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Abstract

When taking a picture, any camera shake during the

shutter time can result in a blurred image. Recovering a

sharp image from the one blurred by camera shake is a chal-

lenging yet important problem. Most existing deep learning

methods use supervised learning to train a deep neural net-

work (DNN) on a dataset of many pairs of blurred/latent

images. In contrast, this paper presents a dataset-free deep

learning method for removing uniform and non-uniform

blur effects from images of static scenes. Our method in-

volves a DNN-based re-parametrization of the latent image,

and we propose a Monte Carlo Expectation Maximization

(MCEM) approach to train the DNN without requiring any

latent images. The Monte Carlo simulation is implemented

via Langevin dynamics. Experiments showed that the pro-

posed method outperforms existing methods significantly in

removing motion blur from images of static scenes.

1. Introduction

Motion blur occurs when the camera shakes during the

shutter time, resulting in a blurring effect. Blur is uniform

when the scene depth is constant and moves along the im-

age plane. For other camera movements, the blur is non-

uniform. In dynamic scenes with moving objects, the blur

is also non-uniform. Different types of motion blur are illus-

trated in Figure 1. This paper aims to address the problem

of removing uniform and non-uniform motion blur caused

by camera shake from an image. Removing motion blur

from an image is a blind deblurring problem. It is a chal-

lenging task as it requires estimating two unknowns the la-

tent image and blurring operator from a single input.

Deep learning, particularly supervised learning, has re-

cently emerged as a powerful tool for solving various im-

age restoration problems, including blind deblurring. Many

of these works rely on supervised learning, as seen in

e.g. [1–15]. Typically, these supervised deep learning meth-

ods train a deep neural network (DNN) on a large number

of training samples, which consist of pairs of latent/blur im-

ages. Furthermore, to address general blurring effects, most

(a) (b) (c)

Figure 1. Different motion-blurring effects. (a)–(b) Uniform and

non-uniform blurring caused by camera shake; (c) Non-uniform

blurring of the dynamic scene (not addressed in this paper).

methods take a physics-free approach. In other words, these

methods directly learn a model that maps a blurred image to

a latent image without using any prior information about the

blurring process.

The advantage of a physics-free supervised learning

method is its ability to handle many types of motion blur

effects. However, it has a significant disadvantage: to

achieve good generalization, the training dataset must cover

all motion-blurring effects. Because motion blur is de-

termined by both 3D camera motion (six parameters) and

scene depth, which can vary significantly among images,

an enormous number of training samples are required to ad-

equately cover the motion blur effects. This task can be very

costly and challenging. One possible solution is to synthe-

size blurred images. However, as shown in [16], a model

trained on samples synthesized using existing techniques

(e.g. [17]) does not generalize well to real-world images.

Some approaches consider the physics of motion blur.

Phong et al. [18] proposed learning a family of blurring op-

erators in an encoded blur kernel space, and Li et al. [19]

proposed learning a more general class of degradation op-

erators from input images. However, these physics-aware

methods also rely on supervised learning and thus face the

same dataset limitations as the physics-free methods.

1.1. Discussion on existing dataset­free methods

Motivated by the challenge of practical data collec-

tion, there is a growing interest in relaxing the require-

ment for training data when developing deep learning solu-

tions for motion deblurring. Some approaches require spe-
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cific data acquisition, such as multiple frames of the same

scene [20], while others are semi-supervised, relying on un-

paired training samples with ground truth images for train-

ing a GAN [21]. There are also a few works on dataset-free

deep learning methods for uniform blind image deblurring;

see e.g. [22–24].

When training a DNN to deblur an image without see-

ing ground truth images, it is necessary to incorporate prior

knowledge of the physics of motion blur. However, existing

dataset-free methods [22] for blind deblurring are limited to

uniform blur, where the blur process is modeled by a convo-

lution: g = k⊗ f , where f denotes the latent image, g de-

notes the input, and k denotes the blur kernel. Uniform mo-

tion blur only occurs when the scene depth is constant and

camera motion is limited to in-image translation, making it

not applicable to more complex camera motion. Moreover,

these methods have a lot of room for improvement, as they

do not achieve competitive performance compared to state-

of-the-art non-learning methods.

1.2. Main idea

In this paper, our goal is to develop a dataset-free deep

learning method for removing motion blur from a single im-

age, caused by general camera shake. Similar to existing

dataset-free methods, when training a DNN to deblur an

image without seeing any truth image, some prior knowl-

edge about the physics of motion blur needs to be utilized.

In this paper, we limit our study to recovering images of

static scenes without any moving objects. In our proposed

approach, we utilize the so-called space-variant overlap-

add (SVOLA) formulation [25,26] to model motion blur of

static scenes. This formulation describes the relationship

between a blurred image g and its corresponding latent im-

age f as follows:

g = F (f ,K)+n =

P∑

i=1

ki⊗ (w(·−ci)⊙Pif)+n, (1)

Here, ⊙ denotes entry-wise multiplication, ⊗ denotes con-

volution, and Pi is a mask operator that extracts the i-th

patch from the image. ki is the i-th kernel and w(· − ci) is

a window function that is translated to align with the center

ci of the i-th image patch. The window function w is nor-

malized such that
∑P

i=1 w(· − ci) = 1, for example, using

the 2D Modified Bartlett-Hanning window [27]. When all

P kernels {ki}Pi=1 are the same, the SVOLA model degen-

erates to the case of uniform blurring:

g = k ⊗ f . (2)

For an SVOLA-based model, there are two unknowns: the

latent image f and the kernel set K = {kj}Pj=1.

Similar to existing works, such as Double-DIP for im-

age decomposition and Ren et al. for uniform deblurring,

we re-parameterize the latent image and kernel set using

two DNNs. This DNN-based re-parametrization is moti-

vated by the implicit prior induced by convolutional neural

networks (CNNs), known as the deep image prior (DIP).

However, the regularization effect induced by DIP alone is

not sufficient to avoid likely overfitting. One approach is to

introduce additional regularization drawn inspiration from

traditional non-learning methods.

Discussion on MAP-relating methods. For simplicity,

consider the case of uniform blur where g = k⊗ f . As the

ML (maximum likelihood) estimator of the pair (k,f) by

max
k,f

log p(g|k,f) (3)

does not resolve solution ambiguity of blind deblurring,

most non-learning methods are based on the maximum a

posteriori (MAP) estimator, which estimates (k,f) by

max
k,f

log p(k,f |g) = min
k,f

− log p(g|k,f)−log p(f)−log p(k).

An MAP estimator requires the definition of two prior dis-

tributions: p(k) and p(f). A commonly used prior distribu-

tion for motion deblurring assumes that f follows a Lapla-

cian distribution: log p(f) ∝ −∥∇f∥1, also known as total

variation (TV) regularization. Such a TV-based MAP esti-

mator is proposed in [22] for blind uniform deblurring.

There are two concerns about a TV-relating MAP esti-

mator. One is the pre-defined TV regularization for latent

images limits the benefit of data adaptivity brought by a

DNN. The other is the possible convergence to an incor-

rect local minimum far away from the truth (f ,k) or even

degenerated trivial solution (g, δ). Indeed, the second is-

sue has been extensively discussed in existing works; see

e.g. [28–30].

From MAP estimator of (f ,K) to EM algorithm for

ML estimator of K. Besides MAP, many other statisti-

cal inference schemes have also been successfully used for

blind uniform deblurring, e.g. variational Bayesian infer-

ence [30, 31]; and EM algorithm [32]. EM is an iterative

scheme to find maximum likelihood (ML) estimate with the

introduction of latent variables. For blind deblurring, EM

aims at finding ML estimate of the marginal likelihood of

the unknown parameter K only by marginalizing over the

image f (latent variable).

Our approach. Inspired by the effectiveness of the EM al-

gorithm and marginal likelihood optimization for uniform

deblurring in terms of performance and stability, we pro-

pose to use the EM algorithm as a guide to develop a self-

supervised learning approach. Specifically, we introduce

a dataset-free deep learning method for both uniform and

non-uniform blind motion deblurring, which is based on

the Monte Carlo expectation maximization (MCEM) algo-

rithm. In summary, our method is built upon the efficient

EM algorithm in DNN-based representation of latent image

and blurring operator.
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1.3. Main contribution

In this paper, we present a self-supervised deep learning

approach for restoring motion-blurred images. Our main

contributions can be summarized as follows:

1. The first dataset-free deep learning method for removing

general motion blur (uniform and non-uniform) from im-

ages due to camera shake. To our knowledge, all existing

dataset-free methods are limited to uniform motion blur.

2. The first approach that combines DNN-based re-

parametrization and EM algorithm, bridging the gap be-

tween classical non-learning algorithms and deep learn-

ing. The proposed MCEM-based deep learning method

can see its applications in other image recovery tasks.

3. A powerful method that significantly outperforms exist-

ing solutions for blind motion deblurring. Our method

demonstrates superior performance in recovering images

affected by both uniform and non-uniform motion blur.

2. Related works

Non-learning methods for motion deblurring. Most ex-

isting non-learning methods focused on uniform motion and

rely on the concept of the MAP estimator, which involves

defining priors on the image and kernel. For instance, spar-

sity priors based on image gradients [33–36] or wavelet

transforms [37, 38], image-patch recurrence priors [39, 40],

and dark/extreme channel priors [41,42]. Another approach

relies on the variational Bayesian inference of the blur ker-

nel, where the latent image is considered as a hidden vari-

able [28, 30, 31, 43]. To address the computational issue of

the posterior distribution of the latent image, some methods

rely on certain conjugate probability models of the distri-

bution [30, 31, 43]. Other methods, such as the VEM algo-

rithms e.g. [29, 32], approximate the posterior distribution

of image gradients using a normal distribution.

The literature on non-uniform motion deblurring mainly

focuses on modeling the non-uniform blurring effect. Ji

and Wang [44] proposed a piece-wise convolution model,

while Tai et al. [45] proposed a homography-based model,

which was later simplified in [46,47]. Harmeling et al. [25]

presented an SVOLA model in Equation (1), and Hirsch et

al. [25,26] presented a filter flow approximation model. The

estimation of kernels on edge-less regions is addressed by

either penalizing the similarity of nearby kernels in the cost

function [25] or interpolating the local kernels using nearby

kernels [44]. Other works have explored the use of depth

estimation for layer-wise deblurring, see e.g. [48].

Supervised learning for blind motion deblurring. For

uniform motion blur of static scene, existing deep learn-

ing methods trained the network over many pairs of

blurred/truth image. They either explicitly (e.g. [2–4]) or

implicitly (e.g. [49]) estimate the motion-blur kernel.

For non-uniform motion blurring of static scene, there

are both physics-based and physics-free methods. Sun et

al. [6] trained a CNN to estimate local kernels, which were

used to form a dense motion field via MRF. Gong et al. [7]

predicted a flow field from a trained NN to define the blur-

ring process. Tran et al. [18] proposed to learn a family of

blurring operators in an encoded blur kernel space.

The physics-free methods directly train a DNN to map

blurred images to clear images. The main differences

among them lie in the design of the DNN. Aljadaany et

al. [8] unfolded a Douglas-Rachford iteration. Different

coarse-to-fine schemes are proposed in [13, 50, 51]. Kupyn

et al. [52] used a GAN-based model, and Park et al. [9]

leveraged multi-temporal training schemes. Depth informa-

tion was exploited in [53]. However, training data is critical

to the performance of supervised methods, which do not

generalize well to images with blur effects that were not

seen in the training samples.

Deblurring dynamic scenes is different from deblurring

static scenes. Its focus is on separating moving objects and

background. Different deep learning methods introduced

different modules, e.g. attention modules [10–12, 54], de-

formable modules [12], nested-skip connection [55] pixel-

adaptive RNN [56], and learning degradation model [19].

Semi-supervised deep learning for blind uniform motion

deblurring. Lu et al. [21] trained the GAN with unpaired

datasets for domain-specific deblurring, which might suf-

fer from domain shift problems for wider adoption. Liu et

al. [20] proposed another uniform deblurring NN with the

input of multiple frames, generated by adjacent frames of

video aligned by optical flow.

Dataset-free deep learning for blind uniform deblurring.

Ren et al. [22] proposed a TV-based MAP estimator for

blind uniform deblurring. In [22], two NNs are used to pre-

dict the latent image and blur kernel, with the prediction of

the latent image regularized by TV. Chen et al. [24] pro-

posed a DNN-based approach to blind uniform deblurring

via an ensemble learning scheme. Li et al. [23] proposed

a method that uses two NNs to represent the latent image

and blur kernel, and learns the NN weights using Bayesian

inference implemented via Monte-Carlo sampling.

3. Integrating DNN and MCEM

This paper proposes a dataset-free deep learning solution

for removing general motion blur from static scene, includ-

ing both uniform blur and non-uniform blur. However, since

this is a dataset-free learning method, introducing certain

prior on the blurring effect becomes necessary to address

the training issue in the absence of truth images. For general

motion blur, each pixel of the blurred image is a weighted

average of its neighboring pixels, with the weights varying

for different pixels. In this paper, we utilize the SVOLA
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model (1) to characterize motion blur in static scenes, which

encompasses uniform motion blur (2) as a specific instance.

DNN-based re-parametrization of the image f and ker-

nel set K. The CNN has an implicit prior on the images it

represents, called DIP [57]. This prior favors regular image

structures over random patterns when training a denoising

CNN with only a noisy image. By reparametrizing an im-

age using a CNN, we implicitly impose DIP on the latent

image, which can help alleviate overfitting in a dataset-free

setting. To represent the latent image, we adopt a 5-level

U-Net CNN, as in [22]:

f = Tf (θf , z),

where θf denotes NN weights and z denotes an initial seed.

To handle non-uniform motion blur, it is necessary to

estimate many kernels, each of which is associated with a

small image region. However, in the absence of truth im-

ages during training, the kernels can only be estimated in

edge-rich regions and not in edge-free regions. To estimate

kernels over all image regions, a prior on the kernel set must

be introduced to share information among different kernels

such that the information on edge-rich regions can be prop-

agated to edge-free regions. In this paper, we propose a

specific network structure with a specific prior for estimat-

ing the kernel set:

K = TK(θK , z̃),

where θK denotes NN weights and z̃ is some initial seed.

Note that each kernel (point spread function) is associ-

ated with both the 3D camera motion and the scene depth.

All kernels share the same 3D camera motion, meaning

that there exists a lower-dimensional manifold for the ker-

nels [44,58]. Two commonly used priors for the blur kernel

are listed below.

1. Implicit prior on the set of kernels: There is certain im-

plicit prior existing in the set of the kernels {ki}, as they

are corresponding to the same 3D camera motion.

2. Physical constraints: Each element of the kernel ki is

non-negative, and the sum of all elements equals one.

To utilize these implicit priors, we designed a kernel net-

work with shared components in the first stage for feature

extraction. We used a U-Net with an encoder-decoder struc-

ture, whose output is used as the sole input in the sec-

ond stage for predicting the kernels associated with differ-

ent regions. In the second stage, a multi-head neural net-

work is implemented, where each kernel has its own layers

but shares the same input. The network outputs different

kernels while maintaining certain correlations. We impose

physical constraints on the kernels ki by adding a softmax

layer in the multi-tail output. Please refer to Figure 2 for the

architecture and Figure 3 for an illustration of the correla-

tion among the set of kernels.

Input

Shared U-net backbone Generating kernels with variations

Conv2d+ReLUSoftmax Down Up SkipConv2d

Figure 2. The structure of the U-Net TK with shared component.

Outline of MCEM-based algorithm. As a reminder, we

re-parameterize the two unknowns using two networks:

f := Tf (θf , z) and the kernel set K := TK(θK , z̃). In

other words, the estimation of the image and kernel set is

equivalent to estimating the NN weights (θf ,θK). Our

goal is to train the two NNs to maximize the likelihood,

motivated by the maximum likelihood (ML) estimator that

estimates the image and kernel set (f ,K):

max
θf ,θK

log p(g|θf ,θK). (4)

For simplicity of notation, we omit the use of initials

for randomly generated vectors z and z̃ since they do not

require estimation. Assuming Gaussian white noise n ∼
N (0, σ2

g), the ML estimator for the image and kernel set

(f ,K) can be expressed as follows:

min
θf ,θK

1

2σ2
g

∥F (Tf (θf ), TK(θK))− g∥22 . (5)

However, the NNs trained using the loss function derived

from the ML estimator may not effectively address the is-

sue of over-fitting, as they tend to bias the solution towards

the no-blur case (g,ki = δi). Refer to Figure 3 (b) for an

illustration of this bias.

Instead of replacing the ML estimator with the MAP esti-

mator to address overfitting, we propose a self-training pro-

cess derived from the EM algorithm. Instead of using the

popular VEM method in existing works, we consider the

MCEM algorithm [59, 60] for network training. The main

difference between VEM and MCEM is that, in MCEM, the

expectation in the E-step is numerically calculated through

Monte Carlo simulation. The proposed MCEM algorithm

is set up as follows.

1. Observation data: the blurred image g

2. Latent variable: the weights θf of image-relating net-

work T (θf , z)

3. Parameters: the weights θK of kernel-relating network

T (θK , z̃).

The EM algorithm estimates the parameters by iteratively

maximizing the log-likelihood:

θ∗
K = argmax log p(g|θf ,θK)

= argmax log

∫
p(g|θf ;θK)p(θf )dθf .

(6)
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(a) (b) (c) (d)

Figure 3. Illustration of different algorithms for the DNN-based ML estimator with the loss (5). (a) Blurry image; (b) The image and kernel

set estimated by gradient descent; (c) The image and kernel set estimated by the proposed MCEM algorithm; (d) The ground truth.

There are two steps in each iteration:

1. E-step: Calculating the expectation of logarithm like-

lihood with respective to p(θf |g;θt−1
K ):

Q(θK |θt−1
K ) = Eθf∼p(θf |g;θ

t−1

K
) [log p(g|θf ;θK)] ;

(7)

2. M-step: Maximize the expectation of the likelihood:

θt
K = argmax

θK

Q(θK |θt−1
K ). (8)

The computation of the expectation in the E-step is gener-

ally intractable for p(θf |g;θt−1
K ). Instead of attempting to

calculate the exact expectation, the MCEM method approx-

imates the integral through Monte Carlo simulation:

Q(θK |θt−1
K ) ≈ 1

ns

ns∑

i=1

log p(g|θi
f ;θK),θi

f ∼ p(θf |g;θt−1
K ).

Once the NN weights θf and θK are estimated using the

MCEM method, the estimated weights can be used to call

the NNs for predicting the latent image.

Remark 1 (MCEM vs. VEM). The main difference be-

tween VEM and MCEM lies in how the expectation is cal-

culated in the E-step. In VEM, the expectation is approx-

imated by replacing the distribution with a tractable one.

In MCEM, the expectation is approximated by calculating

the integral using Monte Carlo simulation. The motivation

for using MCEM is its computational efficiency over VEM,

particularly in the case of estimating DNN weights.

4. MCEM algorithm for dataset-free training

4.1. E­step and M­step

The MCEM algorithm consists of the E-step (7) and

the M-step (8). In the E-step of MCEM, one approxi-

mates Q(θK |θt−1
K ) using Monte Carlo simulation. This

requires effectively sampling the posterior distribution

p(θf |g;θt−1
K ) and using the samples to approximate the in-

tegral through Monte Carlo simulation.

By Bayes rule, we have

p(θf |g;θt−1
K ) ∝ p(g|θf ;θt−1

K )p(θf ).

By assuming the prior distribution p(θf ) is an uniform dis-

tribution over a sufficiently large cube. We have then

p(θf |g;θt−1
K ) ∝ exp

(
−
∥∥F (Tf (θf ), TK(θt−1

K ))− g
∥∥2
2

2σ2
g

)
.

Motivated by the effectiveness of Langevin dynamics (LD)

as a Monte Carlo sampler of NN weights in Bayesian deep

learning [61], we propose to sample p(θf |g;θt−1
K ) using

LD. Interested readers can find a detailed introduction to

LD in the supplementary file.

LD samples the distribution p(θf |g;θt−1
K ) by the so-

called stochastic gradient Langevin dynamics (SGLD): For

i = 1, 2, . . . , ns

θi
f = θi−1

f + α∇θf
log p(θi−1

f |g;θt−1
K ) +

√
2αw, (9)

where w ∼ N (0, I). The hyperparameter α is the step size

that satisfies the Robbins-Monro condition. The iteration

scheme (9) enables us to quickly generate approximate sam-

ples from the posterior distribution p(θf |g;θt−1
K ), which is

used to approximate the expectation in the E-step:

Q(θK |θt−1
K ) ≈ 1

ns

ns∑

i=1

log p(g|θi
f ;θK), (10)

where θi
f are generated from (9). The M-step updates the

estimates of the kernel set by solving the problem (10),

which is equivalent to train the NN TK(θK) by minimiz-

ing corresponding loss function.

4.2. Warm­up trick

Good initialization of the kernel can improve the stabil-

ity and computational efficiency of blind deblurring. There-

fore, a warm-up strategy is implemented in the proposed

training scheme. First, we train the NNs assuming all ker-

nels in K are the same, and then copy the trained weights

of the last Conv layer to initialize the weights of each ker-

nel. In other words, at the beginning, the network is trained

using a degenerate version of SVOLA which reads

min
θf ,θK

Lwarm up := ∥g − [TK(θK)]1 ⊗ Tf (θf )∥22, (11)

where [TK(θK)]1 denotes the first branch of the kernel

set. After training the NN for a certain number of steps,

we initialize the corresponding NN {TK(θ̃K)i}Pi=1 with

the weights of the last convolution layer corresponding to
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[TK(θK)]1. Then, we train the network using the full ker-

nel set from the network TK , and we optimize

min
θf ,θK

L := ∥g − F (Tf (θf ), TK(θK))∥22. (12)

See Alg. 1 for the implementation and Figure 4 for visual

comparison of two examples of the kernel estimate at the

stage of warm-up training and at the last stage.

(a) Example 1 (b) Example 2

Figure 4. Kernels after the warm-up (left) and convergence (right).

Algorithm 1 Dataset-free non-uniform motion deblurring.

Input: Input image g; No. of warm-up iterations N ; No. of

total iterations T ; Grid size P ; No. of samples ns and No.

of iteration for inner M-step nℓ.

Output: Estimated image f and the kernel set {ki}Pi=1.

1: %% Warm-up training

2: for t = 1 : N do

3: Set θ0
f = θt−1

f and produce ns samples by

4: θi
f = θi−1

f − α∇θf
Lwarm up +

√
2αw, i = 1, . . . , ns

5: Optimize 1
ns

∑ns

i=1 ∥g−[TK(θK)]1⊗Tf (θ
i
f )∥22 using

nℓ Adam steps and obtain the solution θt
K

6: To initialize TK(θ̃K), use TK(θKN ) and replicate

the last convolutional layer for predicting kernels.

7: %% Training

8: for t = N + 1 : T do

9: Set θ0
f = θt−1

f and produce ns samples by

10: θi
f = θi−1

f − α∇θf
L+

√
2αw, i = 1, . . . , ns

11: Optimize 1
ns

∑ns

i=1 ∥g − F (Tf (θ
i
f ), TK(θK))∥22 us-

ing nℓ Adam steps and obtain the solution θt
K

12: f = Tf (θ
T
f ); {ki}Pi=1 = {TK(θ̃T

K)i}Pi=1

5. Experiments

Parameter settings. The image NN Tf (θf ) is imple-

mented as 5-level U-Net with channel size 64. The ker-

nel NN TK(θK) is implemented as U-Net with 4 levels

whose channel size is [32, 32, 64, 64]. The learning rate

is set to be 0.01 for Tf and 0.0001 for M-step when op-

timizing TK . They are halved after 2000 and 3000 it-

erations. We train our framework for T = 5000 steps

with warming up N = 500 steps. The grid size P is

set to 5 × 10. The code is publicly accessed at https:

//github.com/Chilie/Deblur_MCEM.

Algorithm 1 consists of two inner loops: one is an iter-

ative scheme (9) for generating samples to approximate the

function Q, and the other is an iterative scheme for mini-

mizing the loss (10) using gradient descent. An empirical
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time (s)

12

14

16

18

20

22

24

P
S

N
R

n
s
=1,n

l
=1

n
s
=1,n

l
=5

n
s
=5,n

l
=1

n
s
=5,n

l
=5

Figure 5. The PSNR gain over elapsed time for different (ns, nℓ).

study on the performance of Algorithm 1 on a sample image

with different configurations of (ns, nℓ) is shown in Fig-

ure 5. The results indicate that the values of (ns, nℓ) have

a greater impact on computational efficiency than on per-

formance. Therefore, for computational efficiency, we set

(ns, nℓ) = (1, 1) in our experiments.

Network architecture for the image. The same U-net

as [22, 57] is adopted for image network Tf . It contains

five downsampling modules and upsampling modules with

skip connections. Apart from the Down/Up sampling layer,

each module also comprises the Conv → BN → ReLU lay-

ers. As image deblurring is sensitive to noise, the Decoder

part is then trained with dropout to regularize the prediction.

Finally, a 1×1 convolution layer is used to generate the im-

age. To keep the values of the image in the range [0, 1], we

concatenate a Sigmoid layer to the output layer.

5.1. Evaluation on non­uniform motion deblurring

This study aims to compare our proposed blind deblur-

ring method with existing methods for deblurring static

scenes1. In the comparison table, the best result is high-

lighted in blue, and the second-best result is underlined.

Note that the scores are calculated with alignment to ac-

count for possible shift ambiguity in the results.

Benchmark dataset from Köhler et al. [62]. Köhler

et al.’s dataset is a real non-uniform dataset that records

the motion-blurred images caused by 6-dimensional cam-

era motions. It contains 48 images captured in 4 scenes,

each with 12 motion trajectories. These trajectories exhibit

diverse levels of non-uniformity ranging from mild to se-

vere. Table 1 presents a performance comparison between

our proposed method and other methods, including both

non-learning and supervised deep-learning methods, on this

dataset. On average, our method outperforms the second-

best method by 0.37 dB in PSNR and 0.013 in MSSIM.

Benchmark dataset from Lai et al. [66]. The dataset con-

tains 100 images that were obtained by recording camera

motions using inertial sensors in a cellphone. The spatially-

varying blur kernels were constructed from these motion

1The method [35] used in this study is not its uniform version, but the

extension from the authors for handling non-uniform blurred images.
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Table 1. Average PSNR/MSSIM comparison on the non-uniform dataset of Köhler et al. [62]

Non-learning methods Supervised learning methods Self-supervised

No.
Xu et al. Whyte et al. Vasu et al. Tao et al. Kupyn et al. Zamir et al. Cho et al. Li et al. Liu et al.

Ours
2013’ [35] 2014’ [63] 2017’ [64] 2018’ [50] 2019’ [52] 2021’ [65] 2021’ [13] 2022’ [19] 2020’ [20]

1 29.19/0.806 29.77/0.850 32.44/0.940 29.14/0.850 28.99/0.845 29.86/0.865 27.66/0.812 29.82/0.866 27.21/0.808 32.41/0.942

2 24.43/0.757 24.27/0.809 26.52/0.927 23.10/0.798 23.78/0.805 22.57/0.782 21.69/0.741 22.56/0.784 21.19/0.736 26.84/0.932

3 29.97/0.854 30.73/0.887 32.60/0.936 29.96/0.887 30.00/0.874 28.04/0.859 28.09/0.846 30.21/0.889 28.20/0.853 33.18/0.951

4 25.76/0.766 26.60/0.818 27.99/0.906 25.22/0.820 25.09/0.798 24.78/0.803 23.91/0.765 24.95/0.807 23.49/0.757 28.60/0.936

Avg. 27.34/0.796 27.84/0.841 29.89/0.927 26.85/0.839 26.97/0.830 26.32/0.827 25.34/0.791 26.89/0.837 25.02/0.789 30.26/0.940

Table 2. Average PSNR/SSIM comparison on the non-uniform dataset of Lai et al. [66]

Non-learning methods Supervised learning methods Self-supervised

Xu et al. Whyte et al. Vasu et al. Tao et al. Kupyn et al. Zamir et al. Cho et al. Li et al. Liu et al.
Ours

2013’ [35] 2014’ [63] 2017’ [64] 2018’ [50] 2019’ [52] 2021’ [65] 2021’ [13] 2022’ [19] 2020’ [20]

Manmade 17.90/0.497 17.33/0.433 17.93/0.474 18.45/0.488 18.73/0.512 17.42/0.435 16.78/0.379 17.28/0.414 17.39/0.452 19.17/0.572

Natural 21.99/0.607 21.04/0.543 21.94/0.598 22.28/0.610 22.24/0.601 20.76/0.530 19.88/0.474 20.59/0.513 20.90/0.518 22.70/0.641

People 25.42/0.801 23.92/0.746 25.63/0.803 26.87/0.834 26.71/0.828 23.95/0.770 23.64/0.754 24.23/0.777 24.76/0.770 26.90/0.825

Saturated 18.39/0.644 17.33/0.606 17.57/0.612 20.10/0.699 17.91/0.618 16.73/0.561 16.58/0.539 16.67/0.551 18.52/0.529 21.46/0.754

Text 18.97/0.749 13.22/0.420 19.19/0.765 18.66/0.756 19.11/0.781 15.63/0.608 17.17/0.668 17.45/0.696 17.42/0.660 21.91/0.872

Average 20.53/0.660 18.57/0.550 20.45/0.650 21.27/0.677 20.94/0.668 18.90/0.581 18.81/0.563 19.25/0.590 19.80/0.581 22.42/0.738

Input Tao et al. Kupyn et al. Park et al. Zamir et al. Li et al. Ours

[50] [52] [9] [65] [19]

Figure 6. Visual comparison of the results for samples images from real dataset of Lai et al. [66] and Sun et al. [6]. More visual comparison

can be found in supplementary file.

Table 3. Ablation study on Lai et al.’s dataset

MLE (5) MAP ((5)+TV) EM w/o warm-up Proposed MCEM

19.49/0.609 19.97/0.643 21.14/0.669 22.42/0.738

trajectories, assuming constant scene depth. The blurred

images were generated by convolving the latent images with

these kernels and adding 1% Gaussian noise. The images

were divided into 5 categories, each containing 20 images,
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Table 4. Average PSNR/SSIM for uniform blind deblurring on Lai et al.’s dataset [66].

Non-learning methods Supervised learning methods Self-supervised

Metric
Xu & Jia Yan et al. Yang & Ji Tao et al. Kupyn et al. Kaufman et al. Zamir et al. Cho et al. Li et al. Ren et al.

Ours
2010’ [36] 2017’ [42] 2019’ [32] 2018’ [50] 2019 [52] 2020’ [5] 2021’ [65] 2021’ [13] 2022’ [19] 2020’ [22]

PSNR 20.93 21.12 21.79 16.72 17.02 20.18 16.15 16.36 16.43 21.11 23.62

SSIM 0.654 0.673 0.704 0.471 0.49 0.643 0.454 0.461 0.469 0.671 0.766

with complex scenes and severe non-uniform blur effects.

Table 2 presents the comparison of our proposed method

with other non-learning and supervised learning methods

on this dataset. The results show that our method outper-

forms the second-best performer by an average of 1.15 dB

in PSNR and 0.061 in SSIM. These results demonstrate that

our method provides a significant performance gain over ex-

isting methods for the challenging Lai et al.’s dataset.

Visual comparison on real-world images. As ground truth

are not available for real-world images, we have only in-

cluded visual comparisons of a few deblurred results from

different methods. The sample images are taken from both

Lai et al. [66]’s dataset and Sun et al. [6]’s dataset. Visual

comparisons of more examples can be found in the supple-

mentary file. As shown in Figure 6 and the supplementary

file, the proposed method yields results of the best visual

quality, with fewer artifacts and sharper details.

5.2. Evaluation on uniform motion deblurring

The proposed method is designed to remove general mo-

tion blur caused by camera shake from a single image.

Thus, it is applicable to both non-uniform motion blur and

uniform motion blur of static scenes. Uniform motion blur

occurs when there is only in-plane camera translation and

constant scene depth. By reducing the SVOLA model to

the case with a single kernel P = 1, we obtain a convolu-

tion model (2) for modeling uniform motion blur.

To evaluate the performance of the proposed general

blind deblurring method on uniform motion deblurring,

we conducted an experiment on one popular benchmark

dataset, Lai et al.’s dataset [66]. Table 4 presents the results

of representative non-learning methods, recent supervised-

learning methods and dataset-free method. Our proposed

method performs very competitively against these blind uni-

form deblurring methods, as shown in Table 4. More related

experiments can be found in the supplementary file.

5.3. Ablation study

MCEM for ML estimator of K vs ML estimator of

(f ,K). The proposed MCEM method is an EM approach

designed to find the ML estimation of K. It is compared

to the results obtained by training DNNs using the loss

function (5), referred to as ”MLE”, which aims to find the

MLE of both f and K. The performance gain achieved

by the proposed MCEM algorithm is approximately 2.9 dB,

demonstrating its effectiveness for training. While the TV

regularization on the image (λ = 5e− 2) does improve the

”MLE” performance, its effectiveness is much lower than

that of the MCEM method.

With vs without warm-up training. The warm-up train-

ing strategy not only speeds up the training process, but also

provides a good initialization for the NNs. As shown in Ta-

ble 3, compared to the model trained without warm-up, the

warm-up training strategy results in a performance gain of

about 1.3 dB, indicating the significant benefit of the warm-

up training strategy.

5.4. Limitation

The proposed method is designed for removing gen-

eral motion blur caused by camera shake from a single

image. Recovering dynamic scenes with moving objects

is not within the scope of the proposed method, as the

SVOLA model cannot capture the ”blending” effect around

the boundary of moving objects. A limited experiment is

conducted by applying the proposed method on both static

scenes and dynamic scenes from GOPRO [17], a dataset

for dynamic scene deblurring. Our method works well on

those images dominated by static scenes, but not so on those

images of dynamic scenes. See the supplementary file for

more related experimental results.

6. Conclusion

This paper proposes a self-supervised deep learning

method that can remove general motion blur (both uniform

and non-uniform) from a single image, without requiring a

dataset. The main idea is to train NNs using a scheme de-

rived from the MCEM algorithm for maximum likelihood

estimation. Our method outperforms existing non-learning

and deep learning methods, including both supervised and

self-supervised approaches, as demonstrated by extensive

experiments on standard benchmark datasets. In the future,

we plan to investigate the extension of our proposed method

to recover motion-blurred images of dynamic scenes

Acknowledgment

The authors would like to thank the support by Singapore

MOE Academic Research Fund (AcRF) Tier 1 with WBS

number A-8000981-00-00.

13993



References

[1] Wangmeng Zuo, Dongwei Ren, David Zhang, Shuhang

Gu, and Lei Zhang. Learning iteration-wise generalized

shrinkage–thresholding operators for blind deconvolution.

IEEE Trans. Image Process., 25(4):1751–1764, 2016. 1

[2] Xiangyu Xu, Jinshan Pan, Yu-Jin Zhang, and Ming-Hsuan

Yang. Motion blur kernel estimation via deep learning. IEEE

Trans. Image Process., 27(1):194–205, 2017. 1, 3

[3] Christian J Schuler, Michael Hirsch, Stefan Harmeling, and

Bernhard Schölkopf. Learning to deblur. IEEE Trans. Pat-

tern Anal. Mach. Intell., 38(7):1439–1451, 2015. 1, 3

[4] Lerenhan Li, Jinshan Pan, Wei-Sheng Lai, Changxin Gao,

Nong Sang, and Ming-Hsuan Yang. Learning a discrimina-

tive prior for blind image deblurring. In CVPR, pages 6616–

6625, 2018. 1, 3

[5] Adam Kaufman and Raanan Fattal. Deblurring using

analysis-synthesis networks pair. In CVPR, June 2020. 1,

8

[6] Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. Learn-

ing a convolutional neural network for non-uniform motion

blur removal. In CVPR, pages 769–777, 2015. 1, 3, 7, 8

[7] Dong Gong, Jie Yang, Lingqiao Liu, Yanning Zhang, Ian

Reid, Chunhua Shen, Anton Van Den Hengel, and Qinfeng

Shi. From motion blur to motion flow: a deep learning so-

lution for removing heterogeneous motion blur. In CVPR,

pages 2319–2328, 2017. 1, 3

[8] Raied Aljadaany, Dipan K Pal, and Marios Savvides.

Douglas-Rachford networks: learning both the image prior

and data fidelity terms for blind image deconvolution. In

CVPR, pages 10235–10244, 2019. 1, 3

[9] Dongwon Park, Dong Un Kang, Jisoo Kim, and Se Young

Chun. Multi-temporal recurrent neural networks for progres-

sive non-uniform single image deblurring with incremental

temporal training. In ECCV, 2020. 1, 3, 7

[10] Maitreya Suin, Kuldeep Purohit, and AN Rajagopalan.

Spatially-attentive patch-hierarchical network for adaptive

motion deblurring. In CVPR, pages 3606–3615, 2020. 1,

3

[11] Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Bjorn

Stenger, Wei Liu, and Hongdong Li. Deblurring by realistic

blurring. In CVPR, pages 2737–2746, 2020. 1, 3

[12] Yuan Yuan, Wei Su, and Dandan Ma. Efficient dynamic

scene deblurring using spatially variant deconvolution net-

work with optical flow guided training. In CVPR, pages

3555–3564, 2020. 1, 3

[13] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung,

and Sung-Jea Ko. Rethinking coarse-to-fine approach in sin-

gle image deblurring. In ICCV, pages 4641–4650, 2021. 1,

3, 7, 8

[14] Seo-Won Ji, Jeongmin Lee, Seung-Wook Kim, Jun-Pyo

Hong, Seung-Jin Baek, Seung-Won Jung, and Sung-Jea Ko.

XYDeblur: divide and conquer for single image deblurring.

In CVPR, pages 17421–17430, 2022. 1

[15] Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan

Saharia, Alexandros G Dimakis, and Peyman Milanfar. De-

blurring via stochastic refinement. In CVPR, pages 16293–

16303, 2022. 1

[16] Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho.

Real-world blur dataset for learning and benchmarking de-

blurring algorithms. In ECCV, pages 184–201. Springer,

2020. 1

[17] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep

multi-scale convolutional neural network for dynamic scene

deblurring. In CVPR, pages 3883–3891, 2017. 1, 8

[18] Phong Tran, Anh Tuan Tran, Quynh Phung, and Minh Hoai.

Explore image deblurring via encoded blur kernel space. In

CVPR, pages 11956–11965, 2021. 1, 3

[19] Dasong Li, Yi Zhang, Ka Chun Cheung, Xiaogang Wang,

Hongwei Qin, and Hongsheng Li. Learning degradation rep-

resentations for image deblurring. In ECCV, 2022. 1, 3, 7,

8

[20] Peidong Liu, Joel Janai, Marc Pollefeys, Torsten Sattler, and

Andreas Geiger. Self-supervised linear motion deblurring.

IEEE Robot. Autom. Lett., 5(2):2475–2482, 2020. 2, 3, 7

[21] Boyu Lu, Jun-Cheng Chen, and Rama Chellappa. Unsuper-

vised domain-specific deblurring via disentangled represen-

tations. In CVPR, pages 10225–10234, 2019. 2, 3

[22] Dongwei Ren, Kai Zhang, Qilong Wang, Qinghua Hu, and

Wangmeng Zuo. Neural blind deconvolution using deep pri-

ors. In CVPR, pages 3341–3350, 2020. 2, 3, 4, 6, 8

[23] Ji Li, Yuesong Nan, and Hui Ji. Un-supervised learning for

blind image deconvolution via Monte-Carlo sampling. In-

verse Probl, 38(3):035012, 2022. 2, 3

[24] Mingqin Chen, Yuhui Quan, Yong Xu, and Hui Ji. Self-

supervised blind image deconvolution via deep generative

ensemble learning. IEEE Trans. Circuits Syst. Video Tech-

nol., 2022. 2, 3

[25] Stefan Harmeling, Hirsch Michael, and Bernhard Schölkopf.

Space-variant single-image blind deconvolution for remov-

ing camera shake. In NIPS, pages 829–837, 2010. 2, 3

[26] Michael Hirsch, Suvrit Sra, Bernhard Schölkopf, and Stefan

Harmeling. Efficient filter flow for space-variant multiframe

blind deconvolution. In CVPR, pages 607–614. IEEE, 2010.

2, 3

[27] Yeong Ho Ha and John A Pearce. A new window and com-

parison to standard windows. IEEE Trans. Acoust., Speech,

Signal Process., 37(2):298–301, 1989. 2

[28] Anat Levin, Yair Weiss, Fredo Durand, and William T Free-

man. Understanding and evaluating blind deconvolution al-

gorithms. In CVPR, pages 1964–1971, 2009. 2, 3

[29] Anat Levin, Yair Weiss, Fredo Durand, and William T Free-

man. Efficient marginal likelihood optimization in blind de-

convolution. In CVPR, pages 2657–2664. IEEE, 2011. 2,

3

[30] D. Wipf and H. Zhang. Revisiting bayesian blind deconvo-

lution. J. Mach. Learn. Res., 15:3775–3814, 2014. 2, 3

13994



[31] S. D. Babacan, R. Molina, M. N. Do, and A. K. Katsagge-

los. Bayesian blind deconvolution with general sparse image

priors. In ECCV, pages 341–355, 2012. 2, 3

[32] Liuge Yang and Hui Ji. A variational EM framework with

adaptive edge selection for blind motion deblurring. In

CVPR, pages 10167–10176, 2019. 2, 3, 8

[33] Jinshan Pan, Zhe Hu, Zhixun Su, and Ming-Hsuan Yang. De-

blurring text images via ℓ0-regularized intensity and gradient

prior. In CVPR, pages 2901–2908, 2014. 3

[34] Dilip Krishnan, Terence Tay, and Rob Fergus. Blind de-

convolution using a normalized sparsity measure. In CVPR,

pages 233–240, 2011. 3

[35] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural ℓ0 sparse

representation for natural image deblurring. In CVPR, pages

1107–1114, 2013. 3, 6, 7

[36] Li Xu and Jiaya Jia. Two-phase kernel estimation for robust

motion deblurring. In ECCV, pages 157–170, 2010. 3, 8

[37] Jian-Feng Cai, Hui Ji, Chaoqiang Liu, and Zuowei Shen.

Blind motion deblurring from a single image using sparse

approximation. In CVPR, pages 104–111, 2009. 3

[38] Jian-Feng Cai, Hui Ji, Chaoqiang Liu, and Zuowei Shen.

Framelet-based blind motion deblurring from a single image.

IEEE Trans. Image Process., 21(2):562–572, 2011. 3

[39] Tomer Michaeli and Michal Irani. Blind deblurring using

internal patch recurrence. In ECCV, pages 783–798, 2014. 3

[40] Libin Sun, Sunghyun Cho, Jue Wang, and James Hays.

Edge-based blur kernel estimation using patch priors. In

ICCP, pages 1–8, 2013. 3

[41] Jinshan Pan, Deqing Sun, Hanspeter Pfister, and Ming-

Hsuan Yang. Blind image deblurring using dark channel

prior. In CVPR, pages 1628–1636, 2016. 3

[42] Yanyang Yan, Wenqi Ren, Yuanfang Guo, Rui Wang, and

Xiaochun Cao. Image deblurring via extreme channels prior.

In CVPR, pages 4003–4011, 2017. 3, 8

[43] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T Roweis,

and William T Freeman. Removing camera shake from a

single photograph. TOG, 25(3):787–794, 2006. 3

[44] Hui Ji and Kang Wang. A two-stage approach to blind

spatially-varying motion deblurring. In CVPR, pages 73–80.

IEEE, 2012. 3, 4

[45] Yu-Wing Tai, Ping Tan, and Michael S Brown. Richardson-

lucy deblurring for scenes under a projective motion path.

IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1603–1618,

2011. 3

[46] Oliver Whyte, Josef Sivic, Andrew Zisserman, and Jean

Ponce. Non-uniform deblurring for shaken images. IJCV,

98(2):168–186, 2012. 3

[47] Ankit Gupta, Neel Joshi, C Lawrence Zitnick, Michael Co-

hen, and Brian Curless. Single image deblurring using mo-

tion density functions. In ECCV, pages 171–184. Springer,

2010. 3

[48] Zhe Hu, Li Xu, and Ming-Hsuan Yang. Joint depth estima-

tion and camera shake removal from single blurry image. In

CVPR, pages 2893–2900, 2014. 3

[49] Li Xu, Jimmy SJ Ren, Ce Liu, and Jiaya Jia. Deep convo-

lutional neural network for image deconvolution. In NIPS,

pages 1790–1798, 2014. 3

[50] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-

aya Jia. Scale-recurrent network for deep image deblurring.

In CVPR, 2018. 3, 7, 8

[51] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Ko-

niusz. Deep stacked hierarchical multi-patch network for im-

age deblurring. In CVPR, pages 5978–5986, 2019. 3

[52] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang

Wang. Deblurgan-v2: deblurring (orders-of-magnitude)

faster and better. In ICCV, pages 8878–8887, 2019. 3, 7,

8

[53] Lerenhan Li, Jinshan Pan, Wei-Sheng Lai, Changxin Gao,

Nong Sang, and Ming-Hsuan Yang. Dynamic scene deblur-

ring by depth guided model. IEEE Trans. Image Process.,

29:5273–5288, 2020. 3

[54] Yong Xu, Ye Zhu, Yuhui Quan, and Hui Ji. Attentive deep

network for blind motion deblurring on dynamic scenes.

Comput Vis Image Und, 205:103169, 2021. 3

[55] Hongyun Gao, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Dy-

namic scene deblurring with parameter selective sharing and

nested skip connections. In CVPR, pages 3848–3856, 2019.

3

[56] Jiawei Zhang, Jinshan Pan, Jimmy Ren, Yibing Song, Lin-

chao Bao, Rynson WH Lau, and Ming-Hsuan Yang. Dy-

namic scene deblurring using spatially variant recurrent neu-

ral networks. In CVPR, pages 2521–2529, 2018. 3

[57] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky.

Deep image prior. In CVPR, pages 9446–9454, 2018. 4,

6

[58] Neel Joshi, Sing Bing Kang, C Lawrence Zitnick, and

Richard Szeliski. Image deblurring using inertial measure-

ment sensors. TOG, 29(4):1–9, 2010. 4

[59] Christian P Robert, George Casella, and George Casella.

Monte Carlo statistical methods, volume 2. Springer, 1999.

4

[60] Richard A Levine and George Casella. Implementations

of the Monte Carlo EM algorithm. J Comput Graph Stat,

10(3):422–439, 2001. 4

[61] Max Welling and Yee W Teh. Bayesian learning via stochas-

tic gradient Langevin dynamics. In ICML, pages 681–688,

2011. 5
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