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Abstract

Spatio-Temporal Video Grounding (STVG) aims to lo-
calize the target object spatially and temporally accord-
ing to the given language query. It is a challenging task
in which the model should well understand dynamic visual
cues (e.g., motions) and static visual cues (e.g., object ap-
pearances) in the language description, which requires ef-
fective joint modeling of spatio-temporal visual-linguistic
dependencies. In this work, we propose a novel frame-
work in which a static vision-language stream and a dy-
namic vision-language stream are developed to collabora-
tively reason the target tube. The static stream performs
cross-modal understanding in a single frame and learns
to attend to the target object spatially according to intra-
frame visual cues like object appearances. The dynamic
stream models visual-linguistic dependencies across mul-
tiple consecutive frames to capture dynamic cues like mo-
tions. We further design a novel cross-stream collabora-
tive block between the two streams, which enables the static
and dynamic streams to transfer useful and complementary
information from each other to achieve collaborative rea-
soning. Experimental results show the effectiveness of the
collaboration of the two streams and our overall frame-
work achieves new state-of-the-art performance on both
HCSTVG and VidSTG datasets.

1. Introduction

Vision-language cross-modal understanding is a chal-
lenging yet important research problem that bridges the
communication between humans and artificial intelligence
systems. It has attracted increasing attention and many
vision-language tasks were studied in recent years, like vi-
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sual grounding [13, 32], VQA [7, 31], image/video cap-
tioning [15, 40], etc. In this work, we focus on a chal-
lenging vision-language task named Spatio-Temporal Video
Grounding (STVG) which was recently proposed in [42].
Given a language query indicating an object (as shown in
Figure 1), STVG aims to localize the target object spatially
and temporally in the video. In this task, the input lan-
guage query may express different kinds of visual concepts,
thus the model requires to well capture and understand these
concepts in both vision and language modalities.

In STVG task, dynamic visual concepts like human mo-
tion and static visual concepts like object appearance are
both important for distinguishing the target object from
other objects that occurred in the same video. For exam-
ple, in the first sample in Figure 1, the two men are dressed
alike (i.e., their static appearance cues are similar), and we
can only distinguish them by motion. In the second sample,
the two women perform similar actions, they both stand up
(i.e., they have similar dynamic motion cues), here, we can
only distinguish them by their clothes. The above examples
show that static or dynamic visual cues alone cannot solve
the STVG task well. And it implies that modeling static and
dynamic visual-linguistic dependencies and collaboratively
utilizing them are important for addressing STVG task.

Humans treat static and dynamic cues differently [4,21],
but this was overlooked in previous STVG works [22, 24,
30]. Taking the first query in Figure 1 as an example, a hu-
man would randomly or evenly click on some locations on
the video’s progress bar to find candidate frames containing
a man in blue coat. And he will play the video around that
frame and attend on the candidate man to check whether he
performs the action described in the text (i.e., “turns around
and stops by the stone”). In the above process, the human
understands static and dynamic cues in different ways (i.e.,
view a single frame and watch the video clip, respectively)
and determines the target object by jointly considering the
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Query: The man in the blue coat turns around and stops by the stone.

Query: The woman in light gray stands up and turns.

Figure 1. Two examples for Spatio-Temporal Video Grounding task. In the first case, the two men are both dressed alike in blue, thus
understanding the action described in the query sentence is essential to recognize the person of interest. In the second case, both of the two
women stand up, we can only distinguish them by their clothes. (Best viewed zoomed in on screen.)

static and dynamic cues in an “attend-and-check” process.
Inspired by the above observations, we propose a frame-
work that consists of a static and a dynamic vision-language
(VL) streams to model static and dynamic cues, respec-
tively. And we design a novel cross-stream collaboration
block between the two streams to simulate the “attend-and-
check” process, which exchanges useful and complemen-
tary information learned in each stream and enables the two
streams to collaboratively reason the target object.

Specifically, in this work, our static vision-language
(VL) stream learns to attend to some candidate regions
according to static visual cues like appearance, while the
dynamic VL stream learns to understand the dynamic vi-
sual cues like action described in the text query. Then,
in the collaboration block, we guide the dynamic stream
to only focus and attend on the motion of the candidate
objects by using the learned attended region in the static
stream. And we transfer the text-motion matching infor-
mation learned in the dynamic stream to the static stream,
to help it further check and determine the target object and
predict a more consistent tube. With the above cross-stream
collaboration blocks, both the static and dynamic vision-
language streams can learn reciprocal information from the
other stream, which is effective for achieving more accurate
spatio-temporal grounding predictions. We conduct experi-
ments on HCSTVG [24] and VidSTG [42] datasets and our
approach outperforms previous approaches by a consider-
able margin. Ablation studies demonstrate the effectiveness
of each component in our proposed cross-stream collabo-
ration block and show its superiority over commonly used
counterparts in video understanding works [4, 21].

In summary, our contributions are: 1), we develop
an effective framework that contains two parallel streams
to model static-dynamic visual-linguistic dependencies for
complete cross-modal understanding; 2), we propose a
novel cross-stream collaboration block between the two
streams to exchange reciprocal information for each other

and enable collaborative reasoning of the target object;
3), Our overall framework achieves state-of-the-art perfor-
mances on HCSTVG [24] and VidSTG datasets [42].

2. Related Work
Spatio-Temporal Video Grounding. Spatio-temporal
video grounding aims to localize the target object spa-
tially and temporally according to a language query. Early
works [24, 41, 42] employ pre-trained detectors like Faster
R-CNN [18] to detect objects in each frame, and build
their model upon the detection features of each object.
STGRN [42] and OMRN [41] learn object relations with
spatio-temporal graphs and multi-branch relation networks,
respectively. STGVT [24] learns cross-modal representa-
tions with visual transformers for video-sentence match-
ing and temporal localization. However, these methods
are limited to the pre-detected bounding boxes and cannot
localize object categories that are not defined in the pre-
training dataset. Recent works [22, 30] design their frame-
work based on strong pre-trained vision-language models
and train their models end-to-end. These approaches do
not require pre-detected bounding boxes and they perform
much better. However, they directly collapse some dimen-
sions (i.e., spatial or temporal) in cross-modal attention cal-
culation to reach an acceptable computation cost, which re-
sults in large information loss, and thus they can not well
capture the important static-dynamic cross-modal contex-
tual relationship. To address this weakness, we propose to
model static and dynamic visual-linguistic correspondence
with parallel streams and learn to reason the target object in
a collaborative framework.
Temporal Grounding. Given a language query, temporal
grounding aims to predict the time span in a video speci-
fied by the language query [1, 6]. Existing works [11, 16,
17, 29, 35, 36, 38, 39] can be divided into proposal-based
and proposal-free approaches. Proposal-based approaches
generate some proposals (manually designed [29, 39] or
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Figure 2. An overview of the proposed framework. Our framework mainly consists of a static VL(vision-language) stream and a dynamic
VL stream. The static stream learns to attend to the spatial locations of the target object according to static cues like object appearance.
The dynamic stream learns motion-text correspondence according to dynamic cues like human action. We further devise a cross-stream
collaboration block that enables the two streams to query useful and complementary information from the other stream.

predicted by the model [35]) and predict the IoU scores
between each proposal and the ground truth. Proposal-
free approaches address moment localization by directly
regressing the starting/ending points of the target time
spans [11, 16] or predicting the probability of being a start-
ing/ending point for each clip and choosing the time span
with the highest joint probability as the prediction [38]. In
this work, we follow [23, 39] to employ a proposal-based
grounding head. And in contrast to most temporal ground-
ing works that collapse the spatial dimension, we also in-
corporate spatial cues to enhance temporal localization.
Text-conditioned Object Detection. Given an image, text-
conditioned object detection aims to localize the target ob-
ject indicated by a sentence (also named referring image
expression task) or all objects described in a sentence (also
named phrase grounding task). Most existing works [32,37]
develop their models based on off-the-shelf detection mod-
els and match the detected objects with the sentence query.
Recently, MDETR [10] and GLIP [12] unified detection and
phrase grounding tasks, and they trained their models with
large-scale data. These models can achieve excellent perfor-
mance on text-conditioned object detection and are used to
initialize model weights for STVG task [23, 30]. However,
these models lack the ability of modeling dynamic cues. In
this work, we design a novel collaboration framework to
capture both static and dynamic cues for STVG task.
Two-stream Models. Considering that static and dynamic
visual cues are quite different but complementary in video
understanding, a number of two-stream models [4,5,21,25,
26, 28] are proposed to capture these two kinds of visual
cues. For example, Two-Stream ConvNet [21] introduces
an optical flow stream to capture object motion. SlowFast
[4] develops slow and fast pathways with different temporal
resolutions to capture static and dynamic visual cues. How-
ever, these works typically fuse different streams equally

via some simple symmetric operations, e.g., ensembling the
output, sum/concat/fc/temporal-convolution on the features.
In contrast, we propose a novel asymmetrical cross-stream
collaboration block to exploit better collaboration between
the two streams considering their different abilities.

3. Collaborative Static-Dynamic VL Streams

We illustrate our framework in Figure 2. Our frame-
work mainly consists of a static and a dynamic VL (vision-
language) stream to model static and dynamic visual-
linguistic dependencies for complete cross-modal under-
standing. The static stream performs cross-modal under-
standing for static contextual information, i.e., finding the
object that matches the query text in a still frame accord-
ing to static visual cues, like object appearance which is
important for achieving accurate spatial grounding. The
dynamic stream performs cross-modal understanding for
dynamic contextual information, i.e., finding the temporal
moment that best matches the query sentence according
to dynamic visual cues, like action which is important for
achieving accurate temporal grounding. Both the static and
dynamic streams learns cross-modal correspondence with
a transformer-like architecture that contains multiple lay-
ers. To enable information transmission between the two
streams, we further design a novel cross-stream collabora-
tion block which is placed after each transformer layer in
the two streams. In this way, both the static and dynamic
VL streams can absorb complementary information from
each other and achieve collaborative inferring, which can
greatly reduce the uncertainty in ambiguous and hard cases
where different objects have similar appearances or perform
similar actions. Finally, we employ the prediction head to
predict a spatio-temporal tube. In the following, we will
introduce each component in detail.
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Figure 3. The detailed architectures of the proposed framework. (a): The cross-modal transformer in the static VL stream. (b): The
architecture of each space-time cross-modal transformer layer in the dynamic VL stream.

3.1. Static VL Stream

The static VL stream is employed to perform cross-
modal static context understanding and it processes each
frame independently. Inspired by DETR [3], we design our
static VL stream as a stack of N cross-modal transformer
encoder layers and N cross-modal transformer decoder lay-
ers, as presented in Figure 2 and 3 (a). For the t-th frame,
the inputs of our cross-modal transformer encoder are the
concatenation of RHW×d-sized visual features and RL×d-
sized language features, where H,W are the resolution of
the visual features extracted from the static image frame,
and L is the number of text tokens in the input text query.
These visual and language features are obtained by a pre-
trained image encoder [9] and language encoder [14], re-
spectively. We employ an FC layer behind each feature
extractor to project the visual and language features to a
shared embedding space. The outputs of the last cross-
modal transformer encoder layer form a R(HW+L)×d-sized
cross-modal memory Mt, which captures rich interactions
between intra-frame static visual cues and linguistic de-
scriptions. Then in the decoder, a learnable object query
vector O0

t ∈ Rd is inputted to repeatedly query object ap-
pearance and location information from the memory Mt

via a cross-attention layer. Here, the object query gradually
learns to attend to the object that matched the text query.

3.2. Dynamic VL Stream

The dynamic VL stream performs cross-modal under-
standing for dynamic contextual information. As illus-
trated in Figure 2, we first extract clip-level visual features
Fclip ∈ RT×H×W×c from T uniformly sampled video
clips by a pre-trained 3D-CNN [4]. Then we employ an
FC layer to project the channel dimension from c to d
and obtain F 0

v . F 0
v is fed into a Space-Time Cross-Modal

Transformer (STCMT) which consists of N layers to model
the visual-linguistic dependencies from a dynamic perspec-
tive. The detailed architecture of each layer in STCMT
is illustrated in Figure 3 (b). In each layer, we first per-

form intra-modality self-attention for the dynamic visual
features and linguistic features. For visual features, in or-
der to reduce computation cost, we follow TimesFormer [2]
to split the spatio-temporal attention into separate atten-
tions. Denoting the visual features after self-attention as
Hv ∈ RT×H×W×d and the linguistic features after self-
attention as Hl ∈ RL×d. We then perform cross-attention
between Hv and Hl as:

Q(h,w)
v = W q

vH(h,w)
v ,Kv = W k

v Hv, Vv = W v
v Hv,

Ql = W v
l Hl,Kl = W k

l Hl, Vl = W v
l Hl,

H̃(h,w)
v = H(h,w)

v + Attention(Q(h,w)
v ,Kl, Vl), (1)

H̃l = Hl + Attention(Ql,Kv, Vv),

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V,

where W q
v ,W

k
v ,W

v
v ,W

q
l ,W

k
l ,W

v
l are learnable weighted

matrices for computing queries, keys and values for the at-
tention mechanism. Hv ∈ RT×d is obtained by conducting
mean pooling on Hv along the spatial dimensions. dk is
the dimension of the queries and keys. H(h,w)

v ∈ RT×d in-
dicates the visual feature in Hv at spatial position (h,w).
H̃v, H̃l are the output visual and linguistic features after
cross-attention, respectively. The cross-attention operation
is designed to explore rich interactions between the visual
and linguistic features, which enables the model to learn
a powerful cross-modal representation of the depicted dy-
namic cues. This is essential for grounding temporal mo-
ments. After computing the cross-attention between the
visual features and linguistic features, we finally employ
Feed-Forward Network (FFN) to process both features. In
our dynamic VL stream, rich context is learned from the
two modalities, and the visual dynamic features and the lin-
guistic features are fused well.

3.3. Cross-Stream Collaboration

To enable the static and the dynamic VL streams to learn
complementary information from each other and to perform
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collaborative reasoning, we design a novel cross-stream col-
laboration block between the two streams. As shown in Fig-
ure 4, this block is placed after each decoder layer

{
Bi
s

}N

i=1

in static stream and each layer
{
Bi
d

}N

i=1
in dynamic stream.

It consists of a static-to-dynamic and a dynamic-to-static
information transmission block. They are designed asym-
metrically to exploit better collaboration between the two
streams considering their different abilities. In the follow-
ing, we will introduce the detailed designs.

The static-to-dynamic information transmission block is
designed to guide the dynamic VL stream to attend to the
spatial region that is highly related to the objects depicted
in the query text, by utilizing the cross-attention weights
learned in the decoder layers of the static VL stream. Con-
cretely, it is formulated as follows:

F̃ i
v = LayerNorm(F i

v +Ai ⊙ FC(F i
v)), (2)

where F i
v ∈ RT×HW×d is the output visual feature of the

i-th layer in dynamic VL stream and Ai ∈ RT×HW×d is the
cross-attention weights (replicate d times to have d channels
at the last dimension) calculated between the object queries{
Oi

t

}T

t=1
and corresponding encoded memories {Mt}Tt=1

in Bi
s. ⊙ indicates hadamard product. The intuition behind

this design is that the cross-attention weights learned in the
static VL stream can attend to regions matching the lan-
guage description, and this can serve as a strong guidance

Query: The tall boy comes to the 

dining table and sits down.

Query: The man in the red stripe 

goes to the sofa and turns.

Figure 5. Visualization of the learned attention map.

to help the dynamic VL stream focus more on the dynamic
variations around the object-related regions. We visualize
the attention maps in Figure 5. In the first sample, there are
multiple boys and the attention map has a high score at the
best-matched person (i.e., the tallest boy in each frame). In
the second sample, we observe that when the man in red
stripe is absent, the attention weights are relatively smooth.
However, the attention weights become sharp once the tar-
get man appeared. These samples intuitively show that our
static-to-dynamic information transmission block can guide
the dynamic stream to focus on motions of the target object.

The dynamic-to-static information transmission block is
designed to transfer the learned motion-text correspondence
to the static VL stream. It enhances Oi

t to Õi
t with a cross-

attention and a query mixing operation as depicted in Fig-
ure 4(c). In each block, the object query Oi

t in the static
stream first queries some dynamic information from F i

v[t]
(the t-th feature in F i

v) via a cross-attention module, this op-
eration enhances the object query representations with dy-
namic information learned in the dynamic stream. Then we
employ a query mixing operation (implemented as tempo-
ral self-attention) to query and mix information from object
queries of other frames, which further injects cross-frame
information to object queries. With the proposed cross-
stream collaboration block, both the static and dynamic VL
streams can learn complementary information from each
other in an effective way. And the enhanced representa-
tions F̃ i

v, Õ
i
t are inputted to the next transformer layer in the

static and dynamic VL streams, respectively.

3.4. Prediction Heads

In this section, we introduce our prediction heads which
include a spatial and a temporal prediction head.
Spatial Prediction Head. The spatial prediction head pre-
dicts the location of the target object. For the t-th frame, the
input is the object query representation ÕN

t ∈ Rd outputted
by the last collaboration block. And we implement a 3-layer
MLP to predict the bounding box location (represented by
center coordinates and size) b̂t ∈ R4 of the target object.
Temporal Prediction Head. The temporal prediction head
predicts the time span of the target temporal moment.
Specifically, we first perform spatial mean pooling on F̃N

v
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Table 1. Comparision results with previous works on
HCSTVG-v1 test set and HCSTVG-v2 val set [24].

Dataset Method m vIoU vIoU@0.3 vIoU@0.5

H
C

ST
V

G
-v

1 STGVT [24] 18.2 26.8 9.5
STVGBert [22] 20.4 29.4 11.3
TubeDETR [30] 32.4 49.8 23.5

Ours 36.9 62.2 34.8

H
C

ST
V

G
-v

2 Yu et al. [33] 30.0 - -
MMN [27] 30.3 49.0 25.6

Aug. 2D-TAN [23] 30.4 50.4 18.8
TubeDETR [30] 36.4 58.8 30.6

Ours 38.7 65.5 33.8

Table 2. Comparison results with state-of-the-art approaches on VidSTG [42]
test set.

Declarative Sentences Interrogative Sentences

Method m vIoU vIoU@0.3 vIoU@0.5 m vIoU vIoU@0.3 vIoU@0.5

STGRN [42] 19.8 25.8 14.6 18.3 21.1 12.8

STGVT [24] 21.6 29.8 18.9 — — —

OMRN [41] 23.1 32.6 16.4 20.6 28.4 14.1

STVGBert [22] 24.0 30.9 18.4 22.5 26.0 16.0

TubeDETR [30] 30.4 42.5 28.2 25.7 35.7 23.2

Ours 33.7 47.2 32.8 28.5 39.9 26.2

to obtain a temporal feature Fd ∈ RT×d, and we use an FC
layer to adjust its dimension to dm. Then we follow 2D-
TAN [39] to construct a 2D-proposal map M ∈ RT×T×dm :

Mij =

{
MP ([Fd[i], Fd[i+ 1], ..., Fd[j]]) i ≤ j

0 i > j
(3)

where MP(·) is mean pooling and Mij indicates the fea-
ture of temporal moment proposal Cij with ti, tj+1 as start
and end time stamps, respectively. Here ti = i

T ·Tvideo and
Tvideo is the duration of the input video. Fd[i] is the i-th fea-
ture in Fd. We employ several convolutional layers to trans-
form the 2D map M into a score map Ŝ ∈ RT×T×1, where
Ŝij represents the matching score of temporal proposal Cij .
For inference, we take the proposal with the highest score
as the prediction of the target temporal time span. And we
take the predicted bounding boxes from the spatial predic-
tion head for frames within the predicted temporal span to
form the final predicted tube.

3.5. Model Training

We train our model with loss L = Ls+Lt, where Ls and
Lt are spatial and temporal localization losses, respectively.
Specifically, they are defined as follows:

Ls = λ1Ll1(b̂, b) + λ2LGIoU (b̂, b), (4)

Lt = λ3Ltg(Ŝ, S) + λ4Lta, (5)

where Ll1 and LGIoU are L1 loss and GIoU loss [19] on
the predicted bounding boxes, respectively. The temporal
grounding loss Ltg is defined as a binary cross-entropy loss
(as done in [23,39]) between the predicted score map Ŝ and
the ground truth map S, where each element in S repre-
sents the IoU between the corresponding proposal and the
ground truth temporal moment. Lta is a commonly used
temporal attentive loss [34] for accelerating convergence of
Ltg , and it encourages the model to predict a high matching
score for those frames/clips inside the target temporal span.

4. Experiments

4.1. Experimental Settings

Datasets. We evaluate our method on HCSTVG-v1 dataset,
HCSTVG-v2 dataset [24] and VidSTG [42] dataset. HC-
STVG datasets are collected from movie scenes and the
duration of each video clip is around 20 seconds. This
set is quite challenging for spatio-temporal grounding as
some video clips contain many persons conducting sim-
ilar actions. HCSTVG-v1 dataset consists of 4500 and
1160 video-text pairs for training and testing, respectively.
HCSTVG-v2 dataset expanded HCSTVG-v1 dataset and
improved the annotation quality. It contains 10131, 2000,
4413 samples for training, validation and testing, respec-
tively. Since the annotations of the test set are not publicly
available in HCSTVG-v2, we report results on the valida-
tion set. VidSTG dataset [42] is constructed based on Vi-
dOR [20] dataset according to the object relation annota-
tions. It contains 99943 video-text pairs, including 44808
declarative sentence queries and 55135 interrogative sen-
tence queries. The training, validation and test set con-
sist of 80684, 8956 and 10303 sentences respectively, and
5436, 602 and 732 videos respectively. However, since
VidSTG [42] is annotated based on VidOR [20] dataset,
the text queries are limited to describe the pre-defined ob-
ject/relation categories in VidOR [20].
Evaluation Metrics. We follow previous works [22, 23,
30, 42] to use mean vIoU as the main evaluation metric.
vIoU is defined as 1

|Tu|
∑

t∈Ti
IoU(b̂t, bt), where Ti and Tu

indicate the intersection and union between the time inter-
vals obtained from ground truth annotation and model pre-
diction, respectively. b̂t, bt are the predicted bounding box
and ground truth bounding box for the t-th frame, respec-
tively. We average the vIoU score over all the samples to ob-
tain mean vIoU (termed m vIoU). We also report vIoU@R
which indicates the proportion of samples with vIoU higher
than R. In ablation studies, we follow TubeDETR [30]
to also report the sIoU and tIoU metrics that evaluate the
spatial and temporal grounding performances, respectively.

23105



They are defined as sIoU = 1
|Tgt|

∑
t∈Ti

IoU(b̂t, bt) and

tIoU = |Ti|
|Tu| , where Tgt indicates the set of frames inside

the ground truth time interval.
Implementation Details. We use ResNet101 [9] as our im-
age encoder and Roberta-base [14] as the text encoder to
extract image visual features and language features. And
we use the Slowfast [4] model pre-trained on AVA [8] as
the video encoder. We initialize part of the weights of our
static VL stream using pre-trained MDETR [10] as done
in [23, 30]. The number of transformer layers in both
streams is set as N = 6. The loss weights are set as
λ1 = 5, λ2 = 2, λ3 = 5, λ4 = 1. We train our model
on VidSTG [42], HCSTVG-v1, HCSTVG-v2 [24] datasets
for 10, 10, 4 epochs, respectively. For most other hyper-
parameters, we keep them consistent with previous works
[10,30]. Further implementation details can be found in the
supplementary material.

4.2. Experimental Results

In this section, we compare the performance of our ap-
proach with previous methods on HCSTVG dataset [24] and
VidSTG [42] dataset.
HCSTVG datasets. We first compare our method with
state-of-the-arts on HCSTVG datasets [24] and results are
shown in Table 1. On HCSTVG-v1 test set, our approach
outperforms previous state-of-the-art method TubeDETR1

[30], by a considerable margin. We achieve 36.9% m vIoU,
which is 4.5% higher than TubeDETR. On HCSTVG-v2
validation set [24], we compare our method with Tube-
DETR [30] and some winners from HCVG challenge2021.
As shown in Table 1, we also outperform TubeDETR
by 2.3% m vIoU. The above results demonstrate that our
proposed model with two collaborative vision-language
streams can effectively capture static-dynamic cross-modal
dependencies for addressing STVG task.
VidSTG dataset. We also report results on VidSTG dataset
[42]. As listed in Table 2, we also achieve state-of-the-art
performance with a m vIoU of 33.7% on declarative sen-
tences and 28.5% on interrogative sentences, respectively.
This further shows the effectiveness of the proposed collab-
orative two-stream model.

4.3. Ablation Study

In this section, we conduct ablation experiments on
HCSTVG-v2 dataset [24] to verify the effectiveness of
some important components in the proposed method.
Quantitative evaluation on the Cross-Stream Collabo-
ration Block. We first verify the effectiveness of static-
to-dynamic and dynamic-to-static information transmission
blocks by removing one of them from our developed frame-

1In this paper, we report the corrected TubeDETR [30] performance up-
dated by TubeDETR authors at https://github.com/antoyang/TubeDETR.

Table 3. Evaluation on the cross-stream collaboration mechanism.

s-to-d d-to-s m vIoU vIoU@0.3 vIoU@0.5 m tIoU m sIoU

36.4 61.2 29.5 56.1 64.9
✓ 37.5 63.6 31.4 57.4 64.6

✓ 37.1 62.3 30.2 56.2 65.7
✓ ✓ 38.7 65.5 33.8 58.1 65.7

work. We present the evaluation results in Table 3. Com-
pared to the baseline in which the whole cross-stream col-
laboration block is removed (the first line in Table 3), it is
clear that individually adopting static-to-dynamic informa-
tion transmission (termed “s-to-d”) or dynamic-to-static in-
formation transmission (termed “d-to-s”) can both improve
the grounding performance on vIoU metrics. We also ob-
serve that “s-to-d” mainly improves the temporal ground-
ing accuracy while “d-to-s” improves the spatial grounding
performance. And our full model that jointly employs the
whole cross-stream collaboration block achieves the best
performance of 38.7% m vIoU. The above results show that
both the static-to-dynamic and the dynamic-to-static infor-
mation transmission blocks are effective for providing com-
plementary information to the other stream, and thus em-
ploying them greatly improves the performance.
Qualitative evaluation on the Cross-Stream Collabo-
ration Block. To better understand how and why our
cross-stream collaboration block significantly improves the
grounding accuracy, we further provide 2 qualitative sam-
ples in Figure 6. In the first sample, there are three boys
coming to the dining table. In this case, our baseline model
without cross-stream collaboration failed to predict correct
temporal grounding results since it is confused by the sim-
ilar action performed by the three boys. With our proposed
cross-stream collaboration block, the dynamic VL stream
can distinguish which boy is the “tall boy” by absorbing
knowledge from the static VL stream, then it can correctly
predict the target temporal time span. For the second sam-
ple, there are two women both dressed in a skirt, thus in our
baseline where the cross-stream collaboration is removed,
the static stream failed to capture and understand the ac-
tion “let goes of ... and turns into the room”, thus it cannot
distinguish which is the target woman. By employing the
proposed cross-stream collaboration block, the motion in-
formation learned in the dynamic VL stream can be trans-
mitted to the static stream to make it aware of the motion in-
formation which can help distinguish the target person. The
above two samples clearly show that the proposed cross-
stream collaboration block can effectively exchange com-
plementary information between the static and the dynamic
VL streams, which can greatly reduce the uncertainty in the
hard and ambiguous cases where some objects have a sim-
ilar appearance or motion so that the model can produce a
more accurate prediction.
Spatial information in the dynamic VL stream. We
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Query：The tall boy comes to the dining table and sits down.

Query：The woman in the skirt lets goes of the woman around and turns into the room.

tstart tend 
tstart tend

tstart tend GT

Ours

w/o Collaboration

tstart tend           
tstart tend           
tstart tend           

GT

Ours

w/o Collaboration

Figure 6. Visualization of the predicted tube of our approach (yellow), our approach without cross-stream collaboration (red), and ground
truth (green). In the first sample, our approach without cross-stream collaboration predicts a wrong temporal time span. In the second
sample, ours w/o the collaboration block predicts wrong spatial bounding boxes. (Best viewed zoomed in on screen.)

Table 4. Evaluation on designs of the dynamic VL stream.

Method Ours Ours w/o spatial Ours w/o mean pool

m tIoU 56.1 54.7 56.2

Table 5. Comparision between different cross-stream collabora-
tion block designs.

Method m vIoU vIoU@0.3 vIoU@0.5 m tIoU m sIoU

Ours 38.7 65.5 33.8 58.1 65.7

None 36.4 61.2 29.5 56.1 64.9
sum 36.6 62.5 30.0 55.6 64.4

FC + sum 36.8 62.8 30.5 57.3 63.4
concat + FC 37.1 63.2 30.3 56.9 63.9

present ablation studies on different design choices of the
dynamic VL stream and results are presented in Table 4.
Here, we discard the static stream to eliminate its influ-
ence and we report temporal grounding accuracy using
m tIoU metric. By mean pooling at the spatial dimension
of the video feature inputted to the dynamic VL stream
(termed “Ours w/o spatial”), it results in a drop of more
than 1% m tIoU which shows the importance of learning
spatial visual interaction for modeling dynamic cues. And
since we develop the dynamic VL stream to mainly learn
dynamic cross-modal correspondence, we employ spatial
mean pooling on Hv to obtain Hv so that the text-to-visual
cross-attention is performed only on the temporal dimen-
sion which can greatly reduce computation cost. By re-
moving this mean pooling operation (termed “Ours w/o
mean pool”), the text-to-visual cross-attention is performed
among all spatio-temporal tokens, but it has very limited
improvement on the performance, which validates the ra-
tionality of our design.
Further study of the collaboration block. To further ver-
ify the effectiveness of the proposed collaboration block,
we replace it with some symmetric operations, including

“sum”, “FC + sum” and “concat + FC”, which are some
operations commonly used in the community [4, 21]. As
shown in Table 5, “concat + FC” achieves the best perfor-
mance among these baselines, but it only achieves a limited
improvement of 0.7% m vIoU, which indicates that simply
merging the information from the two streams can not fully
exploit their complementary abilities. In contrast, “Ours”
outperforms “concat + FC” by a considerable margin of
more than 3% in terms of vIoU@0.5, demonstrating that
our asymmetric cross-stream collaboration block enables
the two streams to effectively exchange complementary in-
formation and to collaboratively reason the target object.

5. Conclusion

In this work, we propose a novel framework for Spatio-
Temporal Video Grounding task. Our framework mainly
consists of a static VL(vision-language) stream which cap-
tures static visual cues like object appearance, and a dy-
namic VL stream which understands dynamic visual cues
like action. We elaborately design the framework as a col-
laborative system in which the two streams collaborative
localize the target object via a novel cross-stream collab-
oration block, which is proven to be effective. We also
present visualization results which provide some interesting
insights and show how the collaboration of the two streams
helps improve the prediction. Our approach significantly
outperforms previous methods on VidSTG [42] and HC-
STVG dataset [24], which demonstrates its effectiveness.
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