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Abstract

Denoising is a crucial step for hyperspectral image
(HSI) applications. Though witnessing the great power of
deep learning, existing HSI denoising methods suffer from
limitations in capturing the non-local self-similarity. Trans-
formers have shown potential in capturing long-range de-
pendencies, but few attempts have been made with specifi-
cally designed Transformer to model the spatial and spec-
tral correlation in HSIs. In this paper, we address these
issues by proposing a spectral enhanced rectangle Trans-
former, driving it to explore the non-local spatial similar-
ity and global spectral low-rank property of HSIs. For
the former, we exploit the rectangle self-attention horizon-
tally and vertically to capture the non-local similarity in
the spatial domain. For the latter, we design a spectral
enhancement module that is capable of extracting global
underlying low-rank property of spatial-spectral cubes to
suppress noise, while enabling the interactions among non-
overlapping spatial rectangles. Extensive experiments have
been conducted on both synthetic noisy HSIs and real noisy
HSIs, showing the effectiveness of our proposed method in
terms of both objective metric and subjective visual quality.
The code is available at https://github.com/MyuLi/SERT.

1. Introduction

With sufficient spectral information, hyperspectral im-
ages (HSIs) can provide more detailed characteristics to
distinguish from different materials compared to RGB im-
ages. Thus, HSIs have been widely applied to face recog-
nition [37, 38], vegetation detection [4], medical diagno-
sis [43], etc. With scanning designs [2] and massive wave-
bands, the photon numbers in individual bands are limited.
HSI is easily degraded by various noise. Apart from poor
visual effects, such undesired degradation also negatively
affects the downstream applications. To obtain better visual
effects and performance in HSI vision tasks, denoising is a
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fundamental step for HSI analysis and processing.
Similar to RGB images, HSIs have self-similarity in

the spatial domain, suggesting that similar pixels can be
grouped and denoised together. Moreover, since hyperspec-
tral imaging systems are able to acquire images at a nomi-
nal spectral resolution, HSIs have inner correlations in the
spectral domain. Thus, it is important to consider both spa-
tial and spectral domains when designing denoising meth-
ods for HSI. Traditional model-based HSI denoising meth-
ods [10, 17, 21] employ handcrafted priors to explore the
spatial and spectral correlations by iteratively solving the
optimization problem. Among these works, total variation
[20, 21, 52] prior, non-local similarity [19], low-rank [8, 9]
property, and sparsity [42] regularization are frequently uti-
lized. The performance of these methods relies on the ac-
curacy of handcrafted priors. In practical HSI denoising,
model-based methods are generally time-consuming and
have limited generalization ability in diverse scenarios.

To obtain robust learning for noise removal, deep learn-
ing methods [7,35,41,49] are applied to HSI denoising and
achieve impressive restoration performance. However, most
of these works utilize convolutional neural networks for fea-
ture extraction and depend on local filter response to sepa-
rate noise and signal in a limited receptive field.

Recently, vision Transformers have emerged with com-
petitive results in both high-level tasks [16, 39] and low-
level tasks [1,13,50], showing the strong capability of mod-
eling long-range dependencies in image regions. To di-
minish the unaffordable quadratically computation cost to
image size, many works have investigated the efficient de-
sign of spatial attention [11,46,47]. Swin Transformer [28]
splitted feature maps into shifted square windows. CSWin
Transformer [15] developed a stripe window across the fea-
tures maps to enlarge the attention area. As HSI usually
has large feature maps, exploring the similarity beyond
the noisy pixel can cause unnecessary calculation burden.
Thus, how to efficiently model the non-local spatial simi-
larity is still challenging for HSI denoising Transformer.

HSIs usually lie in a spectral low-rank subspace [9],
which can maintain the distinguished information and sup-
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press noise. This indicates that the non-local spatial simi-
larity and low-rank spectral statistics should be jointly uni-
tized for HSI denoising. However, existing HSI denoising
methods [24, 45] mainly utilize the low-rank characteris-
tics through matrix factorization, which is based on a single
HSI and requires a long-time to solve. The global low-rank
property in large datasets is hardly considered.

In this paper, we propose a Spectral Enhanced Rectangle
Transformerc (SERT) for HSI denoising. To reinforce
model capacity with reasonable cost, we develop a multi-
shape rectangle self-attention module to comprehensively
explore the non-local spatial similarity. Besides, we ag-
gregate the most informative spectral statistics to suppress
noise in our spectral enhancement module, which projects
the spatial-spectral cubes into low-rank vectors with the as-
sistance of a global spectral memory unit. The spectral
enhancement module also provides interactions between
the non-overlapping spatial rectangles. With our proposed
Transformer, the spatial non-local similarity and global
spectral low-rank properly are jointly considered to benefit
the denoising process. Experimental results show that our
method significantly outperforms the state-of-the-art meth-
ods in both simulated data and real noisy HSIs.

Overall, our contributions can be summarized as follows:
• We propose a spectral enhanced rectangle Transformer

for HSI denoising, which can well exploit both the
non-local spatial similarity and global spectral low-
rank property of noisy images.

• We present a multi-shape rectangle spatial self-
attention module to effectively explore the comprehen-
sive spatial self-similarity in HSI.

• A spectral enhancement module with memory blocks
is employed to extract the informative low-rank vec-
tors from HSI cube patches and suppress the noise.

2. Related Works
2.1. Hyperspectral Image Denoising

HSI denoising is a well-developed research area in com-
puter vision [9, 19, 44] and remote sensing [34, 49]. Main-
stream HSI denoising methods can be classified into model-
based methods and deep learning methods.

Traditional model-based methods [10, 29, 29, 48, 54] il-
lustrate noise removal as an iterative optimization problem
with handcrafted priors. Adaptive spatial-spectral dictio-
nary methods are proposed in [17]. Chang et al. [9] em-
ployed the hyper-Laplacian regularized unidirectional low-
rank tensor recovery method to utilize the structure corre-
lation in HSI. The spatial non-local similarity and global
spectral low-rank property are integrated in [19] for denois-
ing. Besides, other conventional spatial regularizers [29,52]
and low-rank regularization [8] are also introduced to model
the spatial and spectral properties of noisy HSI.

With great potential to automatically learn and represent
features, deep learning methods [7,32,41,45] have been ac-
tively investigated for HSI denoising. Spectral-spatial fea-
tures are exploited via residual convolutional network in
HSID-CNN [49]. A deep spatial-spectral global reasoning
network is proposed in [7] to consider both the local and
global information for HSI denoising. Besides, a quasi-
recurrent neural network was extended to HSI denoising
task [32,41], showing the benefits of both convolutional and
recurrent neural networks. Model-guided interpretable net-
works have also been actively explored in [3, 44]. Differ-
ent from those convolution-based networks that have lim-
ited receptive field and fixed feature extraction paradigms,
our proposed method utilizes a transformer to better model
the inner similarity in spatial and spectral domains.

2.2. Vision Transformer

Transformer for RGB images. Transformers have been
actively applied to vision tasks [16,18,39,47] due to its pow-
erful ability in modeling long-range dependencies. Self-
attention mechanism has been proven to be efficacious in
previous works [23,40]. When applied to the spatial region,
it is crucial for the Transformers to consider the trade-off
between computation cost and model capacity. To cut down
the quadratic computation growth to image size, Dosovit-
skiy et al. [16] first employed Transformer for image recog-
nition with images spitted in small patches. Swin Trans-
former [28] was proposed with shifted window for self-
attention in the spatial domain. To further enlarge the re-
ceptive field of self-attention, down-sampled attention was
introduced in [13,39,47]. Without spatial information loss,
Dong et al. [15] employed horizontal and vertical stripes
to compute self-attention. However, for HSI denoising,
the non-local spatial similarity is not efficiently explored
as these Transformers conducted the spatial self-attention
in limited windows or introduced unnecessary computation
cost. Besides, the combined consideration of the spatial and
spectral domains are rarely investigated.
Transformer for HSI. Recently, there is an emerging trend
of using Transformer to HSI restoration [1, 36, 51] and HSI
classification [22, 27]. An architecture search framework
was proposed in [55] to find a suitable network consisting
of spectral and spatial Transformer for HSI classification. A
3D quasi-recurrent and Transformer network was presented
in [1] for hyperspectral image denoising, which combined
the 3D quasi-recurrent layer with Swin blocks. Different
from these works that tend to directly employ existing trans-
former blocks to another tasks, methods in [5, 6] solve the
HSI reconstruction problem with task-oriented transformer
block under the guidance of degradation mask. However,
these works do not consider the similarity in both spatial
and spectral domains. Here, we introduce our spectral en-
hanced rectangle Transformer to HSI denoising, exploring
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Figure 1. Overall framework of SERT. (a) SERT mainly includes two essential components, i.e., SE for non-local spatial similarity and SE
for global low-rank property. (b) spatial rectangle self-attention (RA) and (c) spectral enhancement (SE) module.

the most important two characteristics of HSI, including
spatial non-local similarity and global low-rank properties.

3. Spectral Enhanced Rectangle Transformer
Assuming the degraded noisy HSI as Y ∈ RH×W×B ,

where H , W , and B represent the height, width, and band
of the HSI, the noise degradation can be formulated as

Y = X + n, (1)

where X∈RH×W×B is the desired clean HSI, and
n∈RH×W×B denotes the addictive random noise. In re-
alistic HSI degradation situations, HSIs are corrupted by
various types of noise, e.g., Gaussian noise, stripe noise,
deadline noise, impulse noise, or a mixture of them.

In this section, we elaborately introduce our proposed
spectral enhanced rectangle Transformer for HSI denoising.
The overall architecture is shown in Figure 1. In our im-
plementation, each Residual Transformer Layer (RTL) con-
sists of 6 Transformer blocks. And the proposed Trans-
former Block mainly contains two essential components,
i.e., rectangle self-attention (RA) module and spectral en-
hancement (SE) module. Figure 1(b) and Figure 1(c) illus-
trate the detailed framework of RA module and SE module,
respectively. The outputs of RA and SE are added together
to achieve comprehensive feature embeddings for noise re-
moval. Next, we discuss each module in detail.

3.1. Spatial Rectangle Self-Attention

To remove noise from HSI, it is important to explore the
similarity information in spatial domain [19], which implies

that similar pixels can be aggregated together for denois-
ing. Existing deep learning-based HSI denoising methods
mainly utilize the convolutional layer to extract the local in-
formation with spatially invariant kernels, limiting the flex-
ibility to model the non-local similarity.

For better model capacity, there are various attempts [28,
39, 50] that employ Transformer as an alternative solution
to convolution neural network. The power of self-attention
mechanism in modeling spatial information has also been
proven in [13, 26]. Since the global self-attention in the
spatial domain introduces high computational complexity,
Swin Transformer [28] and CSWin Transformer [15] split
the input feature into windows or stripes for attention op-
eration. From the heatmap shown in Figure 2, we can ob-
serve that neighboring pixels are more similar to the cen-
ter pixel than distant pixels. When conducting spatial self-
attention, Swin (see Figure 2(b)) focuses on local infor-
mation while CSwin (Figure 2 (c)) tends to utilize pixels
which is less informative. Thus, how to effectively conduct
the self-attention in the informative spatial regions to model
non-local similarity is still challenging for HSI denoising.

Here, we propose a rectangle self-attention in the spatial
domain, in which the feature maps are split into several non-
overlapping rectangles. As shown in Figure 2, our rectangle
Transformer focuses on the informative neighboring pixels
and obtains more exhaustive information in non-local area.
At different stages of the network, rectangles of different
shapes are employed to explore better expression ability.

The details of our proposed RA module are shown in
Figure 1(b). To obtain comprehensive features, the rectan-
gle self-attention is conducted in vertically and horizontally
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Figure 2. This similarity statistic is obtained via Realistic dataset
[52]. As the distance becomes longer, the similarity decreases.

after the spectral split operation. Different from [15], we
add a spectral shuffle [30] operation to exchange the infor-
mation from two branches. Since rectangle self-attention in
vertical and horizontal focuses on different regions and has
different receptive fields, the shuffle operation also enlarges
the respective field of the whole module.

Let Z∈RH×W×C denote the input features of RA mod-
ule. The outputs of RA module is calculated via

Z1,Z2 = Split(Z), (2)

Ẑ1 = W-RMSA(Z1), Ẑ2 = H-RMSA(Z2) (3)

Ẑ = Shuffle([Ẑ1, Ẑ2]), (4)

where W-RMSA denotes the horizontal rectangle multi-
head self-attention, and H-RMSA denotes the vertical rect-
angle multi-head self-attention. Z is firstly divided into
two parts in spectral domain, where Z1∈RH×W×C

2 and
Z2∈RH×W×C

2 . Then, Z1 and Z2 conduct the W-RMSA
and H-RMSA separately.

Supposing the size of horizontal rectangle as [h, w] and
h>w, for W-RMSA, the input features Z1 is partitioned
into non-overlapping rectangles as {Z1

1 ,Z
1
2 , ...,Z

1
N}, in

which Z1
i ∈ Rh×w×C

2 and N=W×H
h×w . The output of each

rectangle from W-RMSA is calculated as

Q1
i = Z1

i W
1
q , K1

i = Z1
i W

1
k , V 1

i = Z1
i W

1
v (5)

Ẑ1
i = SoftMax(Q1

iK
1
i
T
/
√
d+ P )V 1

i , (6)

where W 1
q , W 1

k , W 1
v ∈R

C
2 ×C

2 are the projection mappings
of query Q1

i∈Rh×w×C
2 , keys K1

i ∈Rh×w×C
2 , and value

V 1
i ∈Rh×w×C

2 . P is the learnable parameter embedding
the position and d is the feature dimension. Then the out-
puts of horizontal rectangle self-attention is aggregated by

W-RMSA(Z1) = Merge(Ẑ1
1 , Ẑ

1
2 , ..., Ẑ

1
N ). (7)

For vertical rectangle self-attention H-RMSA, the size
of the rectangle is [w, h] while other operations are similar
to W-RMSA. Moreover, at different layers of the network,
rectangles in various shapes are employed to explore non-
local similarity in different scales.

3.2. Spectral Enhancement

In traditional model-based HSI denoising methods, HSI
is always represented by its extracted patches, and the low-

rank property is widely explored in HSI denoising [9], com-
pressive sensing [14], unmixing [24], implying that the low-
dimensional spectral subspace is beneficial to HSI tasks.
We also adopt the low-rank property to guide the HSI de-
noising process. However, without strong regularization
like SVD decomposition [8], projecting the noisy HSI into
a proper subspace is difficult. Thus, instead of introducing
orthogonal linear projection as in [12] to HSI, we use the
memory unit (MU) to store the low-rank statistics of HSI
cubes. The network itself automatically learns how to rep-
resent the HSI cubes in subspace. The MU module can be
denoted as a dictionary of global low-rank spectral vectors.

As shown in Figure 1(c), the features are firstly parti-
tioned into several cube patches of size P×P×C to explore
the spectral-spatial correlation. In the implementation, P is
set to the long side of the rectangle in RA module. Accord-
ingly, the spectral enhancement block also provides infor-
mation interactions between the inside rectangles. More-
over, shift operation [28] is employed in spatial domain to
establish connections between adjacent cube patches.

The input of SE module is denoted as Zp ∈ RP×P×C .
To obtain distinguished spectral information in a subspace,
following [23] and [11], a squeeze operation is employed
and aggregates the features across the cube patch Zp

to produce a projected spectral vector of size 1×1×K.
Specifically, a downsample operation is firstly conducted
in the spatial domain to obtain aggregated spectral vec-
tor Zc∈R1×1×C . Then, it is projected to obtain Zk ∈
R1×1×K , which is in a subspace of rank K. The extrac-
tion is described as

Zc = AveragePool(Zp), (8)
Zk = ZcWk, (9)

where Wk ∈ RC×K is the projection mapping. Notably,
instead of conducting a global aggregation on the whole
image, we focus on the information inside the cube since
neighboring pixels tend to share similar spectral statistics.

To explore the spatial-spectral correlation beyond the
current HSI cube and enhance the expression ability of low-
rank spectral vector, we introduce a memorizing unit (MU)
to store the spectral information. The MU module main-
tains a global memory bank M ∈ RK×B , which is learned
as parameters of the network. For spectral vector Zk, we
seek the most relevant spectral low-rank vectors in MU and
use these vectors to assist in adjusting the projected vector
Zk. The corresponding coefficients I ∈ R1×B between Zk

and stored low-rank vectors M is extracted by

I = Softmax(ZkM). (10)

With coefficients matrix I , the desired low-rank vector
Zl∈R1×1×K can be obtained from MU via

Zl = IM . (11)
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10 30 50 70 10-70Method
PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Noisy 28.13 0.8792 18.72 18.59 0.5523 37.9 14.15 0.3476 49.01 11.23 0.2301 56.45 17.24 0.4782 41.94
BM4D [31] 40.78 0.9930 2.99 37.69 0.9872 5.02 34.96 0.9850 6.81 33.15 0.9554 8.40 36.62 0.9770 5.51
LLRT [9] 46.72 0.9983 1.60 41.12 0.9920 2.52 38.24 0.9830 3.47 36.23 0.9732 4.46 40.06 0.9860 3.24

NGMeet [19] 47.90 0.9988 1.39 42.44 0.9816 2.06 39.69 0.9658 2.49 38.05 0.9531 2.83 41.67 0.9937 2.19
HSID-CNN [49] 43.14 0.9918 2.12 40.30 0.9854 3.14 37.72 0.9746 4.27 34.95 0.9521 5.84 39.04 0.9776 3.71

GRNet [7] 45.25 0.9976 1.83 42.09 0.9957 2.18 40.25 0.9936 2.42 38.95 0.9914 2.63 41.44 0.9944 2.27
QRNN3D [41] 45.61 0.9977 1.80 42.18 0.9955 2.21 40.05 0.9929 2.63 38.09 0.9883 3.42 41.34 0.9938 2.42

T3SC [3] 45.81 0.9979 2.02 42.44 0.9957 2.44 40.39 0.9933 2.85 38.80 0.9904 3.26 41.64 0.9942 2.61
MAC-Net [45] 45.20 0.9974 1.87 42.10 0.9955 2.35 40.09 0.9931 2.79 38.64 0.9905 3.16 41.31 0.9941 2.52
SERT (Ours) 47.72 0.9988 1.36 43.56 0.9969 1.77 41.33 0.9949 2.05 39.82 0.9929 2.30 42.82 0.9957 1.88

Table 1. Averaged results of different methods under Gaussian noise levels on ICVL dataset. PSNR is in dB.

Non-i.i.d Gaussian Gaussian+Deadline Gaussian+Impulse Gaussian+Stripe Gaussian+MixtureMethod
PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Noisy 18.29 0.5116 46.20 17.50 0.4770 47.55 14.93 0.3758 46.98 17.51 0.4867 46.98 13.91 0.3396 51.53
BM4D [31] 36.18 0.9767 5.78 33.77 0.9615 6.85 29.79 0.8613 21.59 35.63 0.9730 6.26 28.01 0.8419 23.59
LLRT [9] 34.18 0.9618 4.88 32.98 0.9559 5.29 28.85 0.8819 18.17 34.27 0.9628 4.93 28.06 0.8697 19.37

NGMeet [19] 34.90 0.9745 5.37 33.41 0.9665 6.55 27.02 0.7884 31.20 34.88 0.9665 5.42 26.13 0.7796 31.89
HSID-CNN [49] 39.28 0.9819 3.80 38.33 0.9783 3.99 36.21 0.9663 5.48 38.09 0.9765 4.59 35.30 0.9588 6.29

GRNet [7] 35.19 0.9780 5.19 33.78 0.9744 5.42 32.78 0.9606 8.26 34.85 0.9772 5.41 30.91 0.9617 8.26
QRNN3D [41] 42.18 0.9950 2.84 41.69 0.9942 2.61 40.32 0.9914 4.31 41.68 0.9943 2.97 39.08 0.9892 4.80

T3SC [3] 41.95 0.9922 4.18 39.59 0.9924 4.86 37.85 0.9843 6.53 41.32 0.9937 3.27 35.53 0.9767 8.12
MAC-Net [45] 39.98 2.9662 4.55 36.68 0.9860 5.63 34.54 0.9553 10.20 39.03 0.9910 4.03 30.59 0.9300 14.51
SERT (Ours) 44.20 0.9971 1.69 43.66 0.9969 1.99 42.67 0.9959 2.30 43.68 0.9969 1.97 40.00 0.9937 2.84

Table 2. Averaged results of different methods under complex noise on ICVL dataset. PSNR is in dB.

Since Zl represents the most informative spectral statis-
tics of the noisy cube, to enhance the spatial-spectral cor-
relation and suppress noise, we use the obtained low-rank
vector as guidance to benefit the denoising process. The
output of our spectral enhancement module is obtained by
rescaling the input SHI cube Zp with Zl as

Ẑp = Zp ·WcZl, (12)

where Wc ∈ RC×K is the project mapping and · is the
element-wise dot product.

4. Experiments

In this section, we first evaluate our method with syn-
thetic experiments, including Gaussian noise cases and
complex noise cases. Then we report results on real noisy
datasets. Finally, we perform model analysis experiments
to verify the effectiveness of the proposed model.

We compare several traditional model-based HSI
denoising methods including the filter-based method
(BM4D [31]), tensor-based method (LLRT [9]), and or-
thogonal basis-based method (NGMeet [19]). Five state-of-
the-art deep learning-based methods, i.e., HSID-CNN [48],
GRNet [7], QRNN3D [41], T3SC [3], and MAC-Net [7]

are also compared. Traditional methods are programmed
in Matlab with Intel Core i9-10850K CPU. Our method as
well as other deep networks is evaluated with an NVIDIA
RTX 3090 GPU. Peak signal-to-noise ratio (PSNR), struc-
tural similarity index metric (SSIM) and spectral angle
mapper (SAM) are used as the quantitative criteria.

4.1. Experiments on Synthetic Data

Datasets. Synthetic experiments are conducted on ICVL
dataset, which has been widely used for simulated stud-
ies [3, 41]. ICVL contains 201 HSIs of size 1392×1300
with 31 bands from 400 nm to 700 nm. We use 100 HSIs
for training, 5 HSIs for validating, and 50 HSIs used for
testing. Following settings in [3] and [41], training images
are cropped to size 64×64 at different scales. During the
testing phase, HSIs are cropped to 512×512×31 to obtain
an affordable computation cost for traditional methods.
Implementation Details. We use noise patterns in [41] to
simulate the noisy HSIs. Specifically, the noise patterns are

• i.i.d Gaussian noise from level 10 to level 70.
• Complex noise cases. Five types of complex noise

are included, i.e., Non-i.i.d Gaussian noise, Gaussian
+ Stripe noise, Gaussian + Deadline noise, Gaussian +
Impulse noise, and Mixture noise.
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Figure 3. Visual comparison on ICVL. Images are from band 28. The top row exhibits the results under Gaussian noise with noise level 50
and the bottom row exhibits the results under deadline noise.
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Figure 4. Visual quality comparison of real noisy HSI experiments on Urban dataset with bands 1, 108, 208.

For i.i.d Gaussian noise case, we train networks with ran-
dom noise levels from 10 to 70 and test them under differ-
ent levels of noise. For complex noise, networks are trained
with a mixture of noise and tested under each case.

For our proposed model, the learning rate is set to 1e−4
with Adam optimizer. After 50 epochs, the learning rate is
divided by 10. The total epoch number is 80. we set the ba-
sic channel C = 96 and rank size K = 12. The size of the
rectangle of each Transformer layer is set to [16, 1], [32, 2],
and [32, 4] respectively. For competing methods, we use the
parameter settings in the referenced works and make a great
effort to reproduce the best results.
Quantitative Comparison. We show the quantitative re-
sults of Gaussian noise experiments and complex noise ex-
periments in Tables 1 and 2. Among these traditional meth-
ods, NGMeet performs well on Gaussian noise cases in Ta-
ble 1 and surpasses the deep learning method HSID-CNN.
However, results of NGMeet and other model-based meth-
ods under complex noise cases in Table 2 are much worse,
showing the poor generalization ability of handcrafted pri-
ors. Our proposed method outperforms other deep learning
methods by at least 0.9 dB for all noise cases. Notably, our
method effectively recovers a more accurate image from the
challenging complex noisy HSIs, demonstrating its impres-
sive ability to handle various noise.

Visual Comparison. To further demonstrate the denois-
ing performance of our method, we show the denoised re-
sults of different methods under random Gaussian noise
and deadline noise in Figure 3. In the top row, QRNN3D
and QRNN3D exhibit excessive smoothness for some more
complex textures. Compared to NGMeet, our method has
much fewer artifacts than other methods. In the bottom row,
our method restores more texture details with less noise.

4.2. Experiments on Real Noisy Data

Datasets. Urban dataset and Realistic dataset from [53] are
both adopted for our real data experiments.

Urban dataset contains a image of size 307×307 with
210 bands covering from 400 to 2500 nm. Since there is
no clean HSI, we use APEX dataset [25] for pre-training, in
which band-dependent noise levels from 0 to 55 are added
to the clean HSIs. The settings are the same with [3].

For Realistic dataset [53], there are 59 noisy HSIs pro-
vided with paired clean HSIs. Each HSI contains 696×520
pixels in spatial resolution with 34 bands from 400 nm to
700 nm. We randomly select 44 HSIs from both indoor
scenes and outdoor scenes. The left is used for testing.
Implementation Details. For Urban dataset experiment,
networks are trained with their default parameter settings.
The training epochs of our method is set to 100 epochs with

5810



Noisy, 20.14 BM4D, 23.83 NGMeet, 22.72 HSID-CNN, 22.19 GRNet, 23.62

QRNN3D, 27.26 T3SC, 26.20 MAC-Net, 27.57 SERT (Ours), 27.78 GroundTruth, PSNR (dB)

Figure 5. Visual comparison on Realistic dataset [52] of scene 5 with corresponding PSNR. The images are from band 12 on 550 nm.

Metric Noisy BM4D [31] LLRT [9] NGMeet [19] HSID-CNN [48] GRNet [7] QRNN3D [41] T3SC [3] MAC-Net [7] SERT (Ours)

PSNR 23.26 29.04 28.26 28.72 26.44 25.33 28.12 28.51 29.20 29.68
SSIM 0.7609 0.9471 0.9417 0.9511 0.8992 0.8381 0.9066 0.9323 0.9489 0.9533
SAM 17.329 3.087 3.960 2.735 5.242 9.737 5.590 4.408 4.099 2.536

Table 3. Average results of different methods on 15 real noisy HSIs. The PSNR is in dB, and best results are in bold.

Metric SwinIR [26] Restormer [50] CSwin [15] TRQ3D [33] SERT (Ours)

GFLOPS 1473.0 3652.8 1129.5 2135.7 1018.9
Params (M) 2.98 90.94 58.53 0.68 1.91

PSNR (dB) 40.44 41.07 42.04 41.66 42.82
SSIM 0.9938 0.9945 0.9951 0.9947 0.9957
SAM 2.32 2.05 2.18 2.21 1.88

Table 4. Comparison with other Transformers under random
Gaussian noise on ICVL dataset. SWinIR, Restormer, and CSWin
are proposed for RBG image tasks. TRQ3D is for HSI denoising.

a learning rate 1e−4. For the Realistic dataset [52], we crop
overlapped 128×128 spatial regions with data augmenta-
tion to train deep networks. The data augmentation settings
in [52] are also adopted. The training epoch is set to 1000.
Quantitative Comparison. Table 3 shows the averaged re-
sults of different methods on the Realistic dataset. Our pro-
posed SERT significantly outperforms other HSI denoising
methods by almost 0.5 dB, showing the effectiveness of our
method in handling real noise.
Visual Comparison. We provide the denoising results of
real noisy HSIs in Figures 4 and 5. Our method is superior
to traditional denoising and deep learning methods in terms
of both noise removal and detail retention. From Figure 4,
we can observe that Urban image is corrupted by complex
noise. The stripe noise has severely affected the visual ef-
fect of image. Denoised images obtained by other methods
are either over-smoothed or still have obvious stripe noise.
Our method provides a clean output image while preserv-
ing the textures and sharpness. For visual comparison of
Realistic dataset in Figure 5, the competing methods gener-
ate incorrect texture and are less effective in noise removal.
And our method achieves the most promising visual result.

4.3. Comparison with other Transformers

To show the effectiveness of our method in exploring
spatial and spectral characteristics of HSIs, we evaluate
our model with four Transformer methods in Table 4. Our
model achieves the best results, implying that the proposed
Transformer block is more suitable for HSI denoising.
Differences with existing RGB Transformers. Existing
RGB Transformer methods consider the inner long-range
dependency from the spatial dimension [13, 28] or spectral
dimension [50]. Our Transformer explores the joint correla-
tion. Besides, our Transformer block utilizes the non-local
similarity and low-rank property, providing a better model-
ing capability to explore the rich information of HSI.
Differences with existing HSI Transformers. TRQ3D
proposed a hybrid framework that employs both Swin
Transformer and 3D quasi-recurrent network for HSI de-
noising [33]. With Transformer block adopted from RGB
image tasks, the inner characteristic of HSI is hardly fully
utilized in the proposed Transformer-based network.

4.4. Model Analysis

Model Complexity. In Table 5, we compare the average in-
ference time, GFLOPs as well as denoising performance by
different denoising methods on ICVL dataset and real noisy
dataset [52]. Our method achieves the competing computa-
tion cost and inference time with better performance.
Component Analysis. The results of different component
designs are given in Table 6(a). The first row presents
Transformer with rectangle self-attention (RA) in spatial
domain. Applying spectral enhancement (SE) to capture
spatial-spectral information, it remarkably boosts the de-
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Synthetic Noise (512×512×31) Real Noise (512×512×34)
Metric HSID-CNN GRNet T3SC QRNN3D MAC-Net SERT (Ours) HSID-CNN GRNet T3SC QRNN3D MAC-Net SERT (Ours)

PSNR (dB) 39.04 41.44 41.34 41.64 41.31 42.82 26.44 25.33 28.13 28.51 29.20 29.68
Params (M) 0.40 44.39 0.83 0.83 0.43 1.91 0.40 44.40 0.83 0.83 0.43 1.91

GFLOPS 3249.7 610.7 - 2513.7 - 1018.9 3564.2 611.9 - 2756.9 - 1021.9
Time (s) 1.700 0.361 1.123 0.683 3.627 0.717 1.865 0.407 1.204 0.822 2.992 0.764

Table 5. Comparisons of PSNR, Params, FLOPS and inference time of different deep learning methods.

RA SE SS MU Params (M) GFLOPS PSNR (dB) SAM

✓ 1.75 973.5 42.06 2.32
✓ ✓ 1.88 1018.0 42.54 1.96
✓ ✓ ✓ 1.88 1018.1 42.60 1.93
✓ ✓ ✓ ✓ 1.91 1018.9 42.82 1.88

(a) Break-down ablation studies to verify the effectiveness of modules.

Method Params (M) GFLOPS PSNR (dB) SAM

No SE 1.75 973.5 42.06 2.32
Global SE 1.91 1014.8 42.04 2.22
Local SE 1.84 993.8 42.60 1.93

Non-local SE 1.91 1018.9 42.82 1.88

(b) Ablation to the position of spectral enhancement (SE) module.

Table 6. Component analysis of various designs on ICVL dataset under random Gaussian noise.

noising performance by 0.42 dB improvement. The intro-
duction of spectral shuffle (SS) also slightly improves the
results, which validates the necessity of feature fusion. With
memory unit (MU), the model gains 0.18 dB in PSNR,
demonstrating the effectiveness of learning from a large-
scale dataset to obtain representative low-rank vectors.
Position of SE Module. We further place our SE module
at different positions to obtain the spatial-spectral correla-
tion. The results are shown in Table 6(b). For global SE,
the whole features of HSI is projected to one low-rank vec-
tor. Local SE stands for SE module that projected the fea-
ture inside a rectangle to one vector. Non-local SE, which
is the employed design, projects several neighboring rectan-
gles into one vector. Interestingly, global SE brings a slight
decrease in performance, indicating extracting a low-rank
vector from the entire HSI is inappropriate. As can be seen
that non-local SE yields the best performance. We owe it
to its ability to make interactions between spatial rectangles
and aggregate information of neighboring similar pixels.
Visualization of Low-rank Vectors. To demonstrate the
role of spectral enhancement module, we visualize sev-
eral low-rank vectors obtained by SE module in Figure 6.
The input cubes are severely influenced by noise and it is
difficult to judge the similarities between cubes visually.
However, low-rank vectors extracted from these noisy cube
patches by SE module show clear similarities. Since the
patch 7, 8 and 9 are all from the road area, their projected
low-rank vectors are more similar to each other than to other
vectors. This proves the ability of SE module to extract es-
sential information from patches and suppress noise.
Parameter Analysis. We evaluate our proposed rectan-
gle Transformer under different settings of rectangle size
in Figure 7. We fix the width of rectangles and change their
lengths for comparison. Since our method includes three
layers of Transformer, we change the length in different lay-
ers. It can be observed that a rectangle with longer length
may not bring better performance for HSI denoising, vali-
dating the essence of our proposed rectangle self-attention
in modeling non-local similarity in the spatial domain.

1 2 3 4 5 6 7 8 9    

1 2 3 4 5 6 7 8 9    
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number 

Visualization of noisy patches 𝒁𝒑

Visualization of low-rank vectors 𝒁𝒍 in SE module

The intrinsic similarity information is 
extracted via our SE module

Figure 6. Visualization of low-rank vectors in SE module.
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Figure 7. Different settings of rectangle’s length at different layers.
The widths is set to [1,2,4] for defaults.

5. Conclusion
In this paper, we present a spectral enhanced rectangle

Transformer for HSI denoising, considering the spatial non-
local similarity and spectral low-rank property of HSI. We
exploit the non-local similarity via multi-shape rectangle
self-attention in the spatial domain. Moreover, we inte-
grate a spectral enhancement module with learnable mem-
ory units to explore the global spectral low-rank property
of HSI. It introduces interactions across spatial rectangles
while maintaining informative spectral characteristics. Ex-
tensive experiments demonstrate that our method signifi-
cantly outperforms other competing methods with synthetic
and real noisy HSIs. In the future, we plan to extend our
method to cope with various HSI restoration tasks.
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