] | 429 | 9.16 | 8.08 | 7.89 | 6.07 | 923 | 6.55 | 6.40 | 7.21
SeedFormer [48] | 3.85 | 9.05 | 8.06 | 7.06 | 521 | 885 | 6.05 | 585 | 6.74
ProxyFormer(Ours) | 4.01 | 9.01 | 7.88 | 7.11 535 | 877 | 6.03 | 598 | 6.77

Qualitative comparison. In Fig. 6, we visualize the com-
pletion results of different methods on the PCN dataset.
Compared with other methods, the results show that our
method can perceive the position of the missing points
while completing, and reduce the noisy points in the pro-
cess of refinement. For example, as can be seen from the

Table 2. Quantitative comparison of PCN dataset. Point resolu-
tions for the output and GT are 16384. For DCD, lower is better.

Density-aware Chamfer Distance

Methods Air | Cab | Car | Cha | Lam | Sof | Tab | Ves | Ave
GRNet [39] 0.688 | 0.582 | 0.610 | 0.607 | 0.644 | 0.622 | 0.578 | 0.642 | 0.622
PoinTr [41] 0.574 | 0.611 | 0.630 | 0.603 | 0.628 | 0.669 | 0.556 | 0.614 | 0.611

SnowflakeNet [37] | 0.560 | 0.597 | 0.603 | 0.582 | 0.598 | 0.633 | 0.521 | 0.583 | 0.585
PMP-Net++ [31] | 0.557 | 0.592 | 0.598 | 0.579 | 0.585 | 0.626 | 0.520 | 0.605 | 0.583
SeedFormer [48] 0.555 | 0.590 | 0.597 | 0.571 | 0.562 | 0.626 | 0.518 | 0.597 | 0.577

ProxyFormer(Ours) | 0.552 | 0.586 | 0.594 | 0.568 | 0.559 | 0.622 | 0.515 | 0.592 | 0.574

chair in the third row, except that the chair generated by
PCN [42] has been deformed to a large extent, the other
methods have successfully recovered the complete chair,
but there are many noisy points around it. The chair com-
pleted by our method is more visually plausible. In addition,
it can be evident from the chair leg and back that the chair
completed by our method are more prominent in detail.

4.2. Point Cloud Completion on ShapeNet-55/34

Dataset and evaluation metric. We also evaluate our
model on two other datasets, ShapeNet-55 and ShapeNet-
34, proposed in PoinTr [41]. In the two datasets, the input
incomplete point cloud has 2048 points, and the complete
point cloud contains 8192 points. Like [41], we randomly
select a viewpoint during training, and select a value from
2048 to 6144 to delete the corresponding points (25% to
75% of the complete point cloud), and then downsample the
remaining points to 2048, as the input for model training.
For the deleted part, we downsample it to 1536 points, as the
true missing part. During testing, we choose 8 fixed view-
points, and set the count of incomplete points to 2048, 4096
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Table 3. Quantitative comparison on ShapeNet-55. For L2 CD x 1000 and DCD, lower is better. For F1-Score @ 1%, higher is better.

Methods Table Chair Plane Car Sofa | CD-S CD-M CD-H DCD-S DCD-M DCD-H | CD-Avg DCD-Avg  Fl
FoldingNet [40] | 2.53  2.81 143 198 248 | 2.67 2.66 4.05 - - - 3.12 - 0.082
PCN [42] 213 229 1.02 185 206 | 1.94 1.96 4.08 0.570 0.609 0.676 2.66 0.618 0.133
TopNet [25] 221 253  1.14 218 236 | 226 216 4.30 - - - 2.91 - 0.126
PFNet [11] 395 424 181 253 334 | 383 3.87 7.97 - - - 5.22 - 0.339
GRNet [38] 1.63 188 1.02 1.64 172 | 135 1.71 2.85 0.545 0.581 0.650 1.97 0.592 0.238
PoinTr [41] 081 095 044 091 079 | 058  0.88 1.79 0.525 0.562 0.637 1.09 0.575 0.464
SeedFormer [48] | 0.72 0.81 040 089 0.71 | 050  0.77 149 0513 0.549 0.612 0.92 0.558 0.472
Ours 070 083 034 078 0.69 | 049 0.75 1.55 0.512 0.546 0.608 0.93 0.555 0.483

Table 4. Quantitative comparison on ShapeNet-34. For L2 CD x 1000 and DCD, lower is better. For F1-Score @ 1%, higher is better.

Methods 34 seen categories 21 unseen categories
0cs CD-S CD-M CD-H DCD-S DCD-M DCD-H CD-Avg DCD-Avg F1 CD-S CD-M CD-H DCD-S DCD-M DCD-H CD-Avg DCD-Avg F1
FoldingNet 1.86 1.81 3.38 - - - 2.35 - 0.139 | 2.76 2.74 5.36 - - - 3.62 - 0.095
PCN 1.87 1.81 297 0.571 0.617 0.683 222 0.624 0.150 | 3.17 3.08 529 0.601 0.638 0.692 3.85 0.644 0.101
TopNet 1.77 1.61 3.54 - - - 231 - 0.171 | 2.62 243 5.44 - - - 3.50 - 0.121
PFNet 3.16 3.19 7.71 - - - 4.68 - 0.347 | 5.29 5.87 13.33 - - - 8.16 - 0.322
GRNet 1.26 1.39 2.57 0.550 0.594 0.656 1.74 0.600 0.251 1.85 225 4.87 0.583 0.623 0.670 2.99 0.625 0.216
PoinTr 0.76 1.05 1.88 0.533 0.570 0.622 1.23 0.575 0.421 | 1.04 1.67 3.44 0.558 0.608 0.647 2.05 0.604 0.384
SeedFormer | 0.48 0.70 1.30 0.513 0.561 0.608 0.83 0.561 0.452 | 0.61 1.07 2.35 0.541 0.587 0.629 1.34 0.586 0.402
Ours 0.44 0.67 1.33 0.506 0.557 0.606 0.81 0.556 0.466 | 0.60 1.13 2.54 0.538 0.584 0.627 1.42 0.583 0.415
or 6144 (25%, 50% or 75% of the complete point cloud), Case 1 Case 2
corresponding to three difficulty levels (simple, moderate View 1 View 2 View 1 View 2
and hard) during testing.
We use L2 CD, DCD and F-Score as evaluation metrics. Input
Quantitative comparison. We list the quantitative perfor-
mance of several methods on ShapeNet-55 and ShapeNet-
34 in Tables 3 and 4, respectively. We use CD-S, CD-M GRNet
. €
and CD-H to represent the CD results under the simple,
moderate and hard settings. The same goes for DCD (the
short line in the table indicates that the DCD value of this
method is not competitive). It can be seen from Table 3 that Ours

ProxyFormer achieves the best performance on most listed
categories and make lowest CD on simple and moderate set-
tings. As for DCD, our method has the lowest values on all
the three settings, which proves that the objects completed
by ProxyFormer have the closest density distribution to GT.
In terms of F1-Score, our method improved by 2.3% com-
pared with SeedFormer, reaching the highest value. Simi-
larly, in Table 4, we can also see that the three indicators
of CD, DCD and F1-Score of ProxyFormer in the 34 visi-
ble categories have greatly exceeded PoinTr [41], and in all
the three settings, we still get the lowest DCD. Among 21
unseen categories, ProxyFormer also make the lowest DCD
and the highest F1-Score, which demonstrates the general-
ization performance of ProxyFormer. (More results will be
presented in the supplementary material)

4.3. Point Cloud Completion on KITTI

Dataset and evaluation metric. To further evaluate our
proposed model, we test it on the real-scanned dataset
KITTI [7], which have no GT values as a reference, and
some of the data are very sparse.

We use Fidelity Distance and Minimal Matching Dis-
tance (MMD) as evaluation metric.

Figure 7. The visualization results on KITTI dataset. To better
show the effect of completion, we provide two views for each car.

Quantitative and Qualitative comparison.  Follow-
ing GRNet [38], we fine-tune our pretrained model on
ShapeNetCars (cars in the ShapeNet dataset) and evaluate it
on the KITTI dataset, and the evaluation results are shown
in Table 5. From this we can see that our method achieves
the state-of-the-art on MMD (since both our method and
PoinTr [41] merge input into the final result, the Fidelity
Distance is both 0). As shown in Fig. 7, our method per-
forms well on such real scan data, and even if the input
point cloud is very sparse, our method can restore its shape
well, and by comparing with the results of GRNet, it can
be seen that the point cloud generated by ProxyFormer is
softer, with less noisy points, and is more ornamental.

4.4. Ablation Studies

In this subsection, we conduct ablation experiments for
ProxyFormer on the PCN dataset [42] to demonstrate the
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Table 5. Quantitative comparison on KITTI dataset. For Fidelity Distance and Minimal Matching Distance (MMD), lower is better.

AtlasNet [§] PCN [42]  FoldingNet [40] =~ TopNet [25] MSN [18] NSFA [44] CRN[28] GRNet[38] PoinTr[4]] SeedFormer [48] | Ours
Fidelity 1.759 2.235 7.467 5.354 0.434 1.281 1.023 0.816 0.000 0.151 0.000
MMD 2.108 1.366 0.537 0.636 2.259 0.891 0.872 0.568 0.526 0.516 0.508

effectiveness of our proposed components.

Model Design Analysis. The results of removing each
component are listed in Table 6. The baseline model A only
uses Point Transformer for feature extraction, and then send
this feature into vanilla transformer encoder to get the fea-
ture for FoldingNet. We then add the position extractor to
extract the position encoding for each point (Model B). It
can be seen that the position extractor we designed reduces
the CD of the baseline by 1.06. After using missing part
sensitive transformer for missing proxies prediction (Model
C), we can observe that the CD drops significantly to 7.74.
When proxy alignment comes into play, the CD value drops
a further 0.97.

Table 6. Ablation study of each component. We add components
including Position Extractor (PE), Missing Part Sensitive Trans-
former (Sensitive) and Proxy Alignment (PA) step by step.

Model | PE Sensitive PA | CD
A 11.08
B v 10.02
C v v 7.74
D v v v 6.77

After conducting ablation experiments on the proposed
module, we further demonstrate the irreplaceability of posi-
tion extractor through one more ablation experiments.
Position Extractor. Our position extractor can synthesize
the coordinates and feature information of the point cloud to
more accurately represent the correlation and similarity be-
tween points. In this experiment, we compare our proposed
position encoding method with two method: (1) directly use
3D coordinates as position encoding; (2) MLP-style posi-
tion encoding method. which performs a simple upscaling
operation on the 3D coordinates of the point cloud to form
position encoding. The results in Table 7 show that the di-
rect use of 3D coordinates provides very limited position
information and MLP cannot extract the positional of the
point cloud well. Our proposed position encoding method
can perceive the geometric structure of the point cloud well,
and in this process, it is optimal to fuse the coordinates and
feature information of 16 nearby points.

More ablation experiments and analysis will be given in
the supplementary material.

4.5. Complexity Analysis

Our method achieves the best performance on many met-
rics on PCN dataset, ShapeNet-55, ShapeNet-34 and KITTI
datasets. In Table 8, we list the number of parameters

Table 7. Ablation study of Position Extractor of FAPE Module.

Methods Attempts CD-Avg
w/o Position Extractor w/ 3D coordinates 9-63
w/ MLP 7.83
num of neighbor = 8 6.86
w/ Position Extractor | num of neighbor = 16 6.77
num of neighbor = 32 6.92

(Params), theoretical computation cost (FLOPs), the aver-
age chamfer distances (CD-Avg) and the average density-
aware chamfer distances (DCD-Avg) of our method and
other six methods. It can be seen that our method can obtain
the lowest DCD-Avg while having the smallest FLOPs, and
it is the second best only a litter inferior to SeedFormer [48]
in terms of CD. Since the transformer decoder part was no
longer needed in ProxyFormer, the number of parameters is
also greatly reduced compared to PoinTr [41], which also
shows that our method can better balance computational
cost and performance.

Table 8. Complexity analysis. We show the the number of param-
eter (Params) and FLOPs of our method and six existing methods.
We also provide the distance metrics CD-Avg and DCD-Avg on
PCN dataset.

Methods Params FLOPs | CD-Avg DCD-Avg
FoldingNet [40] 241IM  27.65G | 1431 0.688
PCN [42] 6.84M  14.69G 9.64 0.651
GRNet [38] 76.71M  25.88G 8.83 0.622
PoinTr [41] 309M  1041G 8.38 0.611
SnowflakeNet [37] | 19.32M  10.32G 7.21 0.585
SeedFormer [48] 320M  29.61G 6.74 0.577
Ours 12.16M  9.88G 6.77 0.574

5. Conclusion

In this paper, we propose a new point cloud comple-
tion framework named ProxyFormer, which designs a miss-
ing part sensitive transformer to generate missing proxies.
We extract feature and position for the missing points and
form point proxies. We regularize the distribution of pre-
dicted point proxies through proxy alignment, so as to bet-
ter complete the input partial point clouds. Experiments
also show that our method achieves state-of-the-art perfor-
mance on multiple metrics on several challenging bench-
mark datasets, and has the fastest inference speed.
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