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Abstract

Vision transformers (ViTs) have achieved impressive re-
sults on various computer vision tasks in the last several
years. In this work, we study the capability of frozen ViTs,
pretrained only on visual data, to generalize to audio-visual
data without finetuning any of its original parameters. To
do so, we propose a latent audio-visual hybrid (LAVISH)
adapter that adapts pretrained ViTs to audio-visual tasks by
injecting a small number of trainable parameters into every
layer of a frozen ViT. To efficiently fuse visual and audio
cues, our LAVISH adapter uses a small set of latent to-
kens, which form an attention bottleneck, thus, eliminating
the quadratic cost of standard cross-attention. Compared
to the existing modality-specific audio-visual methods, our
approach achieves competitive or even better performance
on various audio-visual tasks while using fewer tunable pa-
rameters and without relying on costly audio pretraining or
external audio encoders. Our code is available at ht tps :
//genjib.github.io/project_page/LAVISH/

1. Introduction

Humans can seamlessly process audio-visual cues and
use them in unison to learn associations between auditory
and visual signals (e.g., the sound of barking and the visual
concept of dog). In contrast, most modern computational
audio-visual models [34,38,79, 80, 82, 84,92] study each of
these modalities in isolation, which leads to individually-
tailored modality-specific models. While such modality-
specific approaches often achieve state-of-the-art results on
various audio-visual benchmarks, they also have several
major shortcomings. First, optimizing and training mod-
els for a specific modality (e.g., audio or video) requires
significant research effort and computing power. For exam-
ple, training large-scale models for audio and video requires
more than 2,000 and 5,000 V100 hours respectively [10,86],
which is not feasible for many smaller research labs. Ad-
ditionally, since modern visual and audio models are be-
coming larger, it can be quite costly to use separate back-
bone networks for processing each modality. For instance,
the audio-visual MBT-Large model [60], built using sepa-
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Figure 1. We investigate whether frozen vision transformers
(ViTs) pretrained only on visual data can generalize to audio
data for complex audio-visual understanding tasks. For this pur-
pose, we introduce a latent audio-visual hybrid adapter (LAVISH),
which is inserted into every layer of a frozen ViT model. By tun-
ing only a small number of additional parameters we can enable
a pretrained ViT to efficiently (i) adapt to the audio data, and (ii)
fuse relevant cues across audio and visual modalities.

rate audio and visual encoders, requires more than 48 GB
of GPU memory, which is only available on the costly,
high-end GPU servers such as A100. Lastly, the modality-
specific approaches are only trained on individual modali-
ties and then typically combined via late fusion. As a result,
such models cannot benefit from cross-modal cues in the
early layers, which often leads to suboptimal performance
on audio-visual tasks requiring joint audio-visual reasoning.

The recent emergence of transformer models [2, 21, 24,
40, 60] has propelled research in modality-agnostic archi-
tectures for multi-modal understanding. In particular, the
generality of the transformer architecture [16] makes it easy
to apply these models to different modalities without any
modality-specific adaptations. This property is well illus-
trated by the fact that transformers [16] currently define
state-of-the-art across many domains, including natural lan-
guage processing (NLP) [8, 15,41,42,51,59,64,91], com-
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puter vision (CV) [6, 10, 20], audio analysis [22, 23, 86],
speech processing [7, 73, 77]. Such an architecture con-
vergence across different domains/modalities inspired sev-
eral recent works to investigate the cross-modal general-
ization of pretrained transformers [40, 50, 62, 75]. How-
ever, most of them are either focused on language mod-
els [47,50,75], or study close-domain transfer (e.g., image
— video) [20,21,62].

In this work, we focus on the cross-modal generalization
of pretrained vision transformers (ViT) [16] to the audio-
visual data. Our main inspiration for this study stems from
the fact that audio can be represented as a 2D spectrogram,
which summarizes 1D raw audio signal into a 2D structure
akin to audio images. Prior work has shown that vision ar-
chitectures (e.g., CNNs [12,26] or ViTs [23,77]) can be
used to process such audio images. However, most prior
methods use these architectures for large-scale audio rep-
resentation learning. Instead of pretraining ViTs on large-
scale audio data, we hypothesize that the ViTs pretrained on
images can simultaneously encode representations that are
useful for both images and audio, making them useful for
audio-visual tasks without large-scale audio pretraining.

To investigate this hypothesis, we propose a latent audio-
visual hybrid (LAVISH) adapter that directly adapts frozen
ViTs, pretrained only on images, to audio-visual tasks by
adding a small number of trainable parameters for audio
specialization and audio-visual fusion. Such a scheme al-
lows us to apply frozen ViTs to audio-visual data without
updating the original ViT parameters but only the param-
eters of our proposed LAVISH modules, which we insert
into every layer of a frozen ViT. For an efficient cross-
modal fusion within the LAVISH module, we use a small
set of latent tokens to first compress the information from
all modality-specific tokens (e.g., either audio or video) and
then apply cross-attention between the latent tokens and all
the tokens of another modality (e.g., either video or audio).
Such a scheme allows us to eliminate the quadratic cost of
standard cross-attention. Furthermore, to allow information
transfer between audio-to-video and, conversely, video-to-
audio, we adopt a bi-directional LAVISH scheme, which
enables learning a better audio-visual representation.

In our experimental section, we demonstrate that by
keeping all the original ViT parameters frozen and updat-
ing only a small set of newly added parameters, the frozen
ViTs, pretrained only on image data, learn to solve com-
plex audio-visual understanding tasks requiring a joint un-
derstanding of audio and visual contents. In particular, com-
pared to the state-of-the-art modality-specific audio-visual
approaches, our method achieves competitive or even bet-
ter results on the tasks of audio-visual event localization,
audio-visual segmentation, and audio-visual question an-
swering while using a smaller number of tunable parame-
ters, and without relying on a separate pre-trained audio en-

coder (e.g., VGGish [26], AST [23], etc.), or costly large-
scale audio pretraining. We also show that our proposed
latent audio-visual hybrid adapter (LAVISH) is more effec-
tive and efficient than the standard adapter schemes [27].

2. Related Work

Audio-Visual Understanding. Audio-visual understand-
ing tasks focus on the audio-visual perception of ob-
jects/events/activities [4, 17, 18, 33, 52, 53, 61, 78, 85] us-
ing both visual and audio modalities. For instance, audio-
visual event localization [55, 65-67, 80, 83, 88] and audio-
visual video parsing [14,44, 58,79, 82] require models for
recognizing and localizing joint audio-visual events (e.g., a
dog barking). Most existing approaches [67, 84, 88, 94] de-
signed for these tasks leverage pretrained modality-specific
audio and visual models to extract features and combine
them via ad-hoc audio-visual fusion modules. Moreover,
the tasks of sound localization [5, 71, 72] and audio-visual
segmentation [93] focus on predicting the regions in the vi-
sual scenes corresponding to a sound either using bounding
boxes [1,11,28,30,56,57] or pixel-wise segmentations [93].
Most prior sound localization methods tackle this task using
self-supervised [30, 56, 57, 71] or weakly supervised [63]
approaches by learning correspondence between audio and
visual patches. Instead, audio-visual segmentation meth-
ods [93] rely on ground truth masks due to the requirement
for precise segmentations. Furthermore, the newly intro-
duced audio-visual question answering (AVQA) [38,70,90]
task requires methods that perceive both audio and vi-
sual modalities to answer human-generated questions about
the audio-visual content. Most methods designed for this
task rely on modality-specific audio and vision and mod-
els, which are combined via spatial and temporal ground-
ing modules [38]. Unlike these prior methods, which either
require modality-specific audio/visual models or expensive
pretraining, we study the capability of frozen ViTs, pre-
trained only on images, to generalize to audio-visual data
without any prior large-scale audio-visual pretraining.

Parameter-Efficient Transfer Learning.  Parameter-
efficient transfer learning aims to adapt pretrained mod-
els to new tasks using few trainable parameters. Most
parameter-efficient approaches can be divided into sev-
eral categories: methods that introduce a small number
of additional parameters [36, 39, 54], methods that update
only a sparse set of weights in the model [9, 25, 76], and
methods that learn a low-rank factorization of the model’s
weights [29]. Adapter [27] is arguably the most pop-
ular parameter-efficient technique among these methods.
It consists of lightweight learnable modules inserted be-
tween every pair of layers in a pretrained model. De-
spite their simplicity, adapters achieved impressive results
on diverse tasks in both CV [13, 46, 48, 62, 68, 69] and
NLP [3, 27, 32, 74]. However, most adapter-based ap-
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Figure 2. Method Overview. Middle: Our framework consists of a frozen vision transformer (ViT) augmented with trainable latent audio-
visual hybrid (LAVISH) adapters inserted into each transformer layer. We use a bi-directional LAVISH adapter that allows us to transfer
information from audio to visual tokens, and conversely from visual to audio tokens. Left/Right: Each LAVISH adapter consists of four
high-level components. First, we introduce a small number of latent tokens for learning compressed audio or visual representation. Next,
the first cross-modal attention operation within the LAVISH module compresses all the tokens from one modality (either audio or visual)
into the latent tokens. Afterward, the second cross-modal attention operation performs audio-visual fusion between the latent tokens of one
modality (either audio or visual) and the tokens from another modality (visual or audio). Finally, the fused tokens are fed into a lightweight
adapter module which computes a more discriminative audio-visual representation and outputs it to the next operation in a ViT layer.

proaches are designed for unimodal settings (i.e., CV, NLP,
etc.), which limits their applications to multi-modal settings
since they cannot share cross-modal information. Recently,
several parameter-efficient approaches have been applied to
multi-modal settings [35,75]. However, these methods re-
quire costly large-scale multimodal pre-training. Instead,
we propose a latent audio-visual hybrid (LAVISH) adapter
that allows us to adapt frozen ViTs, pretrained only on im-
ages, to audio-visual tasks.

3. Technical Approach

In this section, we present our proposed latent audio-
visual hybrid (LAVISH) adapter that adapts frozen ViTs to
audio-visual tasks by updating a small number of additional
parameters. Our proposed LAVISH module, which we in-
ject into every layer of a frozen ViT, allows the model (i) to
adapt to the audio inputs and (ii) fuse information between
visual and audio inputs early in the feature representation.
An illustration of our method is presented in Figure 2. Be-
low, we present our technical approach in more detail.

3.1. Audio-Visual Input Embeddings

Audio and Image Inputs. Our framework takes audio
and visual inputs. For visual modality, we consider an RGB
video frame I € RT*WX3 with spatial dimensions H x
W sampled from a video at time ¢. For audio, we use an
audio spectrogram A € RM*® spanning several seconds

and centered around each video frame at time .
Audio and Image Tokenization. Following the
ViT [16], we first decompose each RGB frame I into n non-

overlapping patches and then flatten these patches into vi-

sual embeddings X,(,O)

€ R™*4 Similarly, we also project
audio spectrograms A into audio embeddings XSIO) €
R¥*4_ Note that we inflate the input channel of the audio
spectrogram from 1 to 3 to match the dimensions of a linear

patch projection layer in the frozen ViT.

3.2. Adding LAVisH Adapters to a Frozen ViT

Next, we describe how we augment a pretrained ViT
with our proposed LAVISH adapters. Every layer of a pre-
trained ViT in our framework consists of three main oper-
ations: (i) a multi-head attention (MHA) [81], (ii) a multi-
layer perceptron (MLP), and (iii) our LAVISH adapter. As
illustrated in Figure 2, we add two LAVISH adapters to ev-
ery layer in the visual stream and audio stream (i.e., 4 LAV-
ISH adapters per layer). Note that every adapter module has
its trainable parameters, i.e., the parameters in the adapter
modules are not shared. Furthermore, to allow cross-modal
exchange, our LAVISH adapters can transfer information
from audio to visual tokens and conversely from visual to
audio tokens. Such a bidirectional exchange of information
ensures that both modalities aid each other in maximizing
the performance of a downstream audio-visual task.

Standard ViT Layer. Before describing how to inject
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LAVISH adapters into a frozen ViT, we first review how
a standard ViT layer processes audio and visual inputs in-
dependently. Formally, given audio Xff) and visual XE,Z)
inputs from a layer ¢, the standard ViT layer first indepen-
dently applies MHA for the inputs from each modality:

VI =X+ MHAX)
Y = XE + MHAXP).
For brevity, we skip the linear normalization layers in both

MHA and MLP operations. Furthermore, for completeness,
we define the MHA operation below:

6]

MHA(X) = Softmax (XW,)(XWj) ") (XW,). (2)

Here, X denotes an input tensor, and W, W, W, €
R?*4 depict the learnable projection weights. Afterward,

the intermediate representations Y((f), and YI()Z) obtained
from the MHA layer are fed into an MLP:

X4 = {0+ MLP(YL),
XD = y® 4 MLP(Y (V).
The above-defined MHA and MLP operations are then re-
peatedly applied to audio and visual inputs in each layer of
a ViT. With this formal description, we can now describe
how to incorporate LAVISH adapters into a frozen ViT.

ViT Layer with a LAVISH Adapter. As men-
tioned above, our model consists of two types of LAVISH
adapters: (i) audio-to-visual (A2V) and (ii) visual-to-audio
(V2A). We first describe how to inject an A2V LAVISH
adapter into a frozen ViT.

Let FSJD = LAV(XS.Z), XE,“) denote an operation that
implements an audio-to-visual LAVISH adapter, which we
will describe in the next subsection. Then, the updated
MHA and MLP operations in each layer can be written as:

3)

Y =XO + MHA(X®) + LAV(XE), X)),
XD =¥ O + MLP(YP) + LAV(Y(D, Y ().
Conceptually, the operation above enables a frozen ViT to
incorporate audio features into the visual representation.
Afterward, we can define a similar formulation for in-
jecting a visual-to-audio (V2A) LAVISH adapter into a
frozen ViT. Let F(f) = LAV(Xg ), X((f)) depict an oper-
ation that implements a visual-to-audio LAVISH adapter,
which we will also describe in the next subsection. Then,
we can re-write the original MHA and MLP operations (i.e.,
Equations 1,3) for audio inputs as:

“4)

Y = X + MHA(X) + LAV(X(), X)),
XD =y 4 MLP(Y() + LAV(Y®, Y(0).

Intuitively, the operation above allows a frozen ViT to fuse
information from the audio and visual tokens for a more
expressive audio representation.

&)

3.3. LAVIsH Adapter

Lastly, we provide a technical description of our LAV-
ISH adapter. In a nutshell, LAVISH adapter is a dual-
pathway module that uses a small number of latent tokens
to efficiently inject visual cues into the audio representation
and vice-versa. It consists of four main technical compo-
nents: (i) a separate set of latent tokens for audio and visual
modalities, (ii) cross-modal attention between audio/visual
tokens and latent tokens to compress all tokens of one
modality into the latent tokens, (iii) a second cross-modal
attention for efficient audio-visual fusion, (iv) a lightweight
adapter module that incorporates audio-visual cues into a
newly computed feature representation via a small number
of trainable parameters. We now describe each of these
components in more detail. A detailed illustration of our
LAVISH adapter is presented in Figure 2.

Latent Tokens. Inspired by the success of several prior
methods [31, 60], we introduce a small set of randomly ini-

tialized latent audio and visual tokens L,(ll) e Rm*d and
Lg,l) € R™*4 respectively. We use a unique set of latent
tokens at each layer . Here, m depicts the number of latent
tokens, which is significantly smaller than the total number
of audio or visual tokens. For instance, the Swin [49] trans-
former contains > 2K audio or visual tokens. In contrast,
in most cases, we use m = 2 latent tokens, which is orders
of magnitude smaller. The purpose of these latent tokens
is to compactly summarize information from all the audio
and visual tokens for efficient information transfer from one
modality to another.

Cross-modal Attention. We use cross-modal attention
(CMA) to implement: (i) a compression module to con-
dense all tokens from one modality into the latent tokens
of the same modality and (ii) an audio-visual fusion mod-
ule, which fuses information between the compressed la-
tent tokens of one modality and all the tokens of the other
modality. We define the cross-modal attention operation as:

CMA(Q,K,V)=Q+g-Softmax (QK ")V, (6)
where g is a learnable scalar to control the flow from one
modality to another, and Q, K, and V denote query, key,
and value tokens respectively.

Audio-Visual Latent Token Compression. As illus-
trated in Figure 2, we first use cross-modal attention to com-
press all the visual or audio tokens X,(f) or Xgé) into a small
set of latent tokens Lg) or Lg,l) respectively. Formally, this
can be written as:

{0 = OMA(LY, X, (1)
S1()E) = CMA(L'E)I) ? X'i()e) ? X1()£) )7

where S € R™*d and S ¢ R™*4 are the latent sum-
mary tokens for audio and visual modalities respectively.
Intuitively, this operation allows us to compute latent sum-

mary tokens S((f) and SS,Z) as a weighted summation of all

)
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Figure 3. Adapting LAVISH to the Downstream Audio-Visual Tasks of audio-visual event localization, audio-visual segmentation, and
audio-visual question answering. The modules in green are trainable modules from the baselines [38, 93] that we adopt. Note that the
visual and audio backbones in our framework are frozen and share the same parameters.

the audio or visual tokens respectively. Furthermore, be-
cause the number of latent audio and visual tokens is so
small, this forces the model to include only the most rele-
vant audio or visual information into the latent tokens. This
in turn enables an efficient cross modal fusion between au-
dio and visual tokens, which we describe next.

Audio-Visual Feature Fusion. We can use the latent
summary tokens S and S to efficiently fuse informa-
tion between audio and visual modalities. Formally, we can
write this operation as:

X = cMAXY, 8P, 8(),
X = cMA(XP, 81, 8,
(¢

where X depicts a newly computed audio representation

®)

that also incorporates visual cues, and similarly, X%) de-
notes a new visual representation that incorporates audio
cues. At a high level, both audio-visual representations
X[(f;) and X%) are computed as a weighted combination of
the latent summary tokens Sg) and S{(f) respectively. As
discussed above, performing cross-modal attention between
audio or visual and the latent summary tokens is beneficial
because it allows us to avoid the quadratic cost of standard
cross-attention operation, which would be very costly due
to a large number (i.e., > 2K) of audio/visual tokens. The
resulting audio-visual representations Xffu) and XS,Q allow
both modalities to benefit from each other when solving
complex audio-visual understanding tasks.

Lightweight Adapter Module. Following prior work
on adapters [27], we use a similar bottleneck module that
consists of a learnable down-projection layer 6 4,q,,,, @ non-
linear activation function o, and a learnable up-projection
layer 6,,,. The entire operation can be written as:

Z((Ll;)) = guP(U(Qdown(X(?)))a

a

9
2 — 0,1 (0 (Ot (X)), )

Putting It All Together. With all the formal defini-
tions above, we can define the final LAVISH adapter as
a sequential application of the three above-described op-
erations: (i) audio-visual latent token compression (Equa-
tion 7), (ii) audio-visual fusion (Equation 8), and (iii) the
lightweight adapter module (Equation 9). Note that these
operations are distinct for the visual and audio inputs. For
example, the LAVISH adapter operation LAV(X((f), Xg,é))
incorporates audio cues into the visual features whereas
LAV(X,(JZ)7 Xt(f)) injects visual cues into the audio features.

4. Experimental Setup

4.1. Downstream Tasks and Datasets

Audio-Visual Event Localization task focuses on rec-
ognizing joint audio and visual events throughout multiple
time segments in a video. We evaluate on the AVE [80]
dataset containing 4, 143 videos, where each video duration
is 10 seconds and contains events spanning 28 categories.
To adapt our approach to this task, for each time segment,
we extract audio and visual features using a frozen visual
transformer (e.g., ViT or Swin) augmented with LAVISH
adapters. We then concatenate the audio and visual fea-
tures and attach a linear layer to obtain the final audio-visual
event prediction as shown in Figure 3 (a). Similar to prior
approaches [67,80,84,94], to assess the performance of our
method, we compute the fraction of correctly predicted seg-
ments and report it as our evaluation metric.

Audio-Visual Segmentation is a recently introduced
task that aims to segment objects given the sound. We
validate our framework on the AVSBench-S4 [93] dataset,
which contains 4,932 videos with manually annotated
pixel-wise annotations of audible objects. To adapt our
framework to this task, we replace the pretrained U-Net
visual encoder and the pretrained audio feature extractor
of AVS [93] with our frozen transformer augmented with
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Table 1. Audio-Visual Event Localization. We compare our proposed LAVISH approach with previous audio-visual event localization
methods. X indicates not using an external audio encoder or large-scale audio pretraining. In our case, this means that both audio and
visual inputs are processed using a visual encoder. The % and * denote fully fine-tuned and frozen encoders, respectively. * denotes
our improved implementations, and ¥ means that no official code was provided to report some of the baseline-specific metrics. The
performance is evaluated using audio-visual event classification accuracy. Despite not using an external audio encoder or large-scale audio
pretraining, LAVISH achieves better accuracy than all prior methods while also using a relatively small number of trainable parameters.

Visual Audio Visual

Audio Trainable Total

Method Encoder Encoder Pretrain Dataset ~ Pretrain Dataset  Params (M) |  Params (M) | Acc t
AVT [45] VGG-19 #* VGGish # ImageNet AudioSet 15.8 231.5 76.8
PSP [94] VGG-19 # VGGish # ImageNet AudioSet 1.7 2174 77.8
DPNet! [67] VGG-19 VGGish ImageNet AudioSet N/A N/A 79.7
AVEL [80] ResNet-152 #  VGGish # ImageNet AudioSet 3.7 136.0 74.0
AVSDN [43] ResNet-152 % VGGish ImageNet AudioSet 8.0 140.3 75.4
CMRAN [87] ResNet-152 #  VGGish # ImageNet AudioSet 15.9 148.2 78.3
MM-Pyramid [89] ResNet-152 #  VGGish * ImageNet AudioSet 44.0 176.3 77.8
CMBS [84] ResNet-152 #  VGGish # ImageNet AudioSet 14.4 216.7 79.7
MBT* [60] ViT-B-16 & AST & ImageNet AudioSet 172 172 77.8
MBT* [60] ViT-L-16 & AST & ImageNet AudioSet 393 393 OOM
LAVISH ViT-B-16 # (shared) ImageNet ¢ 4.7 107.2 75.3
LAVISH ViT-L-16 # (shared) ImageNet X 14.5 340.1 78.1
CMBS* Swin-V2-L #  VGGish s ImageNet AudioSet 14.1 315.2 80.4
CMBS* Swin-V2-L &  VGGish # ImageNet AudioSet 243.1 315.2 79.6
LAVISH Swin-V2-B # (shared) ImageNet b ¢ 5.0 114.2 78.8
LAVISH Swin-V2-L # (shared) ImageNet b ¢ 10.1 238.8 81.1

LAVIsH adapters. We then use it as our audio-visual fea-
ture extractor (See Figure 3 (b)). To evaluate our approach,
we follow the evaluation protocol of AVSBench-S4, which
computes the mean Intersection-over-Union (mloU) of the
predicted segmentation and the ground truth masks.

Audio-Visual Question Answering (AVQA) task re-
quires answering questions based on the associations be-
tween objects and sounds. We conduct our experiments
on the MUSIC-AVQA dataset [38], which contains 9, 288
videos and 45,867 question-answer pairs. To adapt our
model to the AVQA task, we replace the pretrained visual
encoder and the pretrained audio encoder of the baseline
in [38] with our frozen transformer augmented with LAV-
ISH adapters as presented in Figure 3 (c). Following the
original AVQA work [38], we evaluate our model using the
answer prediction accuracy.

5. Results and Analysis
5.1. Audio-Visual Event Localization

In Table 1, we evaluate our model on the audio-visual
event localization task using the AVE [80] dataset. For
our main comparisons, we focus on the recent CMBS [84]
method, which achieves state-of-the-art results on this
benchmark. For a fair comparison, we additionally imple-
ment this baseline using a Swin-V2-L [49] backbone, which
is also the backbone we use in our LAVISH approach. We
also include a modality-specific multimodal fusion bottle-
neck (MBT) baseline [60] with cross-modal fusion between
audio and visual encoders (i.e., ViT and AST [23]) pre-

trained separately on large-scale image and audio datasets.

Our results in Table 1 indicate several interesting find-
ings. First, we note that, unlike prior approaches [67,84,87],
our framework does not require a pretrained audio encoder
or large-scale audio pretraining on AudioSet [19]. De-
spite not using a pretrained audio encoder or large-scale
AudioSet pretraining, our approach achieves better accu-
racy (81.1% vs. 80.4%) than the state-of-the-art CMBS
with the Swin-V2-L visual backbone while also requiring
fewer trainable parameters (10.1M vs 14.1M). We also note
that the base variant of the modality-specific dual encoder
MBT [60] (MBT-B) achieves better performance than LAV-
ISH with ViT-B encoder (77.8% vs 75.3%). However, the
MBT approach has 37 x more trainable parameters (172M
vs 4.7M). Due to the small number of trainable parameters,
our approach can be scaled up much more easily than MBT.
Specifically, we note that the large MBT variant (MBT-
L) requires 393M trainable parameters, which leads to the
out of memory issues on a 48GB A6000 GPU. In compar-
ison, the large variant of our LAVISH approach only re-
quires 14.5M trainable parameters, which enables memory-
efficient training and inference, while also achieving higher
accuracy than the best performing MBT variant (78.1% vs
77.8%). Lastly, we also observe that Swin-based variants
of our model achieve consistently better accuracy than the
ViT-based variants (81.1% vs 79.6%). We hypothesize that
since audio information in spectrograms may be more local
than in images, the locality preservation mechanism of Swin
may better capture sounds with similar frequencies.
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Table 2. Audio-Visual Segmentation. We evaluate our LAVISH approach on the AVSBench-S4 [93] dataset for audio-visual segmentation
task using the mean intersection over union (mloU) metric. Our method achieves comparable performance as the state-of-the-art AVS [93]

approach without relying on an external audio encoder or large-scale audio pretraining.

Method Visual Audio Visual Audio Trainable Total mloU
Encoder Encoder  Pretrain Dataset Pretrain Dataset Params (M) | Params (M) |

Lvst [11] ResNet18 ResNet18 ImageNet X N/A N/A 37.9

MMSL! [63] ResNet-18 CRNN ImageNet AudioSet N/A N/A 449

AVS [93] PVT-V2 & VGGish # ImageNet AudioSet 102.4 174.5 78.7

AVS* Swin-V2-L & VGG ish # ImageNet AudioSet 249.7 321.8 80.4

LAVisH Swin-V2-L # (shared) ImageNet X 37.2 266.4 80.1

Table 3. Audio-Visual Question Answering on the Music-AVQA [38] dataset. We report accuracy on 3 types of questions, e.g., audio (A),
visual (V), and audio-visual (AV). Our approach achieves the best accuracy across all three categories of questions including audio-only

questions. This verifies the effectiveness of frozen ViT augmented with our LAVISH adapters to generalize to audio-visual data.

Method Visual Audio Visual Audio Trainable Total Question T
Encoder Encoder Pretrain Dataset ~ Pretrain Dataset Params (M) |  Params (M) | A \% AV

AVSD' [70] VGG-19 VGGish ImageNet AudioSet N/A N/A 68.52 70.83 65.49
Pano—AVQAJf [90] Faster RCNN VGGish ImageNet AudioSet N/A N/A 70.73  72.56 66.64
AVQA [38] ResNet-18 = VGGish # ImageNet AudioSet 10.6 94.4 74.06 74.00 69.54
AVQA* Swin-V2-L #  VGGish # ImageNet AudioSet 12.23 312.1 7546 75.64 74.51
AVQA* Swin-V2-L &  VGGish # ImageNet AudioSet 240 312.1 73.16 73.80 73.16
LAVISH Swin-V2-L # (shared) ImageNet X 21.09 249.8 7715 7737 77.08

5.2. Audio-Visual Segmentation

In Table 2, we also evaluate our LAVISH approach on
the audio-visual segmentation task [93] on the AVSBench-
S4 [93] dataset. Based on our results, we first observe
that our framework outperforms the previous best AVS
method [93] (80.1% vs 78.7%) while using fewer trainable
parameters (37.2M vs. 249.7M) and without using an exter-
nal audio encoder or large-scale audio pretraining. To make
the comparison to the AVS baseline more thorough, we also
implement it using the same Swin-V2-L backbone used by
our LAVISH method. In this setting, AVS achieves similar
performance to our approach (80.4% vs. 80.1%). How-
ever, this AVS variant uses significantly more trainable pa-
rameters than our method (249.7M vs. 37.2M). Thus, these
results indicate that a frozen transformer augmented with
our LAVISH adapters can generalize to complex dense-
prediction tasks such as audio-visual segmentation.

5.3. Audio-Visual Question Answering

Finally, in Table 3, we evaluate our framework on
MUSIC-AVQA [38], which is an audio-visual question-
answering dataset containing three categories of questions
(audio, visual, and audio-visual) to assess each method’s
reasoning capabilities across different modalities. We com-
pare our LAVISH approach with the AVSD [70], Pano-
AVQA [90] and AVQA [38] methods. Like in the previ-
ous tasks, we implement a stronger AVQA baseline using
a frozen Swin-V2-L backbone (i.e., the same as for our vi-
sual encoder). Based on these results, we first observe that
our proposed method outperforms all prior approaches by
a large margin for all three types of questions (+3.09%,

+3.37%, and +7.54%). Interestingly, we notice that de-
spite not using a pretrained audio encoder or large-scale au-
dio pretraining, LAVISH achieves better results not only on
the visual and audio-visual questions but also on the audio-
based questions. This suggests that pretrained ViTs might
capture representations that are useful not only for the im-
age but also for the audio data. (i.e., audio images). We
also note that LAVISH exhibits larger performance gains on
audio-visual questions (+2.57%) than on visual (+1.73%)
or audio-based (+1.69%). This suggests that LAVISH
adapters can effectively fuse information across audio and
visual modalities for the AVQA task. Overall, all the above
results reveal that LAVISH is a plug-and-play module for
diverse audio-visual tasks and architectures.

5.4. Ablation Studies

Next, we investigate how different design choices of our
model affect the performance on the Audio-Visual Event
Localization (AVE) [80] dataset.

LAVISH Adapter Design. In Table 4, we investigate
the usefulness of bidirectional cross-modal fusion and the
importance of latent tokens. To do this, we first intro-
duce an AVISH baseline that has exactly the same de-
sign/implementation as LAVISH but does not use latent to-
kens in its cross-attention operations. Instead, it directly
performs cross-modal fusion on the original audio and vi-
sual tokens, which makes it a lot more costly than our LAV-
ISH scheme. Furthermore, to study the importance of bidi-
rectional cross-modal fusion, we compare our final bidi-
rectional LAVISH approach with the unidirectional vari-
ants that only use either audio-to-visual (A2V) or visual-
to-audio (V2A) cross-modal fusion, and also a baseline that
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Table 4. LAVISH Adapter Design. We investigate different de-
sign choices of our LAVISH adapter on the audio-visual event lo-
calization task. Audio-to-visual (A2V) and visual-to-audio (V2A)
indicate cross-modal fusion direction. AVISH is a variant of our
approach that has the same implementation but does not use latent
tokens. Our results indicate that both bidirectional cross-modal
fusion and latent tokens are essential for good performance.

Method A2V V2A  Acct
X X 719
v X 787
AVIsH X v 761
v v 798
X X 719
v X 788
LAVISH = 787
v v 81l

does not use any cross-modal connections.

To evaluate the performance of each method, we use
audio-visual event classification accuracy. Based on the re-
sults, in Table 4, we first note that the bidirectional cross-
modal fusion performs better than the baseline without
any cross-modal connections for both AVISH (+1.9%) and
LAVISH (+3.2%) methods respectively. Additionally, we
observe that the bidirectional variants of AVISH and LAV-
ISH consistently outperform the unidirectional A2V and
V2A baselines (+1.1% and +3.7% for AVIsH and +2.3%
and +2.4% for LAVISH ). This verifies that bidirectional
cross-modal fusion enables our model better to incorpo-
rate audio and visual cues into its representation. We also
investigate the importance of latent tokens by comparing
LAVISH directly with AVISH. We observe that LAVISH
outperforms AVISH across both unidirectional (+0.1% and
+2.6%) and bidirectional variants (+1.3%). Thus, these
results verify the effectiveness of both bidirectional cross-
modal fusion and latent tokens.

Computational Cost Analysis. Next, we compare the
efficiency of the previously described bidirectional AVISH
and LAVISH methods using the GFLOPs metric. Note
that because the backbone encoder is the same for both ap-
proaches, we only measure the computational cost of our in-
troduced LAVISH modules while excluding the cost of the
backbone. We observe that LAVISH is 20x times cheaper
than AVISH (11 vs. 217 GFLOPs), and LAVISH saves
about 20% GPU memory for training. This makes sense
because, unlike our approach, the AVISH baseline performs
cross-attention between every pair of visual and audio to-
kens. Due to the quadratic cost of cross-attention and a large
number of tokens, this operation is very expensive. In con-
trast, using a small number of latent tokens (e.g., 2) enables
efficient audio-visual fusion in our approach.

Comparison to Other Parameter-Efficient Schemes.
In Table 5, we also compare our LAVISH adapter with

Table 5. Comparison with Other Parameter-Efficient Methods.
All parameter-efficient schemes operate on both audio and visual
inputs. The CMA column depicts whether the cross-modal atten-
tion (CMA) is applied for fusing audio-visual information. Based
on these results, we report that our LAVISH approach achieves the
best performance while also being reasonably efficient in terms of
the number of trainable parameters.

Trainable
Method CMA Params (M) | Acc T
Prompt Tuning [37] b 4 1.2 76.0
Compacter [32] X 3.7 78.4
Compacter [32] (4 3.7 78.6
LoRA [29] X 17.7 79.0
LoRA [29] v 17.7 79.7
Adapter [27] b 4 8.9 79.1
Adapter [27] (4 8.9 79.9
LAVisH v 10.1 81.1

other parameter-efficient methods such as Adapter [27],
Compacter [32], and LoRA [29]. For each of these
baselines, we follow the same training pipeline as for our
LAVISH approach except that we replace our LAVISH
adapters with a corresponding parameter-efficient scheme
(e.g., Adapter, Compacter or LoRA). Our results suggest
that LAVISH outperforms LoRA (81.1% vs. 79.1%) while
also using fewer trainable parameters (10.1M vs. 17.7M).
Additionally, we note that although Compacter and Adapter
use fewer trainable parameters than LAVISH (10.1M vs.
8.9M and 3.7M), their accuracy is substantially lower
than for our approach (81.1% vs. 79.1% and 78.4%). In
sum, compared to other parameter-efficient schemes, our
LAVISH adapter provides better accuracy while still being
relatively parameter-efficient.

6. Conclusions

In this paper, we investigate whether frozen ViTs, pre-
trained only on images, can generalize to audio-visual
data. We demonstrate that without any audio pretraining
our LAVISH adapter outperforms the state-of-the-art ap-
proaches on diverse audio-visual understanding tasks such
as audio-visual event localization, audio-visual segmenta-
tion, and audio-visual question-answering. Furthermore,
compared to prior approaches, our method requires a signif-
icantly smaller number of trainable parameters, enabling ef-
ficient audio-visual adaptation. In the future, we will inves-
tigate our model’s generalization ability to the audio-only
and visual-language tasks, as well as the generalization of
pretrained audio models to the audio-visual data.

Acknowledgments We thank F. Cheng, MM. Islam, A.
Madasu, M. Gramopadhye, and Y.-C. Liu for helpful dis-
cussions. This work was supported by the Sony Faculty In-
novation award, ARO Award W911NF2110220, and NSF-
Al Engage Institute DRL211263.

2306



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Triantafyllos Afouras, Andrew Owens, Joon Son Chung, and
Andrew Zisserman. Self-supervised learning of audio-visual
objects from video. In ECCV, 2020. 2

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong
Chuang, Shih-Fu Chang, Yin Cui, and Boging Gong. Vatt:
Transformers for multimodal self-supervised learning from
raw video, audio and text. In NeurIPS, 2021. 1
Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine
Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. In NeurIPS, 2022. 2
Humam Alwassel, Dhruv Mahajan, Bruno Korbar, Lorenzo
Torresani, Bernard Ghanem, and Du Tran. Self-supervised
learning by cross-modal audio-video clustering. In NeurIPS,
2020. 2

Relja Arandjelovi¢ and Andrew Zisserman.
sound. In ECCV, 2018. 2

Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
Sun, Mario Luci¢, and Cordelia Schmid. Vivit: A video vi-
sion transformer. In ICCV, 2021. 2

Alan Baade, Puyuan Peng, and David Harwath. Mae-ast:
Masked autoencoding audio spectrogram transformer. In IN-
TEERSPEECH, 2022. 2

Max Bain, Arsha Nagrani, Giil Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder for
end-to-end retrieval. In /CCV, 2021. 1

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bit-
Fit: Simple parameter-efficient fine-tuning for transformer-
based masked language-models. In ACL, 2022. 2

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In ICML, 2021. 1,2

Honglie Chen, Weidi Xie, Triantafyllos Afouras, Arsha Na-
grani, Andrea Vedaldi, and Andrew Zisserman. Localizing
visual sounds the hard way. In CVPR, 2021. 2,7

Honglie Chen, Weidi Xie, Andrea Vedaldi, and Andrew Zis-
serman. Vggsound: A large-scale audio-visual dataset. In
ICASSP, 2020. 2

Zhe Chen, Yuchen Duan, Wenhai Wang, Junjun He, Tong
Lu, Jifeng Dai, and Yu Qiao. Vision transformer adapter for
dense predictions. arXiv Preprint, 2022. 2

Haoyue Cheng, Zhaoyang Liu, Hang Zhou, Chen Qian,
Wayne Wu, and Limin Wang. Joint-modal label denoising
for weakly-supervised audio-visual video parsing. In ECCV,
2022. 2

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2018. 1
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1,2,3

Ruohan Gao and Kristen Grauman. Co-separating sounds of
visual objects. In ICCV, 2019. 2

Objects that

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

2307

Ruohan Gao and Kristen Grauman. Visualvoice: Audio-
visual speech separation with cross-modal consistency. In
CVPR, 2021. 2

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R. Channing Moore, Manoj Plakal,
and Marvin Ritter. Audio set: An ontology and human-
labeled dataset for audio events. In ICASSP, 2017. 6

Rohit Girdhar, Alaaeldin EI-Nouby, Mannat Singh,
Kalyan Vasudev Alwala, Armand Joulin, and Ishan Misra.
Omnimae: Single model masked pretraining on images and
videos. arXiv Preprint, 2022. 2

Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens van der
Maaten, Armand Joulin, and Ishan Misra. Omnivore: A sin-
gle model for many visual modalities. In CVPR, 2022. 1,
2

Yuan Gong, Yu-An Chung, and James Glass. AST: Audio
Spectrogram Transformer. In INTEERSPEECH, 2021. 2
Yuan Gong, Yu-An Chung, and James Glass. Psla: Improv-
ing audio tagging with pretraining, sampling, labeling, and
aggregation. TASLP, 2021. 2, 6

Yuan Gong, Alexander H Liu, Andrew Rouditchenko, and
James Glass. Uavm: A unified model for audio-visual learn-
ing. arXiv Preprint, 2022. 1

Demi Guo, Alexander M Rush, and Yoon Kim. Parameter-
efficient transfer learning with diff pruning. In ACL, 2021.
2

Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis,
Jort F. Gemmeke, Aren Jansen, Channing Moore, Manoj
Plakal, Devin Platt, Rif A. Saurous, Bryan Seybold, Malcolm
Slaney, Ron Weiss, and Kevin Wilson. Cnn architectures for
large-scale audio classification. In ICASSP, 2017. 2

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In ICML, 2019. 2,5, 8

Di Hu, Rui Qian, Minyue Jiang, Xiao Tan, Shilei Wen, Errui
Ding, Weiyao Lin, and Dejing Dou. Discriminative sounding
objects localization via self-supervised audiovisual match-
ing. In NeurIPS, 2020. 2

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In
ICLR,2022. 2,8

Xixi Hu, Ziyang Chen, and Andrew Owens. Mix and local-
ize: Localizing sound sources in mixtures. In CVPR, 2022.
2

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals,
Andrew Zisserman, and Joao Carreira. Perceiver: General
perception with iterative attention. In /ICML, 2021. 4
Rabeeh Karimi Mahabadi, James Henderson, and Sebastian
Ruder. Compacter: Efficient low-rank hypercomplex adapter
layers. In NeurIPS, 2021. 2, 8

Bruno Korbar, Du Tran, and Lorenzo Torresani. Coopera-
tive learning of audio and video models from self-supervised
synchronization. In NeurIPS, 2018. 2

Jun-Tae Lee, Mihir Jain, Hyoungwoo Park, and Sungrack
Yun. Cross-attentional audio-visual fusion for weakly-
supervised action localization. In ICLR, 2021. 1



(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

(501

[51]

Sangho Lee, Youngjae Yu, Gunhee Kim, Thomas Breuel, Jan
Kautz, and Yale Song. Parameter efficient multimodal trans-
formers for video representation learning. In /CLR, 2021.
3

Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In EMNLP,
2021. 2

Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In EMNLP,
2021. 8

Guangyao Li, Yake Wei, Yapeng Tian, Chenliang Xu, Ji-
Rong Wen, and Di Hu. Learning to answer questions in
dynamic audio-visual scenarios. In CVPR, 2022. 1, 2, 5,
6,7

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. In ACL, 2021. 2

Valerii Likhosherstov, Anurag Arnab, Krzysztof Choroman-
ski, Mario Lucic, Yi Tay, Adrian Weller, and Mostafa De-
hghani. Polyvit: Co-training vision transformers on images,
videos and audio. arXiv Preprint, 2021. 1,2

Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe
Gan, Zicheng Liu, Yumao Lu, and Lijuan Wang. Swinbert:
End-to-end transformers with sparse attention for video cap-
tioning. In CVPR, 2022. 1

Yan-Bo Lin, Jie Lei, Mohit Bansal, and Gedas Bertasius.
Eclipse: Efficient long-range video retrieval using sight and
sound. In ECCV, 2022. 1

Yan-Bo Lin, Yu-Jhe Li, and Yu-Chiang Frank Wang. Dual-
modality seq2seq network for audio-visual event localiza-
tion. In /CASSP, 2019. 6

Yan-Bo Lin, Hung-Yu Tseng, Hsin-Ying Lee, Yen-Yu Lin,
and Ming-Hsuan Yang. Exploring cross-video and cross-
modality signals for weakly-supervised audio-visual video
parsing. In NeurIPS, 2021. 2

Yan-Bo Lin and Yu-Chiang Frank Wang. Audiovisual trans-
former with instance attention for audio-visual event local-
ization. In ACCV, 2020. 6

Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de
Melo, Xiaogang Wang, Jifeng Dai, Yu Qiao, and Hongsheng
Li. Frozen clip models are efficient video learners. In ECCV,
2022. 2

Haokun Liu, Derek Tam, Mohammed Mugeeth, Jay Mohta,
Tenghao Huang, Mohit Bansal, and Colin Raffel. Few-shot
parameter-efficient fine-tuning is better and cheaper than in-
context learning. In NeurIPS, 2022. 2

Yen-Cheng Liu, Chih-Yao Ma, Junjiao Tian, Zijian He, and
Zsolt Kira. Polyhistor: Parameter-efficient multi-task adap-
tation for dense vision tasks. In NeurIPS, 2022. 2

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al.
Swin transformer v2: Scaling up capacity and resolution. In
CVPR,2022. 4,6

Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch.
Pretrained transformers as universal computation engines.
arXiv Preprint, 2021. 2

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei,
Nan Duan, and Tianrui Li. CLIPAClip: An empirical study

(52]

(53]

(54]

(55]

[56]

(571

(58]

(591

(60]

[61]

(62]

[63]

[64]

[65]

(66]

[67]

(68]

2308

of clip for end to end video clip retrieval. arXiv Preprint,
2021. 1

Shuang Ma, Zhaoyang Zeng, Daniel McDuff, and Yale Song.
Active contrastive learning of audio-visual video representa-
tions. In ICLR, 2021. 2

Shuang Ma, Zhaoyang Zeng, Daniel McDuff, and Yale Song.
Contrastive learning of global and local audio-visual repre-
sentations. In NeurIPS, 2021. 2

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa De-
hghani, and James Henderson. Parameter-efficient multi-task
fine-tuning for transformers via shared hypernetworks. In
ACL,2021. 2

Tanvir Mahmud and Diana Marculescu. Ave-clip:
Audioclip-based multi-window temporal transformer for au-
dio visual event localization. In WACV, 2023. 2

Shentong Mo and Pedro Morgado. A closer look at weakly-
supervised audio-visual source localization. In NeurlPS,
2022. 2

Shentong Mo and Pedro Morgado. Localizing visual sounds
the easy way. In ECCV, 2022. 2

Shentong Mo and Yapeng Tian. Multi-modal grouping net-
work for weakly-supervised audio-visual video parsing. In
NeurIPS, 2022. 2

Arsha Nagrani, Paul Hongsuck Seo, Bryan Seybold, Anja
Hauth, Santiago Manen, Chen Sun, and Cordelia Schmid.
Learning audio-video modalities from image captions. In
ECCV, 2022. 1

Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen,
Cordelia Schmid, and Chen Sun. Attention bottlenecks for
multimodal fusion. In NeurIPS, 2021. 1,4, 6

Andrew Owens and Alexei A. Efros. Audio-visual scene
analysis with self-supervised multisensory features. In
ECCV,2018. 2

Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hong-
sheng Li. St-adapter: Parameter-efficient image-to-video
transfer learning for action recognition. In NeurIPS, 2022.
2

Rui Qian, Di Hu, Heinrich Dinkel, Mengyue Wu, Ning Xu,
and Weiyao Lin. Multiple sound sources localization from
coarse to fine. In ECCV, 2020. 2,7

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 1

Janani Ramaswamy. What makes the sound?: A dual-
modality interacting network for audio-visual event localiza-
tion. In /CASSP, 2020. 2

Janani Ramaswamy and Sukhendu Das. See the sound, hear
the pixels. In WACV, 2020. 2

Varshanth Rao, Md Ibrahim Khalil, Haoda Li, Peng Dai, and
Juwei Lu. Dual perspective network for audio-visual event
localization. In ECCV, 2022. 2,5, 6

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters. In
NeurIPS, 2017. 2



[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

(80]

(81]

[82]

[83]

[84]

[85]

(86]

(87]

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Efficient parametrization of multi-domain deep neural net-
works. In CVPR, 2018. 2

Idan Schwartz, Alexander G Schwing, and Tamir Hazan.
A simple baseline for audio-visual scene-aware dialog. In
CVPR, 2019. 2,7

Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan
Yang, and In So Kweon. Learning to localize sound source
in visual scenes. In CVPR, 2018. 2

Arda Senocak, Tae-Hyun Oh, Junsik Kim, Ming-Hsuan
Yang, and In-So Kweon. Learning to localize sound sources
in visual scenes: Analysis and applications. TPAMI, 2019. 2
Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Abdelrah-
man Mohamed. Learning audio-visual speech representation
by masked multimodal cluster prediction. In /CLR, 2022. 2
Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Lad-
der side-tuning for parameter and memory efficient transfer
learning. In NeurlIPS, 2022. 2

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter:
Parameter-efficient transfer learning for vision-and-language
tasks. In CVPR, 2022. 2,3

Yi-Lin Sung, Varun Nair, and Colin A Raffel. Training neu-
ral networks with fixed sparse masks. In NeurIPS, 2021. 2
Zineng Tang, Jaemin Cho, Yixin Nie, and Mohit Bansal.
Tvlt: Textless vision-language transformer. In NeurlPS,
2022. 2

Yapeng Tian, Di Hu, and Chenliang Xu. Cyclic co-learning
of sounding object visual grounding and sound separation.
In CVPR, 2021. 2

Yapeng Tian, Dingzeyu Li, and Chenliang Xu. Unified mul-
tisensory perception: Weakly-supervised audio-visual video
parsing. In ECCV, 2020. 1, 2

Yapeng Tian, Jing Shi, Bochen Li, Zhiyao Duan, and Chen-
liang Xu. Audio-visual event localization in unconstrained
videos. In ECCV, 2018. 1,2,5,6,7

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 3
Yu Wu and Yi Yang. Exploring heterogeneous clues for
weakly-supervised audio-visual video parsing. In CVPR,
2021. 1,2

Yu Wu, Linchao Zhu, Yan Yan, and Yi Yang. Dual attention
matching for audio-visual event localization. In /CCV, 2019.
2

Yan Xia and Zhou Zhao. Cross-modal background suppres-
sion for audio-visual event localization. In CVPR, 2022. 1,
2,5,6

Fanyi Xiao, Yong Jae Lee, Kristen Grauman, Jitendra Malik,
and Christoph Feichtenhofer. Audiovisual slowfast networks
for video recognition. arXiv Preprint, 2020. 2

Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Woj-
ciech Galuba, Florian Metze, Christoph Feichtenhofer, et al.
Masked autoencoders that listen. In NeurIPS, 2022. 1, 2
Haoming Xu, Runhao Zeng, Qingyao Wu, Mingkui Tan,
and Chuang Gan. Cross-modal relation-aware networks for
audio-visual event localization. In ACM MM, 2020. 6

(88]

(89]

(90]

[91]

(92]

(93]

[94]

2309

Hanyu Xuan, Zhenyu Zhang, Shuo Chen, Jian Yang, and Yan
Yan. Cross-modal attention network for temporal inconsis-
tent audio-visual event localization. In AAAI, 2020. 2
Jiashuo Yu, Ying Cheng, Rui-Wei Zhao, Rui Feng, and Yue-
jie Zhang. Mm-pyramid: multimodal pyramid attentional
network for audio-visual event localization and video pars-
ing. In ACM MM, 2022. 6

Heeseung Yun, Youngjae Yu, Wonsuk Yang, Kangil Lee, and
Gunhee Kim. Pano-avqa: Grounded audio-visual question
answering on 360deg videos. In ICCV, 2021. 2,7

Renrui Zhang, Rongyao Fang, Peng Gao, Wei Zhang,
Kunchang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li.
Tip-adapter: Training-free clip-adapter for better vision-
language modeling. In arXiv Preprint, 2022. 1

Yunhua Zhang, Hazel Doughty, Ling Shao, and Cees GM
Snoek. Audio-adaptive activity recognition across video do-
mains. In CVPR, 2022. 1

Jinxing Zhou, Jianyuan Wang, Jiayi Zhang, Weixuan Sun,
Jing Zhang, Stan Birchfield, Dan Guo, Lingpeng Kong,
Meng Wang, and Yiran Zhong. Audio—visual segmentation.
In ECCV, 2022. 2,5,7

Jinxing Zhou, Liang Zheng, Yiran Zhong, Shijie Hao, and
Meng Wang. Positive sample propagation along the audio-
visual event line. In CVPR, 2021. 2,5, 6



