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Abstract

The popular VQ-VAE models reconstruct images
through learning a discrete codebook but suffer from a sig-
nificant issue in the rapid quality degradation of image re-
construction as the compression rate rises. One major rea-
son is that a higher compression rate induces more loss of
visual signals on the higher frequency spectrum which re-
flect the details on pixel space. In this paper, a Frequency
Complement Module (FCM) architecture is proposed to
capture the missing frequency information for enhancing
reconstruction quality. The FCM can be easily incorpo-
rated into the VQ-VAE structure, and we refer to the new
model as Frequancy Augmented VAE (FA-VAE). In ad-
dition, a Dynamic Spectrum Loss (DSL) is introduced to
guide the FCMs to balance between various frequencies
dynamically for optimal reconstruction. FA-VAE is further
extended to the text-to-image synthesis task, and a Cross-
attention Autoregressive Transformer (CAT) is proposed to
obtain more precise semantic attributes in texts. Extensive
reconstruction experiments with different compression rates
are conducted on several benchmark datasets, and the re-
sults demonstrate that the proposed FA-VAE is able to re-
store more faithfully the details compared to SOTA meth-
ods. CAT also shows improved generation quality with bet-
ter image-text semantic alignment.

1. Introduction

VQ-VAE models [6,11,25,29,39,46] reconstruct images
through learning a discrete codebook of latent embeddings.
They gained wide popularity due to the scalable and versa-
tile codebook, which can be broadly applied to many visual
tasks such as image synthesis [1 1,49] and inpainting [4,31].
A higher compression rate is typically preferable in VQ-
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Figure 1. Images and their frequency maps. Row 1: original and
reconstructed images. Row 2: the frequency maps of images, fre-
quency increases in any direction away from the center. f is the
compression rate. With a greater compression rate, more details
are lost during reconstruction, i.e. eyes and mouth shape, and
hair texture (pointed with red arrows) which align with the loss
of high-frequency features. All frequency figures in this paper use
the same colormap. rFID [14] and Ipips [16] are lower the bet-
ter, and frequency values increase from red to green, zoom in for
better visualization.

VAE models since it provides memory efficiency and better
learning of coherent semantics structures [11,40].

One main challenge quickly arises for a higher com-
pression rate, which severely compromises reconstruction
accuracy. Figure | row 1 shows that although the recon-
structed images at higher compression rates appear consis-
tent with the original image, details inconsistencies such
as the color and contour of the lips become apparent upon
closer scrutiny. Figure 1 row 2 reveals that similar degra-
dation also manifests on the frequency domains where fea-
tures towards the middle and higher frequency spectrum are
the least recoverable with greater compression rate.

Several causes stand behind this gap between pixel and
frequency space. The convolutional nature of autoen-
coders is prone to spectral bias, which favors learning low-
frequency features [22, 36]. This challenge is further ag-
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gravated when current methods exclusively design losses
or improve model architecture for better semantics resem-
blance [1 1, 16,25] but often neglect the alignment on the fre-
quency domain [12,15]. On top of that, it is intuitively more
challenging for a decoder to reconstruct an image patch
from a single codebook embedding (high compression) than
multiple embeddings (less compression). The reason is that
the former mixes up features of incomplete and diverse fre-
quencies, while the latter could preserve more fine-grained
and complete features at various frequencies.

Inspired by these insights, the Frequency Augmented
VAE (FA-VAE) model is proposed, which aims to improve
reconstruction quality by achieving better alignment on the
frequency spectrums between the original and reconstructed
images. More specifically, new modules named Frequency
Complement Modules (FCM) are crafted and embedded at
multiple layers of FA-VAE’s decoder to learn to comple-
ment the decoder’s features with missing frequencies.

We observe that valuable middle and high frequencies
are mingled with the encoder’s feature maps during the
compression via an encoder, shown in Figure 3 row 4.
Therefore, a new loss termed Spectrum Loss (SL) is pro-
posed to guide FCMs to generate missing features that
align with the same level’s encoder features on the fre-
quency domain. Since most image semantics reside on the
low-frequency spectrum [48], SL prioritizes learning lower-
frequency features with diminishing weights as frequencies
increase.

Interestingly, we discover that checkerboard patterns ap-
pear in the complemented decoder’s features with SL, al-
though better reconstruction performance is achieved (Fig-
ure 3 column 4). We speculate that because SL sets a de-
terministic range for the low-frequency spectrum when ap-
plying weights on the frequencies without considering that
the importance of a frequency can vary from layer to layer.
Thus, an improved loss function Dynamic Spectrum Loss
(DSL) is crafted on top of SL with a learnable component to
adjust the range of low-frequency spectrum dynamically for
optimal reconstruction. DSL can improve reconstruction
quality even further than SL without the unnatural checker-
board artifacts in the features (Figure 3 column 5).

We further extend FA-VAE to the text-to-image gener-
ation task and propose the Cross-attention Autoregressive
Transformer (CAT) model. We first observe that only using
one or a few token embeddings is a coarse representation of
lengthy texts [8,27,33]. Thus CAT uses all token embed-
dings as a condition for more precise guidance. Moreover,
existing works typically use self-attention, and the text con-
dition is embedded merely at the beginning of the genera-
tion [11,49]. This mechanism becomes problematic in the
autoregressive generation because one image token is gen-
erated at a time, thus the text condition gradually loosens its
connection with the generated tokens. To circumvent this

issue, CAT embeds a cross-attention mechanism that allows
the text condition to guide each step generation.

To summarize, our work includes the following contri-

butions:

* We propose a new type of architecture called Fre-
quency Augmented VAE (FA-VAE) for improving im-
age reconstruction through achieving more accurate
details reconstruction.

e We propose a new loss called Spectrum Loss (SL)
and its enhanced version Dynamic Spectrum Loss (D
SL), which guides the Frequency Complement Mod-
ules (FCM) in FA-VAE to adaptively learn different
low/high frequency mixtures for optimal reconstruc-
tion.

* We propose a new Cross-attention Autoregressive
Transformer (CAT) for text-to-image generation using
more fine-grained textual embeddings as a condition
with a cross-attention mechanism for better image-text
semantic alignment.

2. Related Work & Background

Image Reconstruction Vector Quantized-Variational
AutoEncoder (VQ-VAE) [46] extends the Variational Au-
toEncoder structure [23] and proposes to encode images
into discrete latent codes using vector quantization (VQ).
Then a generative model, such as an autoregressive trans-
former [13], can be trained and paired with the decoder in
VQ-VAE to synthesize new images. Later works [11,25,39]
further improve the reconstruction and generation quality
by improving the generative model architecture or the quan-
tization efficiency. Since VQ-VAE models operate on dis-
crete latent spaces, they cannot be directly and fairly com-
pared to other VAE-based models that employ continuous
latent space [1,6,23,29,45,51]. In contrast to current VQ-
VAE models, our proposed FA-VAE technique improves re-
construction through the frequency angle and is more gen-
eralized since the FCMs can be readily extended to other
neural networks that share the same VQ-VAE structure.

Few other works do image reconstruction via the fre-
quency perspective. FFL [15] proposed a loss function to
penalize differences on the hard frequencies. A new mod-
ule, which is designed in the continuous latent space for im-
age compression, is proposed to be incorporated into the en-
coder and decoder in [12]. To our best knowledge, FA-VAE
is the first work that aims to improve image reconstruction
on discrete latent space through the frequency perspective.

Image Generation Image generation can be achieved
via GAN-based models [3, 18,42, 44,52 55], which syn-
thesize images from noise vectors unconditionally or con-
ditioned on different inputs such as texts, masks, etc. It
becomes cumbersome to train one model for one applica-
tion. Thus, StyleGAN [21] encodes semantic attributes into
a continuous latent space, and subsequent works [19, 20,
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Figure 2. Frequency Augmented VAE (FA-VAE). (a) The encoder £ encodes the images X onto discrete latent codebook space £; which
is used by the decoder G to reconstruct images X. DSL (b) guides the FCMs (c) to learn to complement the reconstructed features with
missing features of important frequencies in order to improve reconstruction quality. A more detailed figure is in the supplement.

, 32,43, 50, 54] leverage this space for generating im-
ages conditioned on attributes or textual descriptions. How-
ever, StyleGAN-based models cannot scale to large datasets
when the number of attributes becomes substantially large
because this demands to increase model’s size. In contrast,
the codebook in VQ-VAE models [46] is scalable to large
datasets without additional model complexity. Diffusion-
based models [5,7, 10,27,28,37,40,41] generate images
from Gaussian noise through a reverse diffusion process can
often require substantial training and large datasets. Most
text-to-image generation models commonly use one of a
few embeddings for a condition [8, 27, 38, 49] from pre-
trained models such as CLIP [33] or T5-XXL [35]. In con-
trast, our proposed autoregressive transformer CAT uses the
embeddings from all the text tokens for more fine-grained
guidance during image generation.

VQ-VAE We now describe the VQ-VAE model [46] as
it is the backbone used in the FA-VAE model, which is
presented in Figure 2. VQ-VAE [46] and related mod-
els [11, 25,38, 39] consist of an encoder that encodes the
images into a codebook of embeddings. Then, a decoder
is trained to reconstruct the images from a discrete set of
codebook embeddings. In this paper, reconstruction loss in
VQ-GAN is utilized which is:

Erec: ||X_X||1 +£pips(X_X) (1)
where X and X are the original and reconstructed im-
ages. We also use the adversarial setting of VQ-GAN model
which introduced a discriminator compared to VQ-VAE
models [39,46], more details could be referred to [11].

3. Methodology

The proposed Frequency Augmented VAE (FA-VAE) is
presented in Figure 2. In this section, we describe how
FA-VAE ameliorates reconstruction quality by bridging the
spectrum domain gap between reconstructed and original
images. By explicitly embedding Frequency Complement

Modules (FCM) into the decoder, Dynamic Spectrum Loss
(DSL) leverages important features frequency-wise from the
encoder and guides the FCMs to complement the features of
the decoder for better frequency restoration at different re-
construction stages.

3.1. Frequency Augmented VAE (FA-VAE)

Let the images be X € RF*Wx3_ The codebook € is
a set of |€] embeddings, such as € = {¢;|i = 1,...,|€|} €
R™= and n, is the length of one codebook embedding. FA-
VAE consists of an encoder £ that encodes the images X
into latent space representations such as z E(z), for
2z € RXwxn: and o € X, (h x w) is the resolution of
the encoded representation. Let f = H/h = W/w be the
downsampling factor or compression rate. Each feature of
z is approximated by the vector quantization block Q using
the nearest codebook entries, and it can be presented as:

2

Q(z) = 24 = argmin||z;; — ci|
cr€eC

where Z; is the quantized latent embedding and subse-
quently used by the decoder G to produce the reconstructed
image & = G(Z,).

3.1.1 Frequency Complement Modules (FCM)

Motivation Figure | shows that a higher compression rate
leads to more significant reconstruction disparities on the
higher-frequency spectrum. Existing models [11, 25, 39]
guide the reconstructed images to be more aligned on the
pixel and feature spaces with the original images (Eq. 1)
but neglect frequency spectrum alignment and leave the en-
coder and decoder without further guidance. Figure 3 col-
umn 2 shows that the encoder activations A; of baseline
VQ-GAN [11] contain rich high-frequency features (row 3
& 4), but the decoder’s activations could mainly restore low-
frequency features (row 5 & 6).
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Therefore we propose Frequency Complement Modules
(FCM), illustrated in Figure 2 (c), which aims to comple-
ment the decoder’s feature maps 3; with features of missing
frequencies using the encoder activations .4;. The FCMs F;
consist of sequences of convolution layers and activations.
The decoder G with FCMs embedded can be represented as:

Bri-1=G6u (CM + éq) =0um (fM(ZA'q) + éq)

3)
By = G2(Co + B2) = Go(F2(B2) + B2)
Similarly, the encoder £ can be abstracted to:
2= E@) = En (- (& (E1(2)))) )

where G; is the i-th layer of the decoder, and A; = &;(x)
is the outputs or feature maps of the corresponding encoder
block. The outputs of previous blocks B; are complemented
by outputs C; = F;(B;4+1), which contain the frequency-
rich features learned from the encoder activations A;. The
following section describes how Dynamic Frequency Loss
(DSL) guides the learning of FCMs to specifically learn to
complement B; with the features of missing frequencies.

In the paper, the frequency feature compensation is im-
plemented by addition (in Eq. 3). However, the FCM
is flexible in adopting any architecture and merging tech-
niques, as illustrated by the three examples in Figure 5.
Note that no architecture limitation is imposed on the en-
coder and decoder blocks as long as 4; and B; share the
same resolution. VQ-GAN [ 1] and related models [25,46]
already have similar architecture, and VQ-GAN is chosen
as the backbone for FA-VAE.

3.1.2 Dynamic Spectrum Loss (DSL)

Motivation Spectrum Loss (SL) is proposed to guide explic-
itly the outputs of FCMs C; to be more aligned with the en-
coder’s activations A; on the frequency spectrum because
the latter contains rich features on the higher frequency
spectrum (Figure 3). Moreover, to account for the varying
importance of frequencies across different decoder stages,
Dynamic Spectrum Loss (DSL) is proposed, a more gener-
alized variant of SL, and has the ability to adjust weights
put on higher-frequency spectrum adaptively. Thus, each
decoder block’s outputs can be enriched with features of
the most critical frequencies for an accurate reconstruction.

Background The outputs 4; of encoder block &; and
C; of FCM block F; are first transformed to the frequency
domain using Discrete Fourier Transform (DFT) as follows:

Ours*

original VQ-GAN [11]

frequency

(encoder
activations) |4

Ay " ; & 4

frequency

O s 5%
e

(decoder W

frequency

Figure 3. Image, activations, and their frequency maps. Ours*
is FA-VAE model with FFL [15], Ours* is FA-VAE with SL and
Ours is FA-VAE model with DSL. DSL shows a more harmonious
balance between low- and high-frequencies (row 5) and more ac-
curate reconstruction in mouth and hair textures. The frequency
maps are plotted using the average of all channels and the contrast
is adjusted to emphasize the higher frequency spectrums.

where e and ¢ are Euler’s number and the imaginary unit.
M x N is the spatial resolution of feature maps and the
Fourier Transform (Eq. 5) is applied to each of them.
f(x,y) is the value at (x,y) of each feature map. F'(u,v)
is the corresponding value at (u,v) coordinates on the fre-
quency spectrum. The Focal Frequency Loss (FFL) [15]
can be presented as:

1 [Cil-1M—1N-1

= VNG Z Z Zw(u,v)J(u,v),

c=0 u=0 v=0
(6)

where w(u,v) = |Fu,(u,v) — F¢,(u,v)| are the weights
put on each frequency. J(u,v) = |Fy, (u,v) — Fe, (u,v)|?
is the main error function based on the frequency differ-
ence. The |C;] is the number of feature maps in .A; and C;.
Both real and imaginary parts of the frequency domain are
considered, more details are in [15].

Limitations of FFL Eq. 6 demonstrates that FFL puts
modulating term w(u, v) to focus learning on the hardest
frequencies for reconstruction, which are the higher fre-
quencies following our observation (Figures 1 & 3). How-
ever, this could not be ideal because features on the lower
frequencies define the image content, and overemphasiz-
ing the higher frequencies could over-constrain the learning

FFL(A;,C;)
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Figure 4. Cross-attention Autoregressive Transformer (CAT).

and lead to sub-optimal reconstruction, see Figure 7 row 1
column 3 and Table 2 row 3. Moreover, Figure 3 column
3 shows FCMs guided by a simple FFL can improve re-
construction performance (Ours™). However the frequency
maps of the decoder activations C; contain excessive noise
due to overemphasis on the higher frequency spectrum, and
lower frequencies are neglected (row 6).

Spectrum Loss (SL) Thus, we propose to apply a low-
pass filter on the weights w(u,v) in Eq. 6 to penalize
more mismatch in the lower-frequency domain and grad-
ually diminish the penalizing weights towards higher fre-
quency spectrum. Therefore, let the Gaussian kernels be
K;(u, o) with weights initialized using mean and standard
deviation (1, 0;), and applied over the feature maps as:

(Ai,Co) = (Ki(p, 00) x Ai, Ki(pi, 00) % Ci).— (7)

where the « is the convolution operation. Then, the Spec-
trum Loss (SL) is defined as:

SL(A;,C;) = FEL(A;,C). (8)

Limitations of SL Up until now, a fixed Gaussian filter
K;(u, 0;) is applied over all A; and C; of all encoder and
decoder blocks. Figure 3 column 4 demonstrates that SL
(Ours?) improves reconstruction on the lower frequency
spectrum, leading to better reconstruction than the baseline
model (Table 2 row 5 vs row 1). However, checkerboard
artifacts are also present (row 5) on C;. One reason is that
deterministic variance o; assumes that decoder activations
across different levels require the same amount of higher
frequency features for accurate reconstruction, which could
be an over-rigid constraint on the learning. Another reason
could be that the same o; magnifies the checkerboard effects
produced by upsampling or striding operations in CNNs
which are normally circumvented by subsequent convolu-
tional layers [2, 30]. In the observation of the experiments,
we find that the checkerboard effects can be intensified with
the same o; in different layers due to the bounding effect be-
tween low frequency and high frequency (shown in Figure
3 column 4 row 6).

Dynamic Spectrum Loss (DSL) Therefore, we propose
to optimize the variances o; instead of setting them as static
hyperparameters to suit the different amounts of frequencies
needed for each block’s ;. The new Dynamic Spectrum
Loss (DSL) is a more generalized form of Spectrum Loss

.
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Figure 5. FCM with different architectures and connections.

(SL) with learnable ;. Note that DSL also includes FFL as
a special form when used on the original and reconstructed
images without the Gaussian filters.
Then the total reconstruction loss for FA-VAE can be de-
scribed as:
M-1
Lyec = aFFL(X, X) + 8 Y DSL(A;,C;) o)
i=0
X = X1+ Lyipa(X = X).

where FFL(X — X ) is the Focal Frequency Loss applied on
the original reconstructed images. The second term in Eq.
9 is the DSL loss applied over the outputs of the encoder
and FCM blocks. The first two losses aim to minimize the
frequency spectrum differences on the images and internal
feature maps. The third and fourth losses act on the pixel
and feature maps space [11]. o and 3 are hyperparameters.
o; are model parameters and optimized as:

07,E%,G*,C* = argmin(Lrec + L)
0i,€,G,C

(10)

Lq is the quantization loss which minimizes the differ-
ence between the codebook embeddings and the embed-
dings given by the encoder £, more details in [11]. We also
use the Lo regularization on the codebook embeddings dur-
ing quantization as in [53] and exponential moving average
(EMA) for updating the codebook [46] as they provide more
stable training for the quantization block Q.

Benefits of DSL The advantages of learnable o; in DSL
are shown in Figure 3 column 5 where the reconstructed
activations show no checkerboard artifacts as in column 4.
Moreover, the reconstructed activations C are more simi-
lar to the encoder activations A; on the frequency spectrum.
Compared to the baseline model (column 2), our model ex-
hibits a more harmonious balance between low- and high-
frequencies, leading to more accurate reconstructed images.

3.2. Cross-attention Autoregressive Transformer
(CAT)

We further extend FA-VAE to the text-to-image genera-
tion task and introduce a new Cross-attention Autoregres-
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Figure 6. Reconstruction on ImageNet [9], label: Japanese terrier.

sive Transformer (CAT), presented in Figure 4. CAT uses
all the token embeddings of a textual description given by
the pretrained text encoder of CLIP model [33], while ex-
isting works mostly use one or partial textual embeddings
[8,38,49]. Furthermore, CAT uses a cross-attention mech-
anism with the text tokens to guide the image generation
at each step. This more fine-grained text condition allows
the generation to capture more precisely the relationships of
semantic attributes between text and image.

p(sle) = [ p(sils<i, ) (11)

Then the predicted indices 2z’ can be decoded to an image
using FA-VAE’s decoder G. The loss is to maximize the
log-likelihood of the data representations,

Lear = Eqpop(a) [—logp(s)] (12)

In this paper, the GPT2 model [34], which is the default
setting in [ 1, 49], is utilized as the backbone for CAT,
and cross-attention mechanism inspired from [47] is applied
with the GPT2 structure.

4. Experiments
4.1. Experimental Details

The datasets used in this paper are: (1) Multi-
Modal CelebA-HQ dataset [50] with 30,000 high-resolution
celebrity face images and each image comes with ten cap-
tions; (2) Flickr-Faces-HQ (FFHQ) dataset [21] of 70,000
high-resolution face images; (3) ImageNet [9] that con-
tains around 1 million images from 1000 categories. Ex-
periments are performed on V-100 GPUs and results are
reported on the validation sets unless specified otherwise.
For a fair comparison with existing models, the resolutions
used for training are 256 x 256 on all datasets. The details
of training settings and hyperparameters are provided in the
supplementary materials.

Model | Dataset Codebook Size  (h x w) FID |
RQ-VAE [25] FFHQ 2048 (8 x8) 5.33
FA-VAE (Ours)| FFHQ 2048 (16 x 16) 4.98

) (64 x 64) .
VQ-VAE-2 [39] |ImageNet 512 & (32 x 32) ~ 10 (train)
VQ-GAN [40] |ImageNet 8192 (64 x 64) 1.06
FA-VAE (Ours) |ImageNet 8192 (64 x 64) 0.40
DALL-E [38] |ImageNet 8192 (32 x 32) 32.01
VQ-GAN[I1] |ImageNet 16384 (16 x 16) 5.15
VQ-GAN [11] |ImageNet 1024 (16 x 16) 7.94
VQ-GAN [25] |ImageNet 16384 (8 x 8) 17.95
RQ-VAET [46] |ImageNet 16384 (8 x 8) 10.77
RQ-VAE* [25] |ImageNet 16384 (8 x 8) 4.73
FA-VAE (Ours)|ImageNet 16384 (16 x 16)  4.60

Table 1. Reconstruction results on the validation data of FFHQ
[21] and ImageNet [9] respectively, more results in the supple-
ment. T means depth 2, and * means depth 4 from RQ-VAE [25].

4.2. Image Reconstruction

Reconstruction on FFHQ and Imagenet The experi-
ment results of reconstruction on FFHQ [21] and ImageNet
[9] are presented in Table 1. The results of the baselines
are from the original paper. Note that smaller & and w
means that the downsampling factor or the compression rate
f is larger. FA-VAE model shows improved reconstruction
quality over baseline models across different compression
rates in both datasets. The main reason is that FA-VAE
can successfully reconstruct the important middle and high-
frequencies which are neglected in baseline models.

Figure 6 further supports our previous claim and demon-
strates clear diverging reconstruction qualities between
baseline models VQ-GAN [1 1], DALL-E [38], and our FA-
VAE model. With a larger compression rate, Figure 6 row
2 shows that more middle and high frequencies are com-
pressed in VQ-GAN and DALL-E. In comparison, FA-VAE
can reconstruct middle and high frequencies more accu-
rately, which translates to good representations with im-
proved semantics and local details in Figure 6 row 1. For
instance, at a compression rate of 16, the dog’s tongue of
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. 5 SL FCM kernel DSL  kernel size initial value pair-wise

ablation on FFL(X, X) (A:,C) F Ki(i,00) (Ai,Cy) 4 o; o; L1l Lpipsd 1FID]
1 | VQ-GAN [11] X X X X X X X X 0.121  0.30 10.12
2 | VQ-GAN + Style [53] X X X X X X X X 0.085 0.23 11.90
3 | VQ-GAN [15] v X X X X X X X 0.114  0.35 30.65
4 SL w/o kernel 4 X CONV X X X X X 0.082  0.22 7.04
5 o erne v v/ | conv X X x X X 0082 022 702
6 | SL w/ kernel | v /oo |conv] v X 9 3 X 008 022 739
7 4 v CONV 4 v 9 3 X 0.081 0.21 5.90
8 | FCM architecture v v RES v v 9 3 X 0.078 0.21 6.44
9 4 v ATTN v v 9 3 X 0.089 0.23 7.49
10 4 v RES 4 4 3 3 v 0.081 0.21 6.66
11 v v RES v v 5 3 v 0.081 0.21 7.04
12 | DSL kernel size p 4 v RES 4 v 9 3 v 0.082  0.22 6.53
13 v v RES v v 11 3 v 0.083  0.22 7.48
14 v v RES v 4 15 3 v 0.083  0.22 6.36

Table 2. Ablation studies on the CelebA-HQ validation dataset [17], visualizations are in Figure 7. Words put in bold to highlight the

changing component.

original

1. VQ-GAN [11]

3. VQ-GAN w/ FFL [15]

5. Ours w/ SL* & FCM

8.Ours w/ DSL*™*

9. Ours w/ DSL** 10. Ours w/ DSL

7. Ours w/ DSL** & FCM & FCM-Attn & FCM (u = 3

& FCM-Res

11. Ours w/ DSL
&FCM(u=5

12. Ours w/ DSL 13. Ours w/ DSL
&FCM (u =11

14. Ours w/ DSL
& FCM (u =15

Figure 7. Reconstruction comparisons for ablation studies on
CelebA-HQ. The figure number represents the setting in the cor-
responding row in Table 2. SL* is SL without Gaussian kernel,
DSL** is DSL with non pairwise 0. FCM is convolution architec-
ture by default.

FA-VAE's reconstruction is more similar to the original im-
age than VQ-GAN in terms of color and shape; more qual-
itative results are in the supplement.

Ablation Studies on FCM and DSL In Table 2, we per-
form ablation studies on different architectures of FCM in
combination with different settings of the Spectrum Loss
(SL) and Dynamic Spectrum Loss (DSL). Figure 7 gives
the accompanying visualizations of the quantitative results.

First, as motivated in the Section 3, Table 2 row 3 shows
that considering all frequencies as equally important leads
the VQ-GAN model to poor performance in terms of rFID
and lpips (see Figure 7 image 3). In comparison, results
in Table 2 rows 4 demonstrate that FCMs alone can help

CelebA FFHQ

From Wild
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Original

rFID: 4.11

«
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Figure 8. Zero-shot reconstruction on CelebA-HQ [17], FFHQ
[21] and photos from the wild, taken from [11]. The models are
trained on ImageNet on different compression rates.

FA-VAE model achieve a better reconstruction because the
residual connections in FCMs preserve better the informa-
tion flow. The reconstruction is further improved when
combined with a simple SL on images level (row 5) or
blocks level (row 6). Although SL (row 6) shows slightly
inferior reconstruction due to neglection of frequency im-
portance variance across decoder blocks, Figure 7 image 5
shows that the details, such as earrings and hairs, can still
be more enhanced than the baseline model shown in image
1.
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the woman has high cheekbones, wavy hair, big nose, mouth open, big lips, pointy nose, and
arched eyebrows. she is young and wears heavy makeup, and lipstick.

He has goatee and wears necktie.

Figure 9. Text-to-Image generation on CelebA-HQ-MM [17]

Then, Table 2 rows 7-9 compare the performance when
the architecture of FCM varies as illustrated in Figure 5;
note that instead of using same o; for (A;,C;), we use two
learnable o for A; and C; respectively. Quantitatively, when
everything else is held equal, the convolution architecture
shows better reconstruction than residual and attention ar-
chitectures. Similarly, Figure 7 image 7 resembles the orig-
inal image more than images 8 and 9 in terms of face radi-
ance, smoothness, lip color, and shape. The reason is that
residual connection enriches the outputs of FCM, which de-
fies the purpose of enriching features of higher frequencies
of the decoder features motivated in section 3.1.1. The at-
tention mechanism is at a disadvantage here because the de-
coder and the encoder exclusively use convolutions.

Finally, varying the size of kernels in DSL (Table 2 row
10 - 14) show quite similar quantitative reconstruction per-
formance, while qualitatively, Figure 7 shows that a larger
kernel size tends to produce smoother reconstructions. One
reason could be that a larger kernel size tends to smooth
more the feature maps because more surrounding values are
used during convolution. Thus, in other experiments, we
choose a kernel size of 3, and the effects of kernel sizes are
open to future works.

Zero-shot Reconstruction To further demonstrate the
reconstruction capabilities of FA-VAE models, Table 3
gives the zero-shot reconstruction performance evaluated
on CelebA-HQ [17] and FFHQ [21] using models trained
on ImageNet [9]. The accompanying qualitative results are
in Figure 8. Overall, FA-VAE displays impressive transfer-
ability capability with more faithful reconstruction in de-
tails, for instance, the light contrast in column 1 and book
details in column 3. Note also that the common metric used
in image compression PSNR is not perfectly correlated with
rFID, but we put the metric here for reference.

4.3. Image Synthesis

Table 4 shows the text-to-image generation performance
on CelebA-HQ-MM [17]. Our proposed autoregressive
transformer CAT yields a better generation quality than
other GAN-based models, including AttnGAN [52], Con-
trolGAN [26], which are solely designed for image gener-
ation. Figure 9 shows that CAT can generate satisfactory
images conditioned on text inputs of varying lengths. At-

CelebA FFHQ
Pretrained Model | f | rFID] PSNRT | rFID| PSNR?
VQ-GAN [40] 16 | 8.62 23.40 6.83 22.68
VQ-GAN [11] 4 4.11 31.20 3.06 30.82
FA-VAE (Ours) | 16 | 6.52 22.59 6.19 21.95
FA-VAE (Ours) | 4 2.25 31.39 1.46 30.85

Table 3. Zero-shot reconstruction results on the validation data
of FFHQ [21] and CelebA-HQ [!7] using models trained on Im-
ageNet [9]. f is the downsampling factor, the codebook sizes for
f={16,8,4} are {16384, 16384, 8192} respectively.

Model | FID|
AttnGAN [52] 125.98
ControlGAN [26] 116.32
DM-GAN [55] 131.05
DF-GAN [44] 137.60
TediGAN [50] 106.37
LAFITE [54] 12.54
CAT (Ours) ‘ 10.23

Table 4. Text-to-image generation on CelebA-HQ MM [50].
tributes such as “mouth open” and “arched eyebrows” are
captured during generation because all the tokens embed-
dings are used as a condition which gives more precise guid-
ance. More quantitative and qualitative results on different
datasets are in the supplement.

5. Conclusion

In this paper, we introduce the Frequency Augmented
VAE (FA-VAE) model, which aims to improve reconstruc-
tion quality by bridging the gaps in the frequency domains
between original and reconstructed images. New mod-
ules named Frequency Complement Modules (FCM) are
crafted and guided under the new (Dynamic) Spectrum Loss
((D)SL) to learn to complement the reconstructed features
of missing frequencies. A new Cross-attention Autoregres-
sive Transformer (CAT) is proposed for achieving more pre-
cise textual-image alignment in the text-to-image genera-
tion task. FA-VAE shows improved reconstruction on vari-
ous datasets compared to SOTA methods.
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