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Abstract

This paper presents a framework for efficient 3D clothed
avatar reconstruction. By combining the advantages of the
high accuracy of optimization-based methods and the ef-
ficiency of learning-based methods, we propose a coarse-
to-fine way to realize a high-fidelity clothed avatar recon-
struction (CAR) from a single image. At the first stage, we
use an implicit model to learn the general shape in the
canonical space of a person in a learning-based way, and
at the second stage, we refine the surface detail by esti-
mating the non-rigid deformation in the posed space in an
optimization way. A hyper-network is utilized to generate
a good initialization so that the convergence o f the opti-
mization process is greatly accelerated. Extensive exper-
iments on various datasets show that the proposed CAR
successfully produces high-fidelity avatars for arbitrarily
clothed humans in real scenes. The codes will be released in
https://github.com/TingtingLiao/CAR.

1. Introduction

Clothed avatar reconstruction is critical to a variety of
applications for 3D content creations such as video gaming,
online meeting [54,55], virtual try-on and movie industry [10,
21, 39]. Early attempts are based on expensive scanning
devices such as 3D and 4D scanners, or complicated multi-
camera studios with carefully capturing processes. While
highly accurate reconstruction results can be obtained from
these recording equipment, they are inflexible and even not

*Equal contribution.
†Corresponding author.

feasible in many applications. An alternative is to collect
data using depth sensors [31, 42], which is however still
less ubiquitous than RGB cameras. A more practical and
low-cost way is to create an avatar from an image by RGB
cameras or mobile phones.

Monocular RGB reconstruction [19, 37, 51, 59] has
been extensively investigated and shows promising results.
ARCH [22] is the first method that reconstructs a clothed
avatar from a monocular image. Due to the disadvantage of
depth ambiguity, a number of methods that create an avatar
from a video are proposed to resolve the problem. Most exist-
ing monocular video-based methods [2, 3, 7, 9, 10, 14, 15, 46]
are typically restricted to parametric human body prediction,
which lacks geometry details like cloth surface. How to cre-
ate a high-fidelity avatar from an in-the-wild image, with
consistent surface details is still a great challenge.

In this work, we focus on the shape recovery and pro-
pose an efficient high-fidelity clothed human avatar creation
method from a single image in a coarse-to-fine way. The
method consists of a learning-based canonical implicit model
and an optimization-based normal refinement process. The
canonical implicit model uses the canonical normal inverse
transformed from original space as geometric feature to help
grasp clothing detail of the general shape in canonical space.
Unlike occupancy-based methods [22, 36, 37], we adopt a
Signed Distance Function (SDF) to approximate the canoni-
cal human body surface, which gains advantages in learning
the human body in the surface level instead of the point
level, so that the reconstruction accuracy is improved. In
the normal refinement process, a SDF is learned to approxi-
mates the target surface in the posed space by enforcing its
surface normal closed to the predicted normal image. Com-
pared with mesh-based refinement, our method can obtain
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(a) Input (b) Posed Reconstruction (c) Canonical Reconstruction (d) Reposed

Figure 1. Images to avatars. Given an image of a person in an unconstrained pose (a), our method reconstructs 3D clothed avatars in both
original posed space (b) and canonical space (c) and can repose the human body from the canonical mesh (d).

more realistic results without artifacts due to the flexibility
of implicit representation. Moreover, to learn the SDF of the
normal refinement process efficiently, we propose a meta-
learning-based hyper network for parameter initialization to
accelerate the convergence of the normal refinement process.

Extensive experiments have been conducted on MVP-
Human [60] and RenderPeople [1] datasets. Both qualita-
tive and quantitative results demonstrate that our proposed
method outperforms related avatar reconstruction methods.
The main contributions are summarized as follows:

• We propose a coarse-to-fine framework for efficient
clothed avatar reconstruction from a single image.
Thanks to the integration of image and geometry fea-
tures, as well as the meta-learning, it achieves high-
fidelity clothed avatar reconstruction efficiently.

• We design the canonical implicit regression model and
the normal refinement process. The former fuses all
observations to the canonical space where the general
shape of a person is depicted, and the latter learns pose
dependent deformation.

• Results validate that our method could reconstruct high-
quality 3D humans in both posed and canonical space
from a single in-the-wild image.

2. Related Work
3D Clothed Human Reconstruction. 3D clothed human re-
construction [4,24–27,44,51] from multi-view or even a sin-
gle image has achieved great progress in recent years. Saito
et al. [36] introduce Pixel-Aligned Implicit Function (PIFu),
which formulates an implicit function using pixel-aligned im-
age features and points the depth to obtain the human body’s
occupancy field for the first time. However, PIFu cannot
preserve high-frequency details like cloth wrinkles and then
the generated surfaces tend to be smooth. To address this
issue, PIFuHD [37] proposes a multi-level framework to re-
construct high-fidelity clothed humans from high-resolution

normal images. Despite impressive results, both PIFu and
PIFuHD show poor robustness on in-the-wild images with
out-of-distribution poses. Some works [8, 19, 50, 51, 58] try
to tackle this problem by utilizing the human body prior to
learn 3D semantic information. The combination of explicit
parametric models and implicit representations enables the
model to be more robust to out-of-distribution poses. For ex-
ample, GeoPIFu [19] and PaMIR [58] extract voxel-aligned
semantic features from SMPL [29] body to make the model
more robust to pose variation. Recently, Xiu et al. [51] find
that these methods are sensitive to the global pose, due to
their 3D convolutional encoders. ICON [51] uses local fea-
tures including normal and signed distance to estimate the
occupancy value of a query point. PHORHUM [5] addi-
tionally estimates the albedo and global scene illumination,
hence enabling relighting. While impressive results can be
obtained from existing methods, such approaches reconstruct
static 3D humans which cannot be animated.
Avatar Reconstruction. Many works [11, 12, 38, 47] use
scanning devices to obtain 4D scans and fuse them into an
animatable avatar. Similarly, human performance capture ap-
proaches [17, 18, 28, 53, 56] use a pre-scanned template and
track per-frame shape deformations. Nevertheless, all these
methods require expensive and unportable capture devices.
In contrast, RGB monocular camera-based avatar reconstruc-
tion gains more popularity in recent years due to its low cost
and convenience. The methods can be roughly categorized
into optimization-based and learning-based ones.

The optimization-based methods focus on overfitting an
avatar from a video of a specific moving subject. Early works
[13, 14, 43, 48] are based on visual hulls using silhouettes
from multiple views to obtain the visible areas of the cap-
tured person. The concavity problem is changeable and diffi-
cult to handle. After that, researchers [2, 3, 7, 10, 34, 39, 49]
attempt to model the geometry on top of parametric mod-
els with vertex offsets. The mesh representation has a fixed
topology which is insufficient to recover high-quality results,
especially on loose clothes such as skirts and dresses. Unlike
meshes, implicit representations are more powerful to help
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Figure 2. Framework of CAR. Given an RGB image I, we first estimate its SMPL body M and the normal map N . The canonical implicit
model then takes N and body pose as input to estimate a canonical SDF field. Then, the normal refinement process warps it to the posed
space and generates a high-fidelity clothed avatar reconstruction.

recover detailed 3D shapes with arbitrary topology. NeRF-
based methods [33, 52, 57] optimize a goal using conditions
on articulated cues. Jiang et al. [23] further combine the ex-
plicit and implicit representations to reconstruct high-fidelity
geometry. However, the optimization process in these meth-
ods is time-consuming and inefficient in real applications.

Comparatively, the learning-based methods are more effi-
cient in the prediction process. ARCH [22] is the first work
to propose an end-to-end learning-based framework to esti-
mate a canonical avatar from a single image. It computes the
Radial Basis Function (RBF) distance between query points
to body landmarks as geometric features. ARCH++ [20] em-
ploys Pointnet++ [35] as a geometry encoder to extract hu-
man body prior information. However, the geometric features
leveraged from a naked body make the recovered surface
lose details. The human body prior provides pose informa-
tion which is helpful for reconstructing 3D humans in the
original posed space (e.g. ICON), but has a minor effect for
canonical shape recovery. The geometry cues such as normal
are supposed to be more important for clothed avatar recon-
struction. Different from ARCH and ARCH++, We utilize
the canonical normal transformed from the original space to
help preserve high-frequency details.

3. Method
Figure 2 shows the framework of the clothed avatar re-

construction (CAR) method. Given an image, the front and

back normal images and a SMPL body are simultaneously
obtained by the body-guided normal prediction model de-
scribed in [51]. In the first stage, the canonical implicit model
takes the predicted normal image as input and recover a
coarse human body in canonical space. In the second stage,
the coarse mesh surface is implicitly refined by a SDF Net-
work.

3.1. Canonical Implicit Model

The canonical implicit model aims to reconstruct the
general shape of a subject in the canonical space. Previous
methods [20, 22] estimate an occupancy field by learning
a classification task that whether a 3D point is inside or
outside a target human body. This scheme is unfriendly for
animatable avatar reconstruction tasks where the mapping
between posed space and canonical space is required. While
in practice, imperfect mapping is unavoidable and there is
always a gap between estimated poses and ground truth
poses. As a result, the occupancy based methods tend to
classify the points inside a human body as background when
they are erroneously projected to the background area in a
2D image.

Unlike the occupancy based methods which are point
level, our method adopts a signed distance function (SDF) to
approximate the target human body in a surface level, which
is more robust to local mapping noises. Unlike occupancy,
SDF aims to find an optimal surface where the surface nor-
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mal is closest to the target surface normal. Instead of using
the classification loss, CAR constrains points’ gradients and
surface normal as in [16]. Table 1 lists a comparison of the
implicit functions, which mainly use image features and
geometric features to estimate a points’ signed distance or
occupancy value.

There are three kinds of features used in our implicit
function F to predict a point’s signed distance to a target
surface, which are pixel-aligned image feature Φ†, canonical
normal nc and the canonical location xc ∈ R3. The zero-
level surface is formulated as:

Sη = {xc ∈ R3|F(Φ†,nc,xc; η) = 0}, (1)

where η is the network parameters.
Linear Blend Skinning. LBS [29] is widely used to control
the large-scale movements of a human body, by transforming
the skin according to the motion of the skeleton. Let X =
{xi

c ∈ R3}Nv
i=1 be the body vertices in the canonical space

and W = {wi ∈ RNJ}Nv
i=1 be the vertex-to-bone skinning

weights, where Nv and NJ are the number of vertices and
joints respectively. For simplicity, we omit index i for xi

c and
wi. Given pose parameters θ ∈ RNJ×3 and joints J , the LBS
function W maps a canonical vertex xc with its skinning
weight w ∈ RNJ to the target posed space as follow:

xp = W(xc, w, θ, J) =

NJ∑
j=1

wjBj(θ, J)xc, (2)

where Bj(θ, J) is the bone transformation applied on a body
part j. We define W−1 as the inverse LBS function mapping
vertices from original space to canonical space.
Pixel-Aligned Image Feature. We use Stacked Hourglass
(SHG) as the normal image encoder which is the same as
in [20, 22, 36, 37]. Given an RGB image I ∈ RH×W×3, we
predict the normal image N using the normal prediction
model in [51]. Then, the normal image encoder takes N as
input and outputs a feature map G(N ) ∈ RH′×W ′×C′

. By
projecting a point in posed space onto a normal image plane,
the pixel-aligned image features can be obtained using the
bilinear interpolation as follow:

Φ† = B(G(N ), π(xp)), (3)

where xp is the deformed point in the posed space obtained
by Eqn. 2, π(·) indicates the weak orthogonal camera pro-
jection, and B denotes the bilinear interpolation operation.
Geometric Feature. CAR leverages canonical normal as the
geometric feature. Inspired by [40], the canonical normal
nc can be obtained by an inverse transform of the predicted
normal np in original space, using the Jacobian matrix of a
forward transform of xc.

nc = unit(∇xcW−1 · π−1 · np), (4)

Table 1. Comparison of implicit functions of different human body
reconstruction methods. Φ† denotes the pixel-aligned image feature,
N † denotes the pixel-aligned normal predicted from an RGB image,
Ψ denotes the geometric feature leveraging the human body prior
M, x = (x, y, z) ∈ R3 is a 3D point, z is the depth of x and n is
the normal of x in the canonical space.

Method Implicit Function
PIFu [36], PIFuHD [37] F(Φ†, z)
PHORHUM [4] F(Φ†,x)
PaMIR [58], GeoPIFu [19],ARCH [22] F(Φ†,Ψ(M))
ICON [51] F(N †,Ψ(M))
CAR (ours) F(Φ†,n,x)

where π−1 means the inverse camera projection matrix,
np = B(N , π(xp)) is the pixel-aligned normal indexed
from predicted normal image N , and unit(·) means normal-
izing the input vector. Ablation study on different types of
geometric features shows that the normal feature is better
than other methods.
Point Position. Specifically, we use the basic position en-
coding [30] of the canonical point as an additional feature.
This term is maintained for the sake of computing gradients
and surface normal ▽xF .
Training Loss. Following [16], our training loss contains
three terms: surface reconstruction loss LI, geometric regu-
larization loss Leik, and off-surface regularization Lo.

L = λILI + λeikLeik + λoLo, (5)

Empirically, we set λI = 1, λeik = 0.1, λo = 0.1.
Reconstruction Loss. LI is a reconstruction loss, which
ensures the Signed Distance Function vanish on surface
points and its normal is consistent with the ground truth
surface normal.

LI =
1

|ΩI|
∑
x∈ΩI

(|Fx|+ ||nx − n̂x||), (6)

where nx = ▽xFx is the differential normal at x, n̂x is the
target normal and ΩI is a set of points which are randomly
sampled from surface points.
Eikonal Loss. The formulated Eikonal loss [6] is a regular
loss commonly used to constrain G and F to be a SDF, by
enforcing the implicit function to have a unit gradient:

Leik =
1

|ΩD|
∑
x∈ΩD

(||nx|| − 1), (7)

where ΩD is a point set sampled from a uniform distribution
within the bounding box.
Off-surface Regularization. Lo enforces the sign distance
of points far from the surface as large as possible as in [41].

Lo =
1

|ΩD|
∑
x∈ΩD

exp(−α · |Fx|), (8)
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where α ≫ 1 is the sharpness of decision boundary.

3.2. Normal Refinement Process

The canonical implicit model tends to ignore surface de-
tails and focuses on the general shape of the captured subject
due to the the bad mapping between canonical space and
posed space. To solve this problem, we refine the predicted
canonical surface and enforce it to be consistent with the
input image. Like [51, 59], we adopt the normal image in
the posed space to refine the reconstructed results. Different
from previous methods, we use an implicit function, i.e., a
Signed Distance Function instead of learning the per-vertex
displacement which always produce artifacts because the
topology of a mesh is fixed. The normal refinement process
mainly consists of two parts: a surface reconstruction net-
work Gφ to generate a high-quality human body by a SDF,
and a meta hyper-network Hϕ generating the initial parame-
ters of the reconstruction network for fast optimization.

3.3. Hyper Network Training

Optimizing the reconstruction network Gφ from scratch
is inefficient and not necessary, since a coarse mesh is al-
ready obtained in the first stage and it can be used as an
initialization. Then the problem becomes how to estimate
the parameters φ0 that Gφ0 can approximate a known mesh.
Our solution is to leverage a hyper network Hϕ takes a mesh
as input and output a set of parameters. We condition the
hyper network on a SMPL body mesh instead of the re-
construction in the first stage. The are two main reasons.
The first is that SMPL body mesh is naked without clothing
variation, and the topology is simple and easy for learning.
The second reason is that the real 3D human data is limited,
while a large scale SMPL data with various poses and shapes
can be synthesized to train the hyper network, thus improv-
ing the networks’ generalization to unseen data. Note the
hyper-network is only trained once in our method.

Given a SMPL body M(θ, β), the hyper network Hϕ

generates a set of parameters φ0 = H(M;ϕ), which are
used to parameterize the SDF reconstruction network G to
reproduce M. The zero-level surface can be represented as
follow:

M∗ = {x ∈ R3|G(x;H(M;ϕ)) = 0} (9)

where ϕ are learnable parameters of the hyper network. Dur-
ing training, ϕ is updated by enforcing M∗ closed to M.
The training loss is the same as equation (5). Once the hy-
per network is trained, the output parameters are used to
initialize the SDF reconstruction network as Gφ0 .

3.4. SDF Network Optimization

After obtaining the canonical mesh by the canonical im-
plicit model described in section 3.1, it is warped to the

posed space and refined to improve the quality of surface ge-
ometry. The zero isosurface in the posed space is formulated
as:

Sφ = {x ∈ R3|G(x;φ) = 0}, (10)

where φ is trainable. Starting from φ0, φ is updated by
optimizing the surface normal supervised by the predicted
normal image N . The optimization loss is similar to equation
(5). For the second term in equation (6), the target normal
n̂x = B(N , π(xp)) can be obtained by projecting a point
to either front or back normal image. In practice, we use
both front and back normal images to optimize the surface
normal.

4. Experiments
In this section, we evaluate CAR with state-of-the-

art methods on MVP-Human [60] and RenderPeople [1]
datasets. The ablation study and discussion are also con-
ducted to show the effectiveness of the proposed method.
Dataset Description. The training set contains 100 subjects
from MVP-Human dataset and 50 subjects from RenderPeo-
ple dataset. The testing set includes 50 scans from MVP-
Human, 11 scans from RenderPeople, and 2D real images
from the internet. There is no intersection of training and
testing sets. In the training phase, we fit a rigged 3D body
template in the canonical pose with corresponding skinning
weights to the scan mesh for each subject. We generate a
motion sequence for each subject by warping the canonical
mesh with the poses provided in AIST++ dataset [45]. All
generated meshes are rendered by rotating a camera around
the vertical axis with intervals of 3 degrees.
Implementation Details. We use stacked hourglass net-
work [32] as the normal image encoder which has the same
architecture with [19,22,37]. The MLP of F has the number
of neural layers (262, 512, 512, 512, 512, 512, 512, 1) with
a skip connection at the fourth layer. We use the geometric
initialization proposed in [6] for F . The SMPL encoder has
the number of neural layers (6, 256, 256, 256, 256, 256) with
skip connections at the second, the third and the fourth layer,
while the decoder contains 5 blocks, each has 3 hidden layers
with 256 neural layers and an output layer whose number of
neural is the same as the parameters’ number of the corre-
sponding layer of SDF network. The SDF network has the
number of neural layers (3, 1024, 512, 256, 128, 1) and the
parameters of each layer are initialized by the output of each
decoder block. The canonical implicit model is trained with
a batch size of 4 and a random window crop of 512 × 512
sizes. We use Adam optimizer and learning rate 1e-3 with
decay by a factor of 0.1 every 3 epochs. In each iteration, we
sample 8192 points on the surface, 8192 points around the
surface with a normal distribution sigma of 0.1, and 2048
points uniformly sampled in a bounding box. We train the
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Table 2. Quantitative comparisons of different methods in both canonical and posed space on MVP-Human (MVP) and RenderPeople (RP).

Methods MVP-Canonical MVP-Posed RP-Canonical RP-Posed
Chamfer↓ P2S↓ Normal↓ Chamfer↓ P2S↓ Normal↓ Chamfer↓ P2S↓ Normal↓ Chamfer↓ P2S↓ Normal↓

PIFu [36] - - - 4.9638 6.1931 0.8013 - - - 4.8884 5.1182 0.7089
PIFuHD [37] - - - 3.9068 4.3833 0.8247 - - - 5.2701 5.3971 0.7375

ICON [51] - - - 3.9583 4.3886 0.1957 - - - 4.9126 5.1269 0.7610
ARCH [22] 1.5894 1.8044 0.0942 3.8274 4.3614 0.1819 2.3916 2.1424 0.1178 2.3225 2.0506 0.1543

ARCH++ [20] 2.3906 2.0035 0.1849 4.0438 3.9825 0.2523 1.9046 1.8306 0.0971 1.8805 1.7720 0.1065
CAR (ours) 1.0572 1.0811 0.1287 1.0771 1.0654 0.0902 1.5401 1.4963 0.0821 1.5142 1.4147 0.0871

Input PIFu PIFuHD ICON ARCH CAR(Ours) GT

Figure 3. Qualitative comparisons against the state-of-the-art methods on RenderPeople testing set.

hyper-network using SMPL data generate by shape and pose
parameters randomly sampled from SMPL data distribution.
The normal prediction network and SMPL estimation are
followed from [51].

4.1. Quantitative Evaluation

We compare our method with two kinds of methods:
clothed human reconstruction algorithms include PIFu [36],
PIFuHD [37] and ICON [51], and avatar reconstruction ap-
proaches ARCH [22] and ARCH++ [20]. Table 2 illustrates
the quantitative results in both canonical and posed space on
MVP-Human and RenderPeople datasets. For PIFu, PIFuHD
and ICON, we directly use the model published by original
works. For ARCH and ARCH++, we train the model by our-

selves in our training set and report the testing performance.
From the results, although PIFu/PIFuHD usually shows good
performance in visual results, they do not look so good in
quantitative evaluation. That’s because they do not utilize
the human body prior and are not so robust to pose varia-
tions. ICON leverages SMPL to improve pose robustness.
However, it relies too heavily on the naked SMPL body and
is not good enough to handle loose clothes such as coats
(4th column, 4th row in Figure 3). ARCH, ARCH++, and
the proposed CAR introduce the process of general shape
reconstruction in the canonical space so that the pose ro-
bustness is greatly improved. Our method CAR further pays
more attention to the geometry detail recovery on the surface,
and it achieves the best accuracy over all datasets in both
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Input Image Canonical Result Animated Avatar

Figure 4. Images to animated avatars.

Figure 5. Qualitative results on real images from the internet. These results demonstrate that our model trained by synthetically generated
data can successfully reconstruct high-fidelity 3D from humans in real world data.

Table 3. Ablation study of different modules (RenderPeople).

Methods
Canonical Space Posed Space

Chamfer↓ P2S↓ Normal↓ Chamfer↓ P2S↓ Normal↓
CAR,baseline 1.5760 1.5766 0.0774 1.5484 1.4926 0.0983

+GeoFeat 1.5329 1.5069 0.0927 1.5043 1.4239 0.1120
+Refine 1.5401 1.4963 0.0821 1.5142 1.4147 0.0871

canonical and posed space, validating its effectiveness for
the clothed avatar reconstruction.

4.2. Qualitative Evaluation

Fig. 3 shows the qualitative results in RenderPeople. PIFu
fails to reconstruct whole limbs since it does not use human
body priors. PIFuHD captures better details than PIFu, but
the backside of reconstructions is overly smooth due to the
lacking of end-to-end geometry encoder. ICON suffers from
surface noise since the image global encoder is removed thus

extracted features are purely local. It is worth noting that
PIFu, PIFuHD and ICON do not support animation. ARCH
can generate animatable avatars, but the recovered surface is
overly smooth or with artifacts. Our method successfully pro-
duces realistic 3D humans which can be animated, see Fig. 4
for some examples. Fig. 5 shows more results on in-the-wild
images, which demonstrates that our method can reconstruct
high-fidelity 3D humans, regardless of poses or clothing.

4.3. Analysis and Discussion

To evaluate the influences of different factors, we conduct
three experiments including: 1) the ablation study on our
method of different factors; 2) the comparison of SDF and
occupancy losses; 3) different choices of geometric features.

Ablation Study. Table 3 and Figure 6 demonstrate the ef-
fectiveness of different parts of our method. The first row
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Input GT Ours w/o GeoFeat Ours w/o refinement Ours

Figure 6. Ablation analysis on different modules, corresponding to Table 3.
Table 4. Reconstruction errors on different types of loss and geometric feature variants of our method on MVP-Human.

Methods
Canonical Space Posed Space Mean

Chamfer↓ P2S↓ Normal↓ Chamfer↓ P2S↓ Normal↓ Chamfer↓ P2S↓ Normal↓

Loss occupancy 1.3867 1.4974 0.1119 3.5136 3.9336 0.1945 2.4501 2.7155 0.1532
sdf (ours) 1.3758 1.4081 0.0896 3.7589 3.8199 0.2006 2.5673 2.6140 0.1451

Geometric Feature
P2J distance 1.5227 1.3106 0.1288 3.8324 3.7256 0.2310 2.6775 2.5181 0.1799
signed distance 2.0142 1.3137 0.1537 4.2412 3.7999 0.2365 6.5639 2.3932 0.3429
surface normal (ours) 1.2463 1.3020 0.1053 3.6058 3.7560 0.2069 2.4411 2.5237 0.1570

of Table 3 is our method without the geometric feature and
normal refinement. We denote it F(Φ†,xc) as the baseline
method. The second row is our method described in section
3.1 without the normal refinement process. The third is our
proposed method. We can see that the geometry feature im-
proves the accuracy of reconstructed results. The normal
refinement process further reduces the reconstruction errors
and their qualitative results are shown in Figure 6.
Occupancy vs SDF. Previous methods [20, 22, 36, 37, 51]
tries to estimate an occupancy value for a query point that ”1”
means inside the human body while ”0” means outside. To
this end, a regression loss (e.g., L2 loss) or classification loss
(e.g., binary cross entropy loss) is always used to enforce es-
timations to be close to the real occupancy field. Our method,
instead, predicts a SDF field and trains our network using
the loss described in section 3.1. In this part, we compare
the results of these two kinds of losses. We train two models
using L2 occupancy loss and SDF loss respectively. For a
fair comparison, all configurations are the same except the
training loss. The first two rows of Table 4 show that the
SDF loss performs better than occupancy loss.
Geometric Feature Evaluation. We analyse three different
geometric features in Table 4: 1) spatial feature P2J distance
proposed in ARCH [22] (i.e., distance from a point to SMPL
joints) 2) signed distance proposed in ICON [51] (i.e., dis-
tance from a point to the nearest point on SMPL surface)
3) ours with canonical normal. The bottom three rows in
Table 4 show that the canonical normal performs the best,
which achieves the lowest errors.

4.4. Inference Speed

The proposed CAR consists of two stages. The first stage
adopts a learning-based way so that the shape recovery in
canonical space is efficient. The second stage is an optimized
way. Fortunately, with the initialization of the hyper network,
the normal refinement process converges faster. It takes about

1500 iterations to output an optimal result (compared to 3000
iterations with random initialization). For a single subject,
these two stages require an average time of about 5 min-
utes on a single TITAN X GPU, while optimization-based
methods usually takes several hours to construct a subject.

5. Conclusion
We present a method for clothed avatar reconstruction

from a single image in free viewpoints and unconstrained
poses. The person image is decomposed into a canoni-
cal mesh describing its general shape as well as a pose-
dependent non-rigid deformation. By incorporating the nor-
mal information in both canonical mesh learning and the
non-rigid deformation refinement process, we successfully
reconstruct high-fidelity avatars which preserve surface de-
tails like cloth wrinkles. With a hyper network for parameter
initialization, it further accelerates the convergent process
and improves the optimization efficiency. Our method can
be easily extended to multiple image settings and the avatar
reconstruction results are expected to be improved. How
to utilize consistent information across temporal images or
monocular video of a dynamic human to reconstruct a com-
plete avatar is one of our future works.
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Research (BMBF): Tübingen AI Center, FKZ: 01IS18039B.

8669

https://www.clipe-itn.eu


References
[1] Renderpeople. renderpeople.com. 2, 5
[2] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian

Theobalt, and Gerard Pons-Moll. Video based reconstruction
of 3d people models. In IEEE Conference on Computer Vision
and Pattern Recognition. CVPR Spotlight Paper. 1, 2

[3] Thiemo Alldieck, Marcus Magnor, Weipeng Xu, Christian
Theobalt, and Gerard Pons-Moll. Detailed human avatars
from monocular video. In International Conference on 3D
Vision, pages 98–109, Sep 2018. 1, 2

[4] Thiemo Alldieck, Mihai Zanfir, and Cristian Sminchisescu.
Photorealistic monocular 3d reconstruction of humans wear-
ing clothing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 2, 4

[5] Thiemo Alldieck, Mihai Zanfir, and Cristian Sminchisescu.
Photorealistic monocular 3d reconstruction of humans wear-
ing clothing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1506–1515,
2022. 2

[6] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learning
of shapes from raw data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2565–2574, 2020. 4, 5

[7] Alexandru O Balan, Leonid Sigal, Michael J Black, James E
Davis, and Horst W Haussecker. Detailed human shape and
pose from images. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2007. 1, 2

[8] Bharat Lal Bhatnagar, Cristian Sminchisescu, Christian
Theobalt, and Gerard Pons-Moll. Combining implicit func-
tion learning and parametric models for 3d human reconstruc-
tion. In European Conference on Computer Vision (ECCV).
Springer, August 2020. 2

[9] Bharat Lal Bhatnagar, Cristian Sminchisescu, Christian
Theobalt, and Gerard Pons-Moll. Loopreg: Self-supervised
learning of implicit surface correspondences, pose and shape
for 3d human mesh registration. Advances in Neural Informa-
tion Processing Systems, 33:12909–12922, 2020. 1

[10] Bharat Lal Bhatnagar, Garvita Tiwari, Christian Theobalt, and
Gerard Pons-Moll. Multi-garment net: Learning to dress 3d
people from images. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 5420–5430,
2019. 1, 2

[11] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges,
and Andreas Geiger. Snarf: Differentiable forward skinning
for animating non-rigid neural implicit shapes. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 11594–11604, 2021. 2

[12] Boyang Deng, John P Lewis, Timothy Jeruzalski, Gerard
Pons-Moll, Geoffrey Hinton, Mohammad Norouzi, and An-
drea Tagliasacchi. Nasa neural articulated shape approxima-
tion. In European Conference on Computer Vision, pages
612–628. Springer, 2020. 2

[13] Carlos Hernández Esteban and Francis Schmitt. Silhouette
and stereo fusion for 3d object modeling. Computer Vision
and Image Understanding, 96(3):367–392, 2004. 2

[14] Yasutaka Furukawa and Jean Ponce. Carved visual hulls for
image-based modeling. In European Conference on Computer
Vision, pages 564–577. Springer, 2006. 1, 2

[15] Juergen Gall, Carsten Stoll, Edilson De Aguiar, Christian
Theobalt, Bodo Rosenhahn, and Hans-Peter Seidel. Motion
capture using joint skeleton tracking and surface estimation.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1746–1753. Ieee, 2009. 1

[16] Amos Gropp, Lior Yariv, Niv Haim, Matan Atzmon, and
Yaron Lipman. Implicit geometric regularization for learning
shapes. arXiv preprint arXiv:2002.10099, 2020. 4

[17] Marc Habermann, Weipeng Xu, Michael Zollhoefer, Ger-
ard Pons-Moll, and Christian Theobalt. Livecap: Real-time
human performance capture from monocular video. ACM
Transactions On Graphics (TOG), 38(2):1–17, 2019. 2

[18] Marc Habermann, Weipeng Xu, Michael Zollhofer, Gerard
Pons-Moll, and Christian Theobalt. Deepcap: Monocular
human performance capture using weak supervision. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5052–5063, 2020. 2

[19] Tong He, John Collomosse, Hailin Jin, and Stefano Soatto.
Geo-pifu: Geometry and pixel aligned implicit functions for
single-view human reconstruction. In Conference on Neural
Information Processing Systems (NeurIPS), 2020. 1, 2, 4, 5

[20] Tong He, Yuanlu Xu, Shunsuke Saito, Stefano Soatto, and
Tony Tung. Arch++: Animation-ready clothed human recon-
struction revisited. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 11046–11056,
2021. 3, 4, 6, 8

[21] Pengpeng Hu, Edmond Ho, and Adrian Munteanu. 3dbodynet:
Fast reconstruction of 3d animatable human body shape from
a single commodity depth camera. IEEE Transactions on
Multimedia, PP:1–1, 04 2021. 1

[22] Zeng Huang, Yuanlu Xu, Christoph Lassner, Hao Li, and Tony
Tung. Arch: Animatable reconstruction of clothed humans.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3093–3102, 2020. 1, 3,
4, 5, 6, 8

[23] Boyi Jiang, Yang Hong, Hujun Bao, and Juyong Zhang. Self-
recon: Self reconstruction your digital avatar from monocular
video. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 5605–5615, 2022.
3

[24] Boyi Jiang, Juyong Zhang, Yang Hong, Jinhao Luo, Ligang
Liu, and Hujun Bao. Bcnet: Learning body and cloth shape
from a single image. In European Conference on Computer
Vision, pages 18–35. Springer, 2020. 2

[25] Verica Lazova, Eldar Insafutdinov, and Gerard Pons-Moll.
360-degree textures of people in clothing from a single image.
In 2019 International Conference on 3D Vision (3DV), pages
643–653. IEEE, 2019. 2

[26] Ruilong Li, Kyle Olszewski, Yuliang Xiu, Shunsuke Saito,
Zeng Huang, and Hao Li. Volumetric human teleportation. In
ACM SIGGRAPH 2020 Real-Time Live!, pages 1–1. 2020. 2

[27] Ruilong Li, Yuliang Xiu, Shunsuke Saito, Zeng Huang, Kyle
Olszewski, and Hao Li. Monocular real-time volumetric
performance capture. In European Conference on Computer
Vision, pages 49–67. Springer, 2020. 2

8670

renderpeople.com


[28] Zhe Li, Zerong Zheng, Hongwen Zhang, Chaonan Ji, and
Yebin Liu. Avatarcap: Animatable avatar conditioned monoc-
ular human volumetric capture. In ECCV, 2022. 2

[29] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc. SIG-
GRAPH Asia), 34(6):248:1–248:16, Oct. 2015. 2, 4

[30] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
4

[31] Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dy-
namicfusion: Reconstruction and tracking of non-rigid scenes
in real-time. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 343–352, 2015.
1

[32] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In European con-
ference on computer vision, pages 483–499. Springer, 2016.
5

[33] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9054–9063, 2021. 3

[34] Gerard Pons-Moll, Sergi Pujades, Sonny Hu, and Michael J
Black. Clothcap: Seamless 4d clothing capture and retarget-
ing. ACM Transactions on Graphics (ToG), 36(4):1–15, 2017.
2

[35] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas.
Pointnet++: Deep hierarchical feature learning on point sets
in a metric space. Advances in neural information processing
systems, 30, 2017. 3

[36] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 2304–2314, 2019. 1, 2, 4, 6,
8

[37] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul
Joo. Pifuhd: Multi-level pixel-aligned implicit function for
high-resolution 3d human digitization. In CVPR, 2020. 1, 2,
4, 5, 6, 8

[38] Shunsuke Saito, Jinlong Yang, Qianli Ma, and Michael J
Black. Scanimate: Weakly supervised learning of skinned
clothed avatar networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2886–2897, 2021. 2

[39] Igor Santesteban, Miguel A Otaduy, and Dan Casas. Learning-
based animation of clothing for virtual try-on. Computer
Graphics Forum (CGF), 38(2):355–366, 2019. 1, 2

[40] Dario Seyb, Alec Jacobson, Derek Nowrouzezahrai, and Wo-
jciech Jarosz. Non-linear sphere tracing for rendering de-
formed signed distance fields. ACM Transactions on Graph-
ics, 38(6), 2019. 4

[41] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems, 33:7462–7473, 2020. 4

[42] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and
Slobodan Ilic. Killingfusion: Non-rigid 3d reconstruction
without correspondences. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1386–1395, 2017. 1

[43] Jonathan Starck and Adrian Hilton. Surface capture for
performance-based animation. IEEE computer graphics and
applications, 27(3):21–31, 2007. 2

[44] Sicong Tang, Feitong Tan, Kelvin Cheng, Zhaoyang Li, Siyu
Zhu, and Ping Tan. A neural network for detailed human
depth estimation from a single image. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 7750–7759, 2019. 2

[45] Shuhei Tsuchida, Satoru Fukayama, Masahiro Hamasaki, and
Masataka Goto. Aist dance video database: Multi-genre,
multi-dancer, and multi-camera database for dance informa-
tion processing. In Proceedings of the 20th International
Society for Music Information Retrieval Conference, ISMIR
2019, pages 501–510, Delft, Netherlands, Nov. 2019. 5

[46] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan
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