
EMT-NAS:Transferring architectural knowledge between tasks from different
datasets

Peng Liao1, Yaochu Jin1,2*, Wenli Du1∗

1 Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, ECUST, China
2 Faculty of Technology, Bielefeld University, Germany

pengliao@mail.ecust.edu.cn, yaochu.jin@uni-bielefeld.de, wldu@ecust.edu.cn

Abstract

The success of multi-task learning (MTL) can largely be
attributed to the shared representation of related tasks, al-
lowing the models to better generalise. In deep learning,
this is usually achieved by sharing a common neural net-
work architecture and jointly training the weights. How-
ever, the joint training of weighting parameters on mul-
tiple related tasks may lead to performance degradation,
known as negative transfer. To address this issue, this work
proposes an evolutionary multi-tasking neural architecture
search (EMT-NAS) algorithm to accelerate the search pro-
cess by transferring architectural knowledge across mul-
tiple related tasks. In EMT-NAS, unlike the traditional
MTL, the model for each task has a personalised network
architecture and its own weights, thus offering the ca-
pability of effectively alleviating negative transfer. A fit-
ness re-evaluation method is suggested to alleviate fluctu-
ations in performance evaluations resulting from param-
eter sharing and the mini-batch gradient descent training
method, thereby avoiding losing promising solutions during
the search process. To rigorously verify the performance of
EMT-NAS, the classification tasks used in the empirical as-
sessments are derived from different datasets, including the
CIFAR-10 and CIFAR-100, and four MedMNIST datasets.
Extensive comparative experiments on different numbers of
tasks demonstrate that EMT-NAS takes 8% and up to 40%
on CIFAR and MedMNIST, respectively, less time to find
competitive neural architectures than its single-task coun-
terparts.

1. Introduction
Many neural architecture search (NAS) algorithms [8,

16, 23, 56] have shown better performance on a specific
task than manually designed deep neural networks [11, 14,

*Corresponding author.
Code: https://github.com/PengLiao12/EMT-NAS

Figure 1. Conceptual differences between our work and two
main existing methodologies for two-task learning. (a) Existing
multi-task NAS typically handles multiple tasks such as semantic
segmentation and surface normal prediction on the same dataset,
where the loss function contains losses for multiple tasks, resulting
in a network architecture that shares a common set of weight pa-
rameters. (b) Model-based transfer learning trains a network archi-
tecture on a source dataset and then transfers it to a target dataset
by fine-tuning the weights using a separate loss function. (c) EMT-
NAS simultaneously optimises multiple classification tasks from
different datasets using a separate loss function for each task, re-
sulting in an individual network architecture and corresponding
weights for each task. EMT-NAS aims to optimise each task sepa-
rately while sharing the knowledge of good network architectures
to facilitate the optimisation of each task. Best viewed in colour.

35, 51]. However, when the task (or dataset) changes, the
NAS algorithm needs to be run again to find a new optimal
network architecture for the new task, which is typical for
single-task learning (STL).

By contrast, it has been shown that simultaneously learn-
ing multiple related tasks, known as multi-task learning
(MTL) is beneficial [3, 52]. One class of MTL focuses
on designing or training a single network to jointly solve
multiple tasks formed by scene understanding (the same

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3643

dataset) [38, 46], such as the NYU v2 dataset [37], the
CityScapes dataset [4], and the Taskonomy dataset [48].
These tasks consist of semantic segmentation, surface nor-
mal prediction, depth prediction, keypoint detection and
edge detection, which are known as multiple tasks that arise
naturally [3]. Another typical scenario of MTL is inspired
from human learning, where humans often transfer knowl-
edge from one task to another related task, for example, the
skills of playing squash and tennis could help each other
to improve [52]. In this case, tasks may come from dif-
ferent datasets. More often than not, a pair of tasks from
different datasets have a lower relatedness score than those
from the same dataset [18]. This can be clearly shown if we
analyse the task relatedness [1] between classification tasks
from four medical datasets using the representation simi-
larity analysis (RSA) [7]. The results of our analysis are
presented in Fig. 2, from which we can see that the relat-
edness score becomes especially low when the datasets are
from different data modalities, implying that MTL on tasks
from different datasets is more challenging.

MTL is able to improve the performance of learning mul-
tiple related tasks by means of sharing common knowledge
between tasks, including the network architecture and the
weights of the model. Existing MTL designs one architec-
ture for multiple tasks, although only a subset of that net-
work architecture is practically used for each task. In other
words, there are shares and differences between these sub-
sets of model architectures [33]. In sharing the weights, if
one or more tasks have a dominating influence in training
the network weights, the performance of MTL may deteri-
orate on some of the dominated tasks, which is called neg-
ative transfer [40]. Therefore, this work aims to improve
the performance of each task by finding a personalised net-
work architecture for each task, thereby alleviating negative
transfer resulting from the jointly trained weights.

Inspired by the successful research on multi-factorial
evolutionary algorithms (MFEAs) [9], a recently proposed
approach to knowledge transfer in evolutionary optimisa-
tion, this work designs an algorithm to separately search
for a personalised network architecture and corresponding
weight parameters for each task in the same search space.
This way, knowledge transfer across different tasks can be
achieved through crossover between these architectures to
accelerate the search process on each task, provided that
there are similarities between the multiple learning tasks.
Contributions: First, we propose an evolutionary multi-
tasking NAS algorithm (EMT-NAS) for finding person-
alised network architectures for different tasks (datasets) in
the same search space. Architectural knowledge transfer
is achieved by optimising the supernet parameters of each
task separately and recommending neural network archi-
tectures with good performance on their own task. Sec-
ond, block-based crossover and bit-based mutation opera-

Figure 2. Task similarity matrix. The relatedness scores be-
tween four medical tasks are computed using ResNet-50 as
a feature extractor. PathMNIST [44] is the tissue classifica-
tion based on colorectal cancer histology slides, while Organ-
MNIST {Axial,Coronal,Sagittal} [44] are organ classifications
based on 3 types of 2D images formed by 3D computed to-
mography (CT) images. We observe that the relatedness be-
tween PathMNIST and OrganMNIST {Axial,Coronal,Sagittal},
respectively, are all smaller than that between OrganM-
NIST {Axial,Coronal,Sagittal}.

tors are designed to accommodate the transformation from
a continuous space to a discrete space. Finally, a fit-
ness re-evaluation method is introduced to alleviate fitness
fluctuations over the generations resulting from parameter
sharing and the mini-batch gradient descent based train-
ing to keep promising solutions. We present thorough
experimental evaluations on different datasets, including
medical classification benchmarks (PathMNIST, OrganM-
NIST {Axial,Coronal,Sagittal}) and popular image classi-
fication benchmarks (CIFAR-10, CIFAR-100, ImageNet),
demonstrating the efficacy and the value of each compo-
nent of EMT-NAS. Our results demonstrate that, unlike tra-
ditional MTL, it is feasible to search for personalised net-
work architectures for multiple tasks through architectural
knowledge transfer, obtaining better performance and re-
quiring less search time compared with single-task learning.

2. Related Work
Below we summarise the similarities and differences

with our work in the following themes.
Multi-Task Learning is designed to learn a network with
shared representation from multiple tasks in deep learning.
A major challenge in MTL is to balance the joint learn-
ing of all tasks to avoid negative transfer [40], motivated
by [17] to balance the gradient magnitudes by setting the
task-specific weights in the loss. The back-propagation loss
function consists of a linear weighting of the losses for each
task [18], as shown in Fig. 1a, which may additionally in-
clude purpose-specific losses, e.g., the sparsity and sharing
of the architecture [38], or loss of generators [32]. Both
the coefficients in the loss function and the complexity of
the losses affect the final performance of the MTL. In [36],

3644

MTL is considered as multi-objective optimisation, search-
ing for the Pareto optimal solutions to avoid a linear weight-
ing of different losses.

However, all above mentioned algorithms deal with tasks
from the same dataset. In this work, updating of the weight
parameters of the supernet for each task is independent, i.e.,
each task has an independent loss function. Rather than
solving multiple tasks that arise naturally, the tasks in our
MTL setting come from different datasets, or even have
from different data modalities.
Transfer Learning establishes a mapping from the source
domain to the target domain [15]. Model-based trans-
fer learning is shown in Fig. 1b, where the first step pre-
trains the model on the source dataset and the second step
tunes the parameters of the pre-trained model on the target
dataset. During the transfer, the model structure is also ad-
justed to adapt it to the target task [22]. Note that in the pro-
posed framework, the architectural, rather than the weights
parameters, is shared.
Neural Architecture Search has been shown to be ef-
fective in the search for network architectures for specific
tasks. Three main search strategies have been adopted in
NAS, namely reinforcement learning (RL) [6, 53, 57], evo-
lutionary algorithms (EAs) [20, 24, 26, 30, 39], and gradi-
ent descent (GD) [25, 41, 43, 45]. With the help of param-
eter sharing [28], the performance of new neural architec-
tures can be evaluated without training from scratch [31].
It should be pointed out that while parameter sharing can
greatly reduce the computation time, it may lead to inaccu-
rate performance assessments of candidate submodels [42]
and so-called multi-model forgetting, when multiple mod-
els are subsequently trained [2]. Although parameter shar-
ing combined with the mini-batch gradient descent method
can further reduce the computation time, promising candi-
date neural architectures may get lost in evolutionary NAS
due to strong fluctuations in performance caused by the
mini-batch gradient descent method [50]. Therefore, in our
work, a fitness re-evaluation method is proposed to alleviate
fitness fluctuations in population iterations.
Evolutionary Multi-Tasking is proposed for solving nu-
merical optimisation problems. When the function land-
scapes or optimal solutions of two tasks have a certain de-
gree of similarity, promising candidate solutions belonging
to one task may be helpful for the other task. Evolution-
ary multi-tasking has been extended to multi-objective [27],
constrained multi-objective [29], and surrogate-assisted for
expensive problems [21], and has been show to be effec-
tive for practical problems such as hyperspectral band selec-
tion [10] and multi-scene scheduling [49]. In this work, we
use evolutionary multi-tasking for the first time to transfer
architectural knowledge across multiple tasks from differ-
ent datasets, and block-based crossover and bit-based muta-
tion are designed to accommodate the transformation from

a continuous space to a discrete space.

3. Proposed Work
3.1. Evolutionary Multi-Tasking Optimization

In an MFEA, each individual in the population belongs
to only one of the tasks to be optimized, and knowledge
transfer between tasks is realized with crossover at a prob-
ability between individuals belonging to different tasks. A
multi-tasking optimization problem consisting of K single-
objective minimization tasks can be formulated as follows:

{x∗
1,x

∗
2, . . . ,x

∗
K} = {argminf1(x1), argminf2(x2),

. . . , argminfK(xK)} (1)

where fk(xk), k = 1, 2, . . . ,K is the k-th task. x∗
k =

(x∗
k,1, x

∗
k,2, . . . , x

∗
k,DM

), k = 1, 2, . . . ,K is the optimal so-
lution of the k-th task, DM is the dimension of the k-th
task.

3.2. Search Space and Architecture Encoding

To facilitate the transfer of architectural knowledge be-
tween multiple tasks, the same search space is used for mul-
tiple tasks, i.e., the candidate architectures are consistent
for each task. Similar to [57], the search space is based
on normal and reduced cells. And the optional operations
in each block include depthwise-separable convolution, di-
lated convolution, max pooling, average pooling and iden-
tity. The chromosome of each individual encodes the struc-
ture of the block, i.e., four integer bits (the first two encod-
ing the inputs, and the last two the operation) represent a
block. The coding of the five blocks constitutes a cell cod-
ing. Since two types of cells are used, 40 integers in total
are used to represent each neural architecture. More details
can be found in Supplementary Material A.

3.3. EMT-NAS

The overall framework of the proposed EMT-NAS is pre-
sented in Fig. 3, where an evolutionary algorithm searches
for optimal neural architectures for two different tasks at the
same time. The main components of EMT-NAS are in the
upper panel of Fig. 3, which is composed of randomly gen-
erated initial population, offspring generation by means of
crossover and mutation according to the parents’ skill fac-
tor τ (see Section 3.4), and a top K selection for each task
as the environmental selection. The full pseudo code and a
detailed description of EMT-NAS can be found in Supple-
mentary Material B.

Each task has a set of supernet weights that do not af-
fect each other. Sampled training is a method for contin-
uous updating of the supernet weights on the training set
based on weight sharing. For each mini-batch of the training
data of each task at one epoch, one individual (represent-
ing one candidate architecture) belonging to this task will

3645

Figure 3. The flow chart of EMT-NAS, where two tasks are used as an example. The difference with the single-tasking evolutionary
algorithm is that each individual in the population may belong to the same or different tasks. In addition, each task has a separate set of
weights for the supernet. The lower panel shows the sampled training based on a weight sharing method on the training set and the sampled
evaluation based on a fitness re-evaluation method on the validation set. Best viewed in colour.

Figure 4. Block-based crossover and bit-based mutation.

be randomly sampled and trained on the mini-batch using
the gradient based method. After training, sampled evaluat-
ing computes the fitness of the individual by calculating the
classification accuracy on the validation data of the same
task. Each individual is evaluated once on a random mini-
batch of the corresponding task validation dataset. Hence,
the computational cost of training the weighting parameters
and evaluating the fitness can be significantly reduced.

3.4. Offspring Generation

Transfer of useful knowledge between tasks is the key
reason for EMT-NAS to enhance its performance. As
in MFEAs, knowledge transfer in EMT-NAS is realised
through simultaneously evolving neural architectures for
multiple related tasks in one population. More specifically,
knowledge exchange across the tasks is achieved by per-
forming crossover on individuals optimizing architectures
on different tasks.

In reproduction, two parents will be selected each time at
a probability proportional to the individuals’ fitness value.
That is, the greater the fitness of an individual, the larger
chance it will have to produce offspring. If the two selected
parents belong to the same task, then crossover will be car-

ried out to generate two offspring, both inheriting the same
skill factor τ of their parents. In addition, mutation will also
be applied to the two offspring to promote exploration.

When the pair of the selected parent individuals belong
to different tasks, two different procedures will be carried
out according to a predefined probability, called random
mating probability (RMP). If a randomly generated number
between 0 and 1 is less than RMP , a crossover operator
will be applied to the two parents to generate two offspring,
which are then mutated. The two tasks of the parents will be
randomly assigned to one of the offspring at an equal prob-
ability. At a probability of 1-RMP , only mutations will be
performed on each of the two parents to generate two off-
spring. Consequently, the skill factor τ of each offspring
is the same as that of its parent. The probability thresh-
old RMP is a parameter to be specified by the user and a
sensitivity analysis of RMP will be provided in the exper-
imental Section 4.6.

Illustrative examples of the crossover and mutation are
given in Fig. 4. For clarity, we only show a segment of the
parent chromosome consisting of three blocks. There is a
strong correlation between the input source and the oper-
ation of the connection, which has a great impact on the
performance of the network structure [50]. In block-based
crossover, the parent chromosomes p1 and p2, in blocks,
are swapped at less than the crossover probability CP to
generate offspring q1 and q2. In bit-based mutation, the par-
ent chromosome qi, in bits, is randomly replaced from the
candidate space at less than the mutation probability MP ,
generating offspring oi. This is done by changing the in-
put source or operation to improve the performance of the
network architecture.

3646

(a) (b)

(c) (d)
Figure 5. Empirical evaluations of the proposed fitness re-
evaluation method on CIFAR-10 and CIFAR-100. In the figures,
the red dashed lines denote the estimated fitness based on the sam-
pled evaluation without re-evaluation ((a) and (b)) and with the
proposed re-evaluation ((c) and (d)), while the blue solid lines de-
note the true fitness based on an accurate evaluation using all vali-
dation data. From these results, we can see that strong fluctuations
in the true fitness of the network have been reduced when the pro-
posed fitness re-evaluation is adopted.

3.5. Fitness Re-evaluation

There are two important reasons why the fitness re-
evaluation method was proposed. First, when using the
mini-batch gradient descent training, the sign of the gradi-
ent resulting from each mini-batch data may be inconsistent.
Consequently, the performance of a network estimated us-
ing the sampled evaluating may fluctuate strongly over the
generations. Second, such fluctuations are made even more
serious because of parameter sharing adopted in training.

To examine this issue more closely, we plot the fitness
(the validation accuracy) of the best individual from a typi-
cal run of evolutionary NAS on CIFAR-10 and CIFAR-100
simultaneously in Figs. 5a and 5b. We can observe that
there is a big difference between the estimated and true
validation accuracies and the true performance fluctuates
strongly over the generations. As a result, promising indi-
vidual may get lost because of the strong fitness fluctuations
and inaccurate sampled evaluations.

To alleviate strong fluctuations in the fitness, we propose
to use the fitness of the corresponding parent individual to
modify the fitness of the offspring so that the increase or
decrease will become less dramatic. Thus, the fitness of an
offspring is modified as follows:

F = Fp + (Fo − Fp)× logT t (2)

where, Fo, Fp, F are the fitness value of the offspring, the
fitness of the parent that generates the offspring, and the
modified fitness of the offspring; t = 2, · · · , T is the current
generation, and T is the maximum number of generations.
We call the modification of the offspring fitness according
to Equation (2) fitness re-evaluation.

The logarithmic function in Eq. 2 is based on T , which
increases to 1.0 as t increases. Thus, Fo − Fp will be pe-
nalised by the logarithm function. Now we re-run the evolu-
tionary NAS on the two tasks (CIFAR-10 and CIFAR-100)
by applying the fitness re-evaluation method, and the true
fitness as well as the re-evaluated fitness using the sam-
pled validation of the best individual are plotted in Figs. 5c
and 5d. From these results, we can see that the individual’s
true fitness value improves more steadily when the proposed
fitness re-evaluation method is adopted, indicating that the
modified fitness evaluated based on the sampled evaluating
can better reflect the true fitness of the individuals.

4. Experimental Results
4.1. Experimental Settings

To validate the effectiveness of our approach, we set
single-tasking (evolutionary single-tasking based NAS) as
the baseline. Most of the experiments are conducted
on MedMNIST [44], which is a collection of 10 pre-
processed medical datasets. We selected the PathMNIST
dataset of colon pathology, OrganMNIST Axial, Oragn-
MNIST Coronal, and OrganMNIST Sagittal through dif-
ferent processing methods in abdominal CT along three
axes. We use these four tasks to construct multitasks with
task numbers of 2, 3 and 4, respectively. We also con-
duct experiments on CIFAR-10 and CIFAR-100 [19], and
then transfer the searched best network architecture to Ima-
geNet [34] to explore its effectiveness. For the sake of sim-
plicity, we denote PathMNIST, OrganMNIST Axial, Orag-
nMNIST Coronal, OrganMNIST Sagittal, CIFAR-10, and
CIFAR-100 as Path, Organ A, Organ C, Organ S, C-10,
and C-100. Similar to [57], the cross-entropy loss function
is used for the six tasks and the parameter settings are pre-
sented in Table 1 for the search phase. For fair comparisons,
the same parameters as in EMT-NAS are maintained for sin-
gle tasks during the search phase and retraining phase. All
experiments are statistical results of five independent runs
with an exception to the results on ImageNet, where all ex-
periments were run once only on 1 Nvidia GeForce RTX
2080Ti due to limited computational resources. More de-
tails are given in Supplementary Material C.

4.2. Medical Multi-Tasking

Here, we evaluate the network architectures searched by
Single-Tasking and EMT-NAS on the medical multitasking.
The results when the number of tasks varies from two to

3647

Table 1. A summary of hyper-parameter settings.
Categories Parameters Settings (MedMNIST/CIFAR)

Search space Initial channels 48/20
Repetitions of cells 1

Gradient descent

Batch size for training 128
Batch size for validation 1000

Weight decay 1.00E-04
Dropout 0.1

Momentum 0.9
Initial learning rate 0.1

Learning rate schedule Cosine Annealing

Search strategy

Population size 20
Generations 100/300

Random mating probability 0.3
Crossover probability 1.00
Mutation probability 0.02

Table 2. Comparison on MedMNIST.

Index # Tasks Model Path
(%)

Organ A
(%)

Organ C
(%)

Organ S
(%)

GPU
Days
(%) ↓

1 ResNet-18 [11] 84.4 92.1 88.9 76.2
1 ResNet-50 [11] 86.4 91.6 89.3 74.6
1 Auto-skearn [8] 18.6 56.3 67.6 60.1
1 AutoKeras [16] 86.4 92.9 91.5 80.3
1 AutoML [56] 81.1 81.8 86.1 70.6
1 SI-EvoNAS [50] 90.5±0.7 93.0±0.3 91.8±0.4 80.1±0.3
1 Single-Tasking

(Baseline) 87.4±2.9 94.0±0.7 91.5±0.8 80.7±0.5 +00.0
1⃝ 2 EMT-NAS (Ours) 91.6±0.5 95.1±0.2 -11.0
2⃝ 2 EMT-NAS (Ours) 91.2±0.7 92.3±0.3 -18.4
3⃝ 2 EMT-NAS (Ours) 90.5±0.9 81.5±0.2 -12.8
4⃝ 2 EMT-NAS (Ours) 94.8±0.5 92.2±0.5 -28.4
5⃝ 2 EMT-NAS (Ours) 95.0±0.3 81.3±0.5 -23.2
6⃝ 2 EMT-NAS (Ours) 92.2±0.3 81.5±0.2 -40.1
7⃝ 3 EMT-NAS (Ours) 95.3±0.3 92.3±0.2 81.7±0.4 -36.0
8⃝ 3 EMT-NAS (Ours) 91.4±0.3 92.3±0.3 81.8±0.3 -29.9
9⃝ 3 EMT-NAS (Ours) 91.9±0.2 95.0+0.2 81.4±0.3 -23.3
10⃝ 3 EMT-NAS (Ours) 91.7±0.6 95.0±0.4 92.5±0.2 -25.1
11⃝ 4 EMT-NAS (Ours) 91.2±0.6 94.9±0.3 92.2±0.3 81.4±0.5 -31.4

four in comparison to the corresponding single tasks are
given in Table 2. In the top rows of the table, the results
of the first five results on the four medical datasets taken
from [44] are listed. SI-EvoNAS [50] is a state-of-the-art
evolutionary NAS algorithm. Single-Tasking is an evolu-
tionary single-tasking algorithm that we have implemented
as the baseline. In column GPU Days (%), the reduction
in the runtime of EMT-NAS relative to the corresponding
Single-Tasking are listed as a percentage.

From Table 2, it is clear that the classification accuracy of
the neural architectures found by EMT-NAS is higher than
the networks found by all single-tasking NAS on the cor-
responding tasks, and the search time is reduced by 11%-
40% compared to the baseline. This demonstrates that it is
possible to improve the performance of each task through
architectural knowledge transfer only. In addition, the best
classification accuracy of the network architecture has been
obtained when the number of tasks is three. This shows
that which tasks and how many tasks are formulated as a
multi-tasking problem will influence the performance of al-
gorithm in solving each of the individual tasks.
Multi-tasking with the same data modality: EMT-NAS
(numbered 4⃝, 5⃝, 6⃝, 7⃝) searched for network architec-
tures with a higher classification accuracy than those found
by Single-Tasking. As described in [44], crop 2D images
from the center slices of the 3D CT bounding boxes in ax-
ial/coronal/sagittal views (planes) are obtained in datasets

Organ A, Organ C, and Organ S. Therefore, these datasets
are correlated, and it is reasonable to make use of the com-
mon knowledge of these datasets to improve classification
accuracy. In addition, 7⃝ VS 4⃝, 5⃝ and 6⃝, respectively,
have the best performance on Organ A, Organ C, and Or-
gan S. This demonstrates that the three tasks enhance each
other to a greater extent than two by two. Therefore, archi-
tectural knowledge transfer works well for different datasets
of the same data modality.
Multi-tasking with different data modalities: The clas-
sification accuracy of EMT-NAS (numbered 1⃝, 2⃝, 3⃝,
8⃝, 9⃝ and 10⃝) are slightly higher than that of EMT-NAS

(numbered 4⃝, 5⃝ and 6⃝) on Organ A, Organ C, and Or-
gan S datasets, respectively. From [44], we know that Path
is for predicting survival from colorectal cancer histology
slides, which means that Organt A, Organ C, and Organ S
can benefit more from Path. By contrast, EMT-NAS has
transferred different degrees of useful knowledge from Or-
gan A, Organ C, and Organ S, respectively, to Path. From
the table, we can observe that the classification accuracy
of EMT-NAS (numbered 1⃝, 2⃝ and 3⃝) decreases sequen-
tially on PATH. Organ A, Organ C, and Organ S are ob-
tained by different processing methods in abdominal CT
along three axes, so their data characteristics are different.
Clearly, Path and Organ A are most beneficial to each other.
This also corroborates with the task relational analysis in
Fig. 2. Therefore, although these datasets are from differ-
ent data modalities and are weakly correlated, they can still
improve their respective performance through architectural
knowledge transfer.

4.3. CIFAR-10 and CIFAR-100

We again used RSA in Fig. 2 to analyse the task related-
ness between C-10 and C-100, with a task relatedness score
of 0.38. C-100 is made up of 20 classes (each containing
five subclasses), while C-10 is 10 classes. The results show
that ResNet-50, trained on C-100, extracts many different
features from the same image compared to those trained on
C-10. Therefore, C-10 and C-100 are differentiated.

The representative algorithms can be roughly divided
into four categories, namely manually designed, RL-based,
GD-based, and EAs-based. The comparative results on C-
10 and C-100 are listed in Table 3. Note that all algorithms
are meant for single-tasking search, i.e., they either search
for an optimal network architecture on C-10 and C-100,
respectively, or search on C-10 and then the found archi-
tectures are transferred to C-100. By contrast, EMT-NAS
searches for optimal neural architectures simultaneously on
C-10 and C-100, and therefore, the GPU days of EMT-NAS
is the total time for searching for both architectures.

In Table 3, EMT-NAS stacks normal blocks twice, while
EMT-NAS† stacks three times. EMT-NAS searched the net-
work architecture’s on C-10 and C-100 with a higher clas-

3648

Table 3. Comparison on C-10 and C-100. ∗ indicates that the same
network architecture is used on both C-10 and C-100, so their GPU
days for searching are the same. † indicates normal cell stacking
three times for better performance.

Model Search
Method

GPU
Days

Params
(M)

C-10
(%)

Params
(M)

C-100
(%)

Wide ResNet [47] manual − 36.5 95.83 ∗ 79.50
DenseNet [14] manual − 27.2 96.26 ∗ 80.75
MobileNetV2 [35] manual − 2.1 94.56 ∗ 77.09
PNAS [23] SMBO 150 3.2 96.59±0.09 ∗ 80.47
ENAS [28] RL 0.45 4.6 97.11 ∗ 80.57
NASNet-A [57] RL 2000 3.3 97.35 − −
Block-QNN-Faster [53] RL 0.8 3.9 96.43 ∗ 81.79
DARTS [25] GD 1.5 3.3 97.00±0.14 ∗ 79.48±0.31
SNAS [41] GD 1.5 2.9 97.02 − −
large-scale Evo [31] EA 2750 5.4 94.6 40.4 77
Hier-EA [24] EA 300 64 96.25±0.12 − −
Amoebanet-A [30] EA 3150 3.2 96.66±0.06 ∗ 81.07
AE-CNN [39] EA 27/36 2 95.7 5.4 79.15
SHEDA-CNN [20] EA 0.58/0.97 10.88 96.36 18.64 78.84
Single-Tasking (Baseline) EA 0.46 1.83 96.24±0.20 1.68 79.70±0.44
Single-Tasking† (Baseline) EA 0.46 2.41 96.64±0.18 2.19 80.82±0.71
EMT-NAS (Ours) EA 0.42 2.17 96.73±0.15 2.23 81.86±0.10
EMT-NAS† (Ours) EA 0.42 2.91 97.04±0.04 2.97 82.60±0.38

sification accuracy than Single-Tasking (baseline), demon-
strating that architecture knowledge transfer can effectively
improve performance on C-10 and C-100. Compared to
other NAS algorithms, our approach achieves better perfor-
mance and more compact network architectures searched
on C-10 and C-100 through architectural knowledge trans-
fer, except for ENAS and NASNet-A on C-10. However, the
models found by EMT-NAS have only two-thirds the num-
ber of parameters of models found by ENAS. On the other
hand, NASNet-A consumes about 4,700 times more GPU
days than EMT-NAS. These indicate that our approach can
achieve a good performance-complexity trade-off. We also
analysed two baselines for joint training (shared or unshared
network architectures) in Supplementary Material D. The
performance of the algorithms has degraded as data from
different tasks are used to update the same supernet.

4.4. Transferability to ImageNet

As done in [25], we transferred the best network archi-
tectures found on C-10 and C-100 to ImageNet for training
from scratch, to further validate the transferability of the ar-
chitectures searched by EMT-NAS. The results comparing
EMT-NAS with 15 models (or their variants) on ImageNet
are given in Table 4. EMT-NAS-4-C-100 has a lower num-
ber of model parameters (2.49M) than all compared algo-
rithms, while it has a higher top-1 accuracy (74.25%) ex-
cept for MoblieNet-V3, MobileNetV2-1.0+CA, RepVGG-
A1, AutoSpace, PC-DARTS and MUXNet-m. For better
performance, we change the number of normal cells stacked
from two to three to get EMT-NAS-C-100†. The top-1 ac-
curacy of EMT-NAS-C-100† is 75.44%, which again sur-
passes the accuracy of the rest of the algorithms, and the
number of model parameters is 3.25M. This demonstrates
that EMT-NAS has good transferability between the net-
work architectures searched on C-10 and C-100.

Table 4. Comparisons on ImageNet. † indicates normal cell stack-
ing three times for better performance.

Model Top-1
(%)

Top-5
(%)

Params
(M)

GPU
Days

Search
Method

ShuffleNet 2.0 [51] 73.7 − 5.4 − manual
MoblieNet-V3 [13] 75.2 − 5.1 − manual
MobileNeXt-0.75 [54] 72.6 − 2.5 − manual
MobileNetV2-1.0+CA [12] 74.3 − 3.95 − manual
RepVGG-A1 [5] 74.46 − 12.78 − manual
PNAS [23] 74.2 91.9 5.1 225 SMBO
NASNet-A [57] 74.0 91.6 5.3 2000 RL
DPP-Net-Panacea [6] 74.2 91.79 4.8 8 RL
AutoSpace [55] 75.3 − 4.3 8.33 RL
DARTS [25] 73.3 91.3 4.7 4 GD
SNAS [41] 72.7 91.8 4.3 1.5 GD
PC-DARTS [43] 74.9 92.2 5.3 0.1 GD
HourNAS-C [45] 74.1 91.6 4.8 0.1 GD
Amoebanet-A [30] 74.5 92.0 5.1 3150 EA
MUXNet-m [26] 75.3 92.5 3.4 176 EA
Single-Tasking-C-10 (Baseline) 73.18 91.22 2.41 0.23 EA
Single-Tasking-C-100 (Baseline) 72.88 91.06 2.25 0.22 EA
Single-Tasking-C-10† (Baseline) 74.59 92.09 3.15 0.23 EA
Single-Tasking-C-100† (Baseline) 74.11 91.86 2.97 0.22 EA
EMT-NAS-C-10 (Ours) 73.83 91.63 2.38 0.42 EAEMT-NAS-C-100 (Ours) 74.25 91.80 2.49
EMT-NAS-C-10† (Ours) 75.11 92.39 3.13 0.42 EAEMT-NAS-C-100† (Ours) 75.44 92.55 3.25

4.5. Ablation Studies

To verify the effectiveness of the evolutionary multi-
tasking NAS algorithm and the fitness re-evaluation
method, four algorithms are compared, namely evolu-
tionary single-Tasking NAS, which serves as the base-
line (denoted as Single-tasking in Table 5), evolutionary
single-tasking NAS with the fitness re-evaluation method,
called Single-Tasking+Reeval, evolutionary multi-tasking
NAS without fitness re-evaluation, called Multi-Tasking,
and evolutionary multi-tasking NAS with the fitness re-
evaluation method, denoted as Multi-Tasking+Reeval.
Evolutionary Multi-Tasking: By comparing the results
of Single-tasking and Multi-Tasking (3⃝ vs 1⃝ and 4⃝ vs
2⃝), evolutionary multi-tasking NAS can improve the per-

formance on both C-10 and C-100, confirming the effective-
ness of knowledge transfer when simultaneously searching
for the optimal neural architectures on similar tasks.
Fitness Re-Evaluation: By comparing the results with and
without fitness re-evaluation (4⃝ vs 3⃝ and 2⃝ vs 1⃝), we can
see that the proposed fitness re-evaluation method improves
the performance on both C-10 and C-100. This confirms
that the fitness re-evaluation method is effective in enhanc-
ing the performance by alleviating fitness fluctuations in the
search based on sampled evaluations.
Search Efficiency: We take the total runtime of Single-
Tasking, and count the percentage increase or decrease of
the other three algorithms relative to it. We also calcu-
late three parts of the runtime, including time for training
model parameters on the training dataset, time for evaluat-
ing model performance on the validation dataset, and time
for searching. First, we note that the time taken by the
evolutionary multi-tasking is reduced by 50% compared to
single-tasking(3⃝ vs 1⃝ and 4⃝ vs 2⃝). Because the compu-

3649

Table 5. Comparison of evolutionary single- and multi-tasking optimisation with/without fitness re-evaluation on CIFAR-10 and -100.

Index Algorithm Task 1 Task 2 Total
Time
(%) ↓

Training
Time
(%) ↓

Evaluation
Time
(%) ↓

Search
Time
(%) ↓

Average
Params

(M)

Average
FLOPs

(M)
C-10
(%)

Params
(M)

Transfer
(%)

C-100
(%)

Params
(M)

Transfer
(%)

1⃝ Single-Tasking 96.23±0.20 1.83 96.07±0.25 79.70±0.44 1.68 78.95±0.60 +0.0 +0.0 +0.0 +0.0 1.83 334
2⃝ Single-Tasking+Reeval 96.29±0.25 1.74 96.26±0.18 80.48±0.28 1.90 78.77±0.65 -5.1 -4.1 -15.1 -1.4 1.81 323
3⃝ Multi-Tasking 96.49±0.16 2.02 − 80.68±0.43 2.03 − -2.1 +3.8 -37.4 -49.4 2.06 382
4⃝ Multi-Tasking+Reeval 96.73±0.15 2.17 − 81.86±0.10 2.23 − -8.7 -4.0 -35.9 -51.6 1.97 355

tational complexity of the Evolutionary Multi-Tasking and
Single-Tasking algorithms is almost the same, except for
the time spent on training and evaluation. Second, 3⃝ vs 1⃝
and 4⃝ vs 2⃝, the time spent on the evaluation is reduced
by about 36%. The population size and the number of gen-
erations are the same for single and multi-tasking, i.e., the
number of fitness evaluations is the same, so that the to-
tal time to optimise multiple tasks simultaneously will be
less than the sum of the runtimes when the tasks are opti-
mised one by one. Finally, 4⃝ vs 3⃝ and 2⃝ vs 1⃝ with a
small percentage reduction in the training time. To investi-
gate this further, we reproduce the sampled training process
and chose two model metrics, namely the number of param-
eters and the number of floating point operations (FLOPs).
Specifically, when each network architecture was trained
once, two metrics were recorded until five runs of the al-
gorithm have stopped, and then averaged and listed in the
column Average Params (M) and Average FLOPs (M) of
Table 5, respectively. The results show a small reduction in
the average number of parameters and the average FLOPs
for both 4⃝ vs 3⃝ and 2⃝ vs 1⃝. It is assumed that the fit-
ness re-evaluation method allows the algorithm to favour
network architectures consisting of operations with a small
number of parameters or a low computational complexity
in the search process. This may explain the fact that intro-
ducing the fitness re-evaluation method can reduce the time
spent by the model on the training set by a small amount.
Overall, EMT-NAS consumes less runtime than its single-
task counterparts.
Model Transferability: We transferred the network ar-
chitectures that Single-tasking and Single-tasking+Reeval
searched on C-10 and C-100, respectively, to C-100 and C-
10 for retraining. The results are presented in column Trans-
fer (%), which show that through transfer learning, the per-
formance of the network architectures on the new dataset
is much lower than that of the network architectures ob-
tained by evolutionary multi-tasking NAS (Multi-Tasking
and Multi-Tasking+Reeval) search. Therefore, evolution-
ary multi-tasking NAS is more competitive than evolution-
ary single-tasking NAS with transfer learning.

4.6. Sensitivity Analysis

In EMT-NAS, RMP is a key parameter that con-
trols the degree of knowledge transfer between tasks.
Here, we set the random mating probability RMP =
0, 0.1, 0.2, 0.3, 0.4, 0.5 and note that when RMP = 0, two

Table 6. Comparison of EMT-NAS when random mating proba-
bility is set to 0, 0.1, 0.2, 0.3, 0.4, and 0.5.

RMP Task 1 Validation
ACC (%)

Test
ACC (%) Task 2 Validation

ACC (%)
Test

ACC (%)
0 C-10 88.36±0.69 96.28±0.09 C-100 61.48±1.65 80.31±0.40

0.1 C-10 87.36±1.60 96.48±0.18 C-100 58.85±4.10 80.46±0.71
0.2 C-10 88.32±1.02 96.52±0.18 C-100 59.67±0.47 81.11±0.54
0.3 C-10 88.76±1.05 96.73±0.15 C-100 61.69±2.15 81.86±0.10
0.4 C-10 88.09±1.25 96.49±0.18 C-100 61.27±3.09 81.26±0.27
0.5 C-10 88.52±1.16 96.52±0.17 C-100 61.42±2.57 81.15±0.31

single tasks run in the same population without any knowl-
edge transfer between the tasks. Table 6 shows that the val-
idation and test accuracies increase as RMP increases in
the beginning, and then decrease as RMP becomes larger,
indicating that too much or too little knowledge transfer be-
tween tasks can degrade the performance of EMT-NAS. The
best performance was achieved on the validation set and test
set when RMP = 0.3.

We also analysed the influence of the population size,
crossover and mutation probabilities, and the number of
generations on the performance. The results are presented
in Supplementary Material E.

5. Conclusion

In this work, evolutionary multi-tasking is applied to
NAS for the first time. Extensive experiments have demon-
strated that for multiple classification tasks from different
datasets (data modalities), architectural knowledge transfer
and fitness re-evaluation method allow EMT-NAS to out-
perform each task obtained simultaneously over a single
task, and that the runtime of EMT-NAS is less than the
sum of the runtimes of solving multiple single tasks inde-
pendently. Although this work achieves implicit architec-
tural knowledge transfer, more precise, explicit knowledge
transfer between tasks in evolutionary multi-tasking NAS is
desirable and will be investigated in the future.

Acknowledgment

This work is supported by National Natural Science
Foundation of China (62136003, 61988101), the Pro-
gramme of Introducing Talents of Discipline to Universities
(the 111 Project) under Grant B17017, Fundamental Re-
search Funds for the Central Universities (222202317006)
and Shanghai AI Lab. Y. Jin is supported by an Alexander
von Humboldt Professorship for AI endowed by the Ger-
man Federal Ministry of Education and Research.

3650

References
[1] Shai Ben-David and Reba Schuller Borbely. A notion of task

relatedness yielding provable multiple-task learning guaran-
tees. Machine learning, 73(3):273–287, 2008. 2

[2] Yassine Benyahia, Kaicheng Yu, Kamil Bennani Smires,
Martin Jaggi, Anthony C Davison, Mathieu Salzmann, and
Claudiu Musat. Overcoming multi-model forgetting. In In-
ternational Conference on Machine Learning, pages 594–
603. PMLR, 2019. 3

[3] Rich Caruana. Multitask learning. Machine learning,
28(1):41–75, 1997. 1, 2

[4] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 2

[5] Xiaohan Ding, Xiangyu Zhang, Ningning Ma, Jungong Han,
Guiguang Ding, and Jian Sun. Repvgg: Making vgg-style
convnets great again. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13733–13742, 2021. 7

[6] Jin-Dong Dong, An-Chieh Cheng, Da-Cheng Juan, Wei Wei,
and Min Sun. Dpp-net: Device-aware progressive search for
pareto-optimal neural architectures. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
517–531, 2018. 3, 7

[7] Kshitij Dwivedi and Gemma Roig. Representation similar-
ity analysis for efficient task taxonomy & transfer learning.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12387–12396, 2019.
2

[8] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost
Springenberg, Manuel Blum, and Frank Hutter. Efficient and
robust automated machine learning. Advances in neural in-
formation processing systems, 28, 2015. 1, 6

[9] Abhishek Gupta, Yew-Soon Ong, and Liang Feng. Multi-
factorial evolution: Toward evolutionary multitasking. IEEE
Transactions on Evolutionary Computation, 20(3):343–357,
2015. 2

[10] Chunlin He, Yong Zhang, Dunwei Gong, Xianfang Song,
and Xiaoyan Sun. A multi-task bee colony band selec-
tion algorithm with variable-size clustering for hyperspectral
images. IEEE Transactions on Evolutionary Computation,
2022. 3

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016. 1, 6

[12] Qibin Hou, Daquan Zhou, and Jiashi Feng. Coordinate atten-
tion for efficient mobile network design. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 13713–13722, 2021. 7

[13] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), pages 1314–1324,
2019. 7

[14] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), July 2017. 1, 7

[15] Minbin Huang, Zhijian Huang, Changlin Li, Xin Chen, Hang
Xu, Zhenguo Li, and Xiaodan Liang. Arch-graph: Acyclic
architecture relation predictor for task-transferable neural ar-
chitecture search. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11881–11891, 2022. 3

[16] Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An
efficient neural architecture search system. In Proceedings of
the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 1946–1956, 2019. 1,
6

[17] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task
learning using uncertainty to weigh losses for scene geome-
try and semantics. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 7482–7491,
2018. 2

[18] Apoorv Khattar, Srinidhi Hegde, and Ramya Hebbalaguppe.
Cross-domain multi-task learning for object detection and
saliency estimation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3639–3648, 2021. 2

[19] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 5

[20] Jian-Yu Li, Zhi-Hui Zhan, Jin Xu, Sam Kwong, and Jun
Zhang. Surrogate-assisted hybrid-model estimation of dis-
tribution algorithm for mixed-variable hyperparameters op-
timization in convolutional neural networks. IEEE Transac-
tions on Neural Networks and Learning Systems, 2021. 3,
7

[21] Peng Liao, Chaoli Sun, Guochen Zhang, and Yaochu
Jin. Multi-surrogate multi-tasking optimization of expensive
Problems. Knowledge-Based Systems, 205:106262, 2020. 3

[22] Bingyan Liu, Yifeng Cai, Yao Guo, and Xiangqun Chen.
Transtailor: Pruning the pre-trained model for improved
transfer learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pages 8627–8634, 2021. 3

[23] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 19–34, 2018. 1, 7

[24] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha
Fernando, and Koray Kavukcuoglu. Hierarchical representa-
tions for efficient architecture search. In International Con-
ference on Learning Representations, 2018. 3, 7

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable Architecture Search. In International Confer-
ence on Learning Representations, 2018. 3, 7

[26] Zhichao Lu, Kalyanmoy Deb, and Vishnu Naresh Boddeti.
Muxconv: Information multiplexing in convolutional neu-
ral networks. In Proceedings of the IEEE/CVF Conference

3651

on Computer Vision and Pattern Recognition (CVPR), pages
12044–12053, 2020. 3, 7

[27] Alan Tan Wei Min, Yew-Soon Ong, Abhishek Gupta, and
Chi-Keong Goh. Multiproblem surrogates: Transfer evolu-
tionary multiobjective optimization of computationally ex-
pensive problems. IEEE Transactions on Evolutionary Com-
putation, 23(1):15–28, 2017. 3

[28] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International conference on machine learning,
pages 4095–4104. PMLR, 2018. 3, 7

[29] Kangjia Qiao, Kunjie Yu, Boyang Qu, Jing Liang, Hui Song,
and Caitong Yue. An evolutionary multitasking optimiza-
tion framework for constrained multiobjective pptimization
problems. IEEE Transactions on Evolutionary Computation,
26(2):263–277, 2022. 3

[30] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4780–4789, 2019. 3, 7

[31] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Ku-
rakin. Large-scale evolution of image classifiers. In Interna-
tional Conference on Machine Learning, pages 2902–2911.
PMLR, 2017. 3, 7

[32] Zhongzheng Ren and Yong Jae Lee. Cross-domain self-
supervised multi-task feature learning using synthetic im-
agery. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 762–771, 2018. 2

[33] Sebastian Ruder. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098, 2017. 2

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International Journal of
Computer Vision, 115(3):211–252, 2015. 5

[35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4510–4520, 2018. 1, 7

[36] Ozan Sener and Vladlen Koltun. Multi-task learning as
multi-objective optimization. Advances in neural informa-
tion processing systems, 31, 2018. 2

[37] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European conference on computer vision,
pages 746–760. Springer, 2012. 2

[38] Ximeng Sun, Rameswar Panda, Rogerio Feris, and Kate
Saenko. Adashare: Learning what to share for efficient deep
multi-task learning. Advances in Neural Information Pro-
cessing Systems, 33:8728–8740, 2020. 2

[39] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G Yen.
Completely automated cnn architecture design based on
blocks. IEEE Transactions on Neural Networks and Learn-
ing Systems, 31(4):1242–1254, 2019. 3, 7

[40] Simon Vandenhende, Stamatios Georgoulis, Wouter
Van Gansbeke, Marc Proesmans, Dengxin Dai, and Luc

Van Gool. Multi-task learning for dense prediction tasks: A
survey. IEEE transactions on pattern analysis and machine
intelligence, 2021. 2

[41] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:
Stochastic neural architecture search. In International Con-
ference on Learning Representations, 2018. 3, 7

[42] Jin Xu, Xu Tan, Kaitao Song, Renqian Luo, Yichong Leng,
Tao Qin, Tie-Yan Liu, and Jian Li. Analyzing and miti-
gating interference in neural architecture search. In Inter-
national Conference on Machine Learning, pages 24646–
24662. PMLR, 2022. 3

[43] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel
connections for memory-efficient architecture search. In In-
ternational Conference on Learning Representations, 2019.
3, 7

[44] Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist clas-
sification decathlon: A lightweight automl benchmark for
medical image analysis. In 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI), pages 191–195.
IEEE, 2021. 2, 5, 6

[45] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Jianyuan Guo,
Wei Zhang, Chao Xu, Chunjing Xu, Dacheng Tao, and
Chang Xu. Hournas: Extremely fast neural architecture
search through an hourglass lens. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10896–10906, 2021. 3, 7

[46] Feiyang Ye, Baijiong Lin, Zhixiong Yue, Pengxin Guo,
Qiao Xiao, and Yu Zhang. Multi-objective meta learn-
ing. Advances in Neural Information Processing Systems,
34:21338–21351, 2021. 2

[47] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In British Machine Vision Conference 2016. British
Machine Vision Association, 2016. 7

[48] Amir R Zamir, Alexander Sax, William Shen, Leonidas J
Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:
Disentangling task transfer learning. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 3712–3722, 2018. 2

[49] Fangfang Zhang, Yi Mei, Su Nguyen, Mengjie Zhang, and
Kay Chen Tan. Surrogate-assisted evolutionary multitask ge-
netic programming for dynamic flexible job shop schedul-
ing. IEEE Transactions on Evolutionary Computation,
25(4):651–665, 2021. 3

[50] Haoyu Zhang, Yaochu Jin, Ran Cheng, and Kuangrong Hao.
Efficient evolutionary search of attention convolutional net-
works via sampled training and node inheritance. IEEE
Transactions on Evolutionary Computation, 25(2):371–385,
2020. 3, 4, 6

[51] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 6848–6856, 2018. 1, 7

[52] Yu Zhang and Qiang Yang. An overview of multi-task learn-
ing. National Science Review, 5(1):30–43, 2018. 1, 2

[53] Zhao Zhong, Zichen Yang, Boyang Deng, Junjie Yan, Wei
Wu, Jing Shao, and Cheng-Lin Liu. Blockqnn: Efficient

3652

block-wise neural network architecture generation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(7):2314–2328, 2020. 3, 7

[54] Daquan Zhou, Qibin Hou, Yunpeng Chen, Jiashi Feng, and
Shuicheng Yan. Rethinking bottleneck structure for efficient
mobile network design. In European Conference on Com-
puter Vision, pages 680–697. Springer, 2020. 7

[55] Daquan Zhou, Xiaojie Jin, Xiaochen Lian, Linjie Yang, Yu-
jing Xue, Qibin Hou, and Jiashi Feng. Autospace: Neural
architecture search with less human interference. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 337–346, 2021. 7

[56] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc
Le. Automl for large scale image classification and object
detection. Google AI Blog, 2:2017, 2017. 1, 6

[57] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 8697–
8710, 2018. 3, 5, 7

3653

