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Abstract

Vision transformers (ViTs) have achieved impressive re-

sults on various computer vision tasks in the last several

years. In this work, we study the capability of frozen ViTs,

pretrained only on visual data, to generalize to audio-visual

data without finetuning any of its original parameters. To

do so, we propose a latent audio-visual hybrid (LAVISH)

adapter that adapts pretrained ViTs to audio-visual tasks by

injecting a small number of trainable parameters into every

layer of a frozen ViT. To efficiently fuse visual and audio

cues, our LAVISH adapter uses a small set of latent to-

kens, which form an attention bottleneck, thus, eliminating

the quadratic cost of standard cross-attention. Compared

to the existing modality-specific audio-visual methods, our

approach achieves competitive or even better performance

on various audio-visual tasks while using fewer tunable pa-

rameters and without relying on costly audio pretraining or

external audio encoders. Our code is available at https:

//genjib.github.io/project_page/LAVISH/

1. Introduction

Humans can seamlessly process audio-visual cues and

use them in unison to learn associations between auditory

and visual signals (e.g., the sound of barking and the visual

concept of dog). In contrast, most modern computational

audio-visual models [34,38,79,80,82,84,92] study each of

these modalities in isolation, which leads to individually-

tailored modality-specific models. While such modality-

specific approaches often achieve state-of-the-art results on

various audio-visual benchmarks, they also have several

major shortcomings. First, optimizing and training mod-

els for a specific modality (e.g., audio or video) requires

significant research effort and computing power. For exam-

ple, training large-scale models for audio and video requires

more than 2,000 and 5,000 V100 hours respectively [10,86],

which is not feasible for many smaller research labs. Ad-

ditionally, since modern visual and audio models are be-

coming larger, it can be quite costly to use separate back-

bone networks for processing each modality. For instance,

the audio-visual MBT-Large model [60], built using sepa-
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Figure 1. We investigate whether frozen vision transformers

(ViTs) pretrained only on visual data can generalize to audio

data for complex audio-visual understanding tasks. For this pur-

pose, we introduce a latent audio-visual hybrid adapter (LAVISH),

which is inserted into every layer of a frozen ViT model. By tun-

ing only a small number of additional parameters we can enable

a pretrained ViT to efficiently (i) adapt to the audio data, and (ii)

fuse relevant cues across audio and visual modalities.

rate audio and visual encoders, requires more than 48 GB

of GPU memory, which is only available on the costly,

high-end GPU servers such as A100. Lastly, the modality-

specific approaches are only trained on individual modali-

ties and then typically combined via late fusion. As a result,

such models cannot benefit from cross-modal cues in the

early layers, which often leads to suboptimal performance

on audio-visual tasks requiring joint audio-visual reasoning.

The recent emergence of transformer models [2, 21, 24,

40, 60] has propelled research in modality-agnostic archi-

tectures for multi-modal understanding. In particular, the

generality of the transformer architecture [16] makes it easy

to apply these models to different modalities without any

modality-specific adaptations. This property is well illus-

trated by the fact that transformers [16] currently define

state-of-the-art across many domains, including natural lan-

guage processing (NLP) [8, 15, 41, 42, 51, 59, 64, 91], com-
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puter vision (CV) [6, 10, 20], audio analysis [22, 23, 86],

speech processing [7, 73, 77]. Such an architecture con-

vergence across different domains/modalities inspired sev-

eral recent works to investigate the cross-modal general-

ization of pretrained transformers [40, 50, 62, 75]. How-

ever, most of them are either focused on language mod-

els [47, 50, 75], or study close-domain transfer (e.g., image

→ video) [20, 21, 62].

In this work, we focus on the cross-modal generalization

of pretrained vision transformers (ViT) [16] to the audio-

visual data. Our main inspiration for this study stems from

the fact that audio can be represented as a 2D spectrogram,

which summarizes 1D raw audio signal into a 2D structure

akin to audio images. Prior work has shown that vision ar-

chitectures (e.g., CNNs [12, 26] or ViTs [23, 77]) can be

used to process such audio images. However, most prior

methods use these architectures for large-scale audio rep-

resentation learning. Instead of pretraining ViTs on large-

scale audio data, we hypothesize that the ViTs pretrained on

images can simultaneously encode representations that are

useful for both images and audio, making them useful for

audio-visual tasks without large-scale audio pretraining.

To investigate this hypothesis, we propose a latent audio-

visual hybrid (LAVISH) adapter that directly adapts frozen

ViTs, pretrained only on images, to audio-visual tasks by

adding a small number of trainable parameters for audio

specialization and audio-visual fusion. Such a scheme al-

lows us to apply frozen ViTs to audio-visual data without

updating the original ViT parameters but only the param-

eters of our proposed LAVISH modules, which we insert

into every layer of a frozen ViT. For an efficient cross-

modal fusion within the LAVISH module, we use a small

set of latent tokens to first compress the information from

all modality-specific tokens (e.g., either audio or video) and

then apply cross-attention between the latent tokens and all

the tokens of another modality (e.g., either video or audio).

Such a scheme allows us to eliminate the quadratic cost of

standard cross-attention. Furthermore, to allow information

transfer between audio-to-video and, conversely, video-to-

audio, we adopt a bi-directional LAVISH scheme, which

enables learning a better audio-visual representation.

In our experimental section, we demonstrate that by

keeping all the original ViT parameters frozen and updat-

ing only a small set of newly added parameters, the frozen

ViTs, pretrained only on image data, learn to solve com-

plex audio-visual understanding tasks requiring a joint un-

derstanding of audio and visual contents. In particular, com-

pared to the state-of-the-art modality-specific audio-visual

approaches, our method achieves competitive or even bet-

ter results on the tasks of audio-visual event localization,

audio-visual segmentation, and audio-visual question an-

swering while using a smaller number of tunable parame-

ters, and without relying on a separate pre-trained audio en-

coder (e.g., VGGish [26], AST [23], etc.), or costly large-

scale audio pretraining. We also show that our proposed

latent audio-visual hybrid adapter (LAVISH) is more effec-

tive and efficient than the standard adapter schemes [27].

2. Related Work

Audio-Visual Understanding. Audio-visual understand-

ing tasks focus on the audio-visual perception of ob-

jects/events/activities [4, 17, 18, 33, 52, 53, 61, 78, 85] us-

ing both visual and audio modalities. For instance, audio-

visual event localization [55, 65–67, 80, 83, 88] and audio-

visual video parsing [14, 44, 58, 79, 82] require models for

recognizing and localizing joint audio-visual events (e.g., a

dog barking). Most existing approaches [67, 84, 88, 94] de-

signed for these tasks leverage pretrained modality-specific

audio and visual models to extract features and combine

them via ad-hoc audio-visual fusion modules. Moreover,

the tasks of sound localization [5, 71, 72] and audio-visual

segmentation [93] focus on predicting the regions in the vi-

sual scenes corresponding to a sound either using bounding

boxes [1,11,28,30,56,57] or pixel-wise segmentations [93].

Most prior sound localization methods tackle this task using

self-supervised [30, 56, 57, 71] or weakly supervised [63]

approaches by learning correspondence between audio and

visual patches. Instead, audio-visual segmentation meth-

ods [93] rely on ground truth masks due to the requirement

for precise segmentations. Furthermore, the newly intro-

duced audio-visual question answering (AVQA) [38,70,90]

task requires methods that perceive both audio and vi-

sual modalities to answer human-generated questions about

the audio-visual content. Most methods designed for this

task rely on modality-specific audio and vision and mod-

els, which are combined via spatial and temporal ground-

ing modules [38]. Unlike these prior methods, which either

require modality-specific audio/visual models or expensive

pretraining, we study the capability of frozen ViTs, pre-

trained only on images, to generalize to audio-visual data

without any prior large-scale audio-visual pretraining.

Parameter-Efficient Transfer Learning. Parameter-

efficient transfer learning aims to adapt pretrained mod-

els to new tasks using few trainable parameters. Most

parameter-efficient approaches can be divided into sev-

eral categories: methods that introduce a small number

of additional parameters [36, 39, 54], methods that update

only a sparse set of weights in the model [9, 25, 76], and

methods that learn a low-rank factorization of the model’s

weights [29]. Adapter [27] is arguably the most pop-

ular parameter-efficient technique among these methods.

It consists of lightweight learnable modules inserted be-

tween every pair of layers in a pretrained model. De-

spite their simplicity, adapters achieved impressive results

on diverse tasks in both CV [13, 46, 48, 62, 68, 69] and

NLP [3, 27, 32, 74]. However, most adapter-based ap-
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Figure 2. Method Overview. Middle: Our framework consists of a frozen vision transformer (ViT) augmented with trainable latent audio-

visual hybrid (LAVISH) adapters inserted into each transformer layer. We use a bi-directional LAVISH adapter that allows us to transfer

information from audio to visual tokens, and conversely from visual to audio tokens. Left/Right: Each LAVISH adapter consists of four

high-level components. First, we introduce a small number of latent tokens for learning compressed audio or visual representation. Next,

the first cross-modal attention operation within the LAVISH module compresses all the tokens from one modality (either audio or visual)

into the latent tokens. Afterward, the second cross-modal attention operation performs audio-visual fusion between the latent tokens of one

modality (either audio or visual) and the tokens from another modality (visual or audio). Finally, the fused tokens are fed into a lightweight

adapter module which computes a more discriminative audio-visual representation and outputs it to the next operation in a ViT layer.

proaches are designed for unimodal settings (i.e., CV, NLP,

etc.), which limits their applications to multi-modal settings

since they cannot share cross-modal information. Recently,

several parameter-efficient approaches have been applied to

multi-modal settings [35, 75]. However, these methods re-

quire costly large-scale multimodal pre-training. Instead,

we propose a latent audio-visual hybrid (LAVISH) adapter

that allows us to adapt frozen ViTs, pretrained only on im-

ages, to audio-visual tasks.

3. Technical Approach

In this section, we present our proposed latent audio-

visual hybrid (LAVISH) adapter that adapts frozen ViTs to

audio-visual tasks by updating a small number of additional

parameters. Our proposed LAVISH module, which we in-

ject into every layer of a frozen ViT, allows the model (i) to

adapt to the audio inputs and (ii) fuse information between

visual and audio inputs early in the feature representation.

An illustration of our method is presented in Figure 2. Be-

low, we present our technical approach in more detail.

3.1. Audio­Visual Input Embeddings

Audio and Image Inputs. Our framework takes audio

and visual inputs. For visual modality, we consider an RGB

video frame I ∈ R
H×W×3 with spatial dimensions H ×

W sampled from a video at time t. For audio, we use an

audio spectrogram A ∈ R
M×C spanning several seconds

and centered around each video frame at time t.

Audio and Image Tokenization. Following the

ViT [16], we first decompose each RGB frame I into n non-

overlapping patches and then flatten these patches into vi-

sual embeddings X
(0)
v ∈ R

n×d Similarly, we also project

audio spectrograms A into audio embeddings X
(0)
a ∈

R
k×d. Note that we inflate the input channel of the audio

spectrogram from 1 to 3 to match the dimensions of a linear

patch projection layer in the frozen ViT.

3.2. Adding LAVISH Adapters to a Frozen ViT

Next, we describe how we augment a pretrained ViT

with our proposed LAVISH adapters. Every layer of a pre-

trained ViT in our framework consists of three main oper-

ations: (i) a multi-head attention (MHA) [81], (ii) a multi-

layer perceptron (MLP), and (iii) our LAVISH adapter. As

illustrated in Figure 2, we add two LAVISH adapters to ev-

ery layer in the visual stream and audio stream (i.e., 4 LAV-

ISH adapters per layer). Note that every adapter module has

its trainable parameters, i.e., the parameters in the adapter

modules are not shared. Furthermore, to allow cross-modal

exchange, our LAVISH adapters can transfer information

from audio to visual tokens and conversely from visual to

audio tokens. Such a bidirectional exchange of information

ensures that both modalities aid each other in maximizing

the performance of a downstream audio-visual task.

Standard ViT Layer. Before describing how to inject
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LAVISH adapters into a frozen ViT, we first review how

a standard ViT layer processes audio and visual inputs in-

dependently. Formally, given audio X
(ℓ)
a and visual X

(ℓ)
v

inputs from a layer ℓ, the standard ViT layer first indepen-

dently applies MHA for the inputs from each modality:

Y(ℓ)
a = X(ℓ)

a +MHA(X(ℓ)
a ),

Y(ℓ)
v = X(ℓ)

v +MHA(X(ℓ)
v ).

(1)

For brevity, we skip the linear normalization layers in both

MHA and MLP operations. Furthermore, for completeness,

we define the MHA operation below:

MHA(X) = Softmax
(

(XWq)(XWk)
⊤
)

(XWv). (2)

Here, X denotes an input tensor, and Wq,Wk,Wv ∈
R

d×d depict the learnable projection weights. Afterward,

the intermediate representations Y
(ℓ)
a , and Y

(ℓ)
v obtained

from the MHA layer are fed into an MLP:

X(ℓ+1)
a = Y(ℓ)

a +MLP(Y(ℓ)
a ),

X(ℓ+1)
v = Y(ℓ)

v +MLP(Y(ℓ)
v ).

(3)

The above-defined MHA and MLP operations are then re-

peatedly applied to audio and visual inputs in each layer of

a ViT. With this formal description, we can now describe

how to incorporate LAVISH adapters into a frozen ViT.

ViT Layer with a LAVISH Adapter. As men-

tioned above, our model consists of two types of LAVISH

adapters: (i) audio-to-visual (A2V) and (ii) visual-to-audio

(V2A). We first describe how to inject an A2V LAVISH

adapter into a frozen ViT.

Let F
(ℓ)
v = LAV(X

(ℓ)
a ,X

(ℓ)
v ) denote an operation that

implements an audio-to-visual LAVISH adapter, which we

will describe in the next subsection. Then, the updated

MHA and MLP operations in each layer can be written as:

Y(ℓ)
v = X(ℓ)

v +MHA(X(ℓ)
v ) + LAV(X(ℓ)

a ,X(ℓ)
v ),

X(ℓ+1)
v = Y(ℓ)

v +MLP(Y(ℓ)
v ) + LAV(Y(ℓ)

a ,Y(ℓ)
v ).

(4)

Conceptually, the operation above enables a frozen ViT to

incorporate audio features into the visual representation.

Afterward, we can define a similar formulation for in-

jecting a visual-to-audio (V2A) LAVISH adapter into a

frozen ViT. Let F
(ℓ)
a = LAV(X

(ℓ)
v ,X

(ℓ)
a ) depict an oper-

ation that implements a visual-to-audio LAVISH adapter,

which we will also describe in the next subsection. Then,

we can re-write the original MHA and MLP operations (i.e.,

Equations 1,3) for audio inputs as:

Y(ℓ)
a = X(ℓ)

a +MHA(X(ℓ)
a ) + LAV(X(ℓ)

v ,X(ℓ)
a ),

X(ℓ+1)
a = Y(ℓ)

a +MLP(Y(ℓ)
a ) + LAV(Y(ℓ)

v ,Y(ℓ)
a ).

(5)

Intuitively, the operation above allows a frozen ViT to fuse

information from the audio and visual tokens for a more

expressive audio representation.

3.3. LAVISH Adapter

Lastly, we provide a technical description of our LAV-

ISH adapter. In a nutshell, LAVISH adapter is a dual-

pathway module that uses a small number of latent tokens

to efficiently inject visual cues into the audio representation

and vice-versa. It consists of four main technical compo-

nents: (i) a separate set of latent tokens for audio and visual

modalities, (ii) cross-modal attention between audio/visual

tokens and latent tokens to compress all tokens of one

modality into the latent tokens, (iii) a second cross-modal

attention for efficient audio-visual fusion, (iv) a lightweight

adapter module that incorporates audio-visual cues into a

newly computed feature representation via a small number

of trainable parameters. We now describe each of these

components in more detail. A detailed illustration of our

LAVISH adapter is presented in Figure 2.

Latent Tokens. Inspired by the success of several prior

methods [31, 60], we introduce a small set of randomly ini-

tialized latent audio and visual tokens L
(l)
a ∈ R

m×d, and

L
(l)
v ∈ R

m×d respectively. We use a unique set of latent

tokens at each layer l. Here, m depicts the number of latent

tokens, which is significantly smaller than the total number

of audio or visual tokens. For instance, the Swin [49] trans-

former contains > 2K audio or visual tokens. In contrast,

in most cases, we use m = 2 latent tokens, which is orders

of magnitude smaller. The purpose of these latent tokens

is to compactly summarize information from all the audio

and visual tokens for efficient information transfer from one

modality to another.

Cross-modal Attention. We use cross-modal attention

(CMA) to implement: (i) a compression module to con-

dense all tokens from one modality into the latent tokens

of the same modality and (ii) an audio-visual fusion mod-

ule, which fuses information between the compressed la-

tent tokens of one modality and all the tokens of the other

modality. We define the cross-modal attention operation as:

CMA(Q,K,V) = Q+ g · Softmax
(

QK⊤
)

V, (6)

where g is a learnable scalar to control the flow from one

modality to another, and Q, K, and V denote query, key,

and value tokens respectively.

Audio-Visual Latent Token Compression. As illus-

trated in Figure 2, we first use cross-modal attention to com-

press all the visual or audio tokens X
(ℓ)
a or X

(ℓ)
v into a small

set of latent tokens L
(l)
a or L

(l)
v respectively. Formally, this

can be written as:

S(ℓ)
a = CMA(L(l)

a ,X(ℓ)
a ,X(ℓ)

a ),

S(ℓ)
v = CMA(L(l)

v ,X(ℓ)
v ,X(ℓ)

v ),
(7)

where S
(ℓ)
a ∈ R

m×d and S
(ℓ)
v ∈ R

m×d are the latent sum-

mary tokens for audio and visual modalities respectively.

Intuitively, this operation allows us to compute latent sum-

mary tokens S
(ℓ)
a and S

(ℓ)
v as a weighted summation of all
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Figure 3. Adapting LAVISH to the Downstream Audio-Visual Tasks of audio-visual event localization, audio-visual segmentation, and

audio-visual question answering. The modules in green are trainable modules from the baselines [38, 93] that we adopt. Note that the

visual and audio backbones in our framework are frozen and share the same parameters.

the audio or visual tokens respectively. Furthermore, be-

cause the number of latent audio and visual tokens is so

small, this forces the model to include only the most rele-

vant audio or visual information into the latent tokens. This

in turn enables an efficient cross modal fusion between au-

dio and visual tokens, which we describe next.

Audio-Visual Feature Fusion. We can use the latent

summary tokens S
(ℓ)
a and S

(ℓ)
v to efficiently fuse informa-

tion between audio and visual modalities. Formally, we can

write this operation as:

X(ℓ)
av = CMA(X(l)

a ,S(ℓ)
v ,S(ℓ)

v ),

X(ℓ)
va = CMA(X(l)

v ,S(ℓ)
a ,S(ℓ)

a ),
(8)

where X
(ℓ)
av depicts a newly computed audio representation

that also incorporates visual cues, and similarly, X
(ℓ)
va de-

notes a new visual representation that incorporates audio

cues. At a high level, both audio-visual representations

X
(ℓ)
av and X

(ℓ)
va are computed as a weighted combination of

the latent summary tokens S
(ℓ)
v and S

(ℓ)
a respectively. As

discussed above, performing cross-modal attention between

audio or visual and the latent summary tokens is beneficial

because it allows us to avoid the quadratic cost of standard

cross-attention operation, which would be very costly due

to a large number (i.e., > 2K) of audio/visual tokens. The

resulting audio-visual representations X
(ℓ)
av and X

(ℓ)
va allow

both modalities to benefit from each other when solving

complex audio-visual understanding tasks.

Lightweight Adapter Module. Following prior work

on adapters [27], we use a similar bottleneck module that

consists of a learnable down-projection layer θdown, a non-

linear activation function σ, and a learnable up-projection

layer θup. The entire operation can be written as:

Z(ℓ)
av = θup(σ(θdown(X

(ℓ)
av ))),

Z(ℓ)
va = θup(σ(θdown(X

(ℓ)
va ))).

(9)

Putting It All Together. With all the formal defini-

tions above, we can define the final LAVISH adapter as

a sequential application of the three above-described op-

erations: (i) audio-visual latent token compression (Equa-

tion 7), (ii) audio-visual fusion (Equation 8), and (iii) the

lightweight adapter module (Equation 9). Note that these

operations are distinct for the visual and audio inputs. For

example, the LAVISH adapter operation LAV(X
(ℓ)
a ,X

(ℓ)
v )

incorporates audio cues into the visual features whereas

LAV(X
(ℓ)
v ,X

(ℓ)
a ) injects visual cues into the audio features.

4. Experimental Setup

4.1. Downstream Tasks and Datasets

Audio-Visual Event Localization task focuses on rec-

ognizing joint audio and visual events throughout multiple

time segments in a video. We evaluate on the AVE [80]

dataset containing 4, 143 videos, where each video duration

is 10 seconds and contains events spanning 28 categories.

To adapt our approach to this task, for each time segment,

we extract audio and visual features using a frozen visual

transformer (e.g., ViT or Swin) augmented with LAVISH

adapters. We then concatenate the audio and visual fea-

tures and attach a linear layer to obtain the final audio-visual

event prediction as shown in Figure 3 (a). Similar to prior

approaches [67,80,84,94], to assess the performance of our

method, we compute the fraction of correctly predicted seg-

ments and report it as our evaluation metric.

Audio-Visual Segmentation is a recently introduced

task that aims to segment objects given the sound. We

validate our framework on the AVSBench-S4 [93] dataset,

which contains 4, 932 videos with manually annotated

pixel-wise annotations of audible objects. To adapt our

framework to this task, we replace the pretrained U-Net

visual encoder and the pretrained audio feature extractor

of AVS [93] with our frozen transformer augmented with
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Table 1. Audio-Visual Event Localization. We compare our proposed LAVISH approach with previous audio-visual event localization

methods. ✘ indicates not using an external audio encoder or large-scale audio pretraining. In our case, this means that both audio and

visual inputs are processed using a visual encoder. The and ❄ denote fully fine-tuned and frozen encoders, respectively. ∗ denotes

our improved implementations, and † means that no official code was provided to report some of the baseline-specific metrics. The

performance is evaluated using audio-visual event classification accuracy. Despite not using an external audio encoder or large-scale audio

pretraining, LAVISH achieves better accuracy than all prior methods while also using a relatively small number of trainable parameters.

Method
Visual

Encoder

Audio

Encoder

Visual

Pretrain Dataset

Audio

Pretrain Dataset

Trainable

Params (M) ↓

Total

Params (M) ↓
Acc ↑

AVT [45] VGG-19 ❄ VGGish ❄ ImageNet AudioSet 15.8 231.5 76.8

PSP [94] VGG-19 ❄ VGGish ❄ ImageNet AudioSet 1.7 217.4 77.8

DPNet† [67] VGG-19 VGGish ImageNet AudioSet N/A N/A 79.7

AVEL [80] ResNet-152 ❄ VGGish ❄ ImageNet AudioSet 3.7 136.0 74.0

AVSDN [43] ResNet-152 ❄ VGGish ❄ ImageNet AudioSet 8.0 140.3 75.4

CMRAN [87] ResNet-152 ❄ VGGish ❄ ImageNet AudioSet 15.9 148.2 78.3

MM-Pyramid [89] ResNet-152 ❄ VGGish ❄ ImageNet AudioSet 44.0 176.3 77.8

CMBS [84] ResNet-152 ❄ VGGish ❄ ImageNet AudioSet 14.4 216.7 79.7

MBT* [60] ViT-B-16 AST ImageNet AudioSet 172 172 77.8

MBT* [60] ViT-L-16 AST ImageNet AudioSet 393 393 OOM

LAVISH ViT-B-16 ❄ (shared) ImageNet ✘ 4.7 107.2 75.3

LAVISH ViT-L-16 ❄ (shared) ImageNet ✘ 14.5 340.1 78.1

CMBS* Swin-V2-L ❄ VGGish ❄ ImageNet AudioSet 14.1 315.2 80.4

CMBS* Swin-V2-L VGGish ❄ ImageNet AudioSet 243.1 315.2 79.6

LAVISH Swin-V2-B ❄ (shared) ImageNet ✘ 5.0 114.2 78.8

LAVISH Swin-V2-L ❄ (shared) ImageNet ✘ 10.1 238.8 81.1

LAVISH adapters. We then use it as our audio-visual fea-

ture extractor (See Figure 3 (b)). To evaluate our approach,

we follow the evaluation protocol of AVSBench-S4, which

computes the mean Intersection-over-Union (mIoU) of the

predicted segmentation and the ground truth masks.

Audio-Visual Question Answering (AVQA) task re-

quires answering questions based on the associations be-

tween objects and sounds. We conduct our experiments

on the MUSIC-AVQA dataset [38], which contains 9, 288
videos and 45, 867 question-answer pairs. To adapt our

model to the AVQA task, we replace the pretrained visual

encoder and the pretrained audio encoder of the baseline

in [38] with our frozen transformer augmented with LAV-

ISH adapters as presented in Figure 3 (c). Following the

original AVQA work [38], we evaluate our model using the

answer prediction accuracy.

5. Results and Analysis

5.1. Audio­Visual Event Localization

In Table 1, we evaluate our model on the audio-visual

event localization task using the AVE [80] dataset. For

our main comparisons, we focus on the recent CMBS [84]

method, which achieves state-of-the-art results on this

benchmark. For a fair comparison, we additionally imple-

ment this baseline using a Swin-V2-L [49] backbone, which

is also the backbone we use in our LAVISH approach. We

also include a modality-specific multimodal fusion bottle-

neck (MBT) baseline [60] with cross-modal fusion between

audio and visual encoders (i.e., ViT and AST [23]) pre-

trained separately on large-scale image and audio datasets.

Our results in Table 1 indicate several interesting find-

ings. First, we note that, unlike prior approaches [67,84,87],

our framework does not require a pretrained audio encoder

or large-scale audio pretraining on AudioSet [19]. De-

spite not using a pretrained audio encoder or large-scale

AudioSet pretraining, our approach achieves better accu-

racy (81.1% vs. 80.4%) than the state-of-the-art CMBS

with the Swin-V2-L visual backbone while also requiring

fewer trainable parameters (10.1M vs 14.1M). We also note

that the base variant of the modality-specific dual encoder

MBT [60] (MBT-B) achieves better performance than LAV-

ISH with ViT-B encoder (77.8% vs 75.3%). However, the

MBT approach has 37× more trainable parameters (172M

vs 4.7M). Due to the small number of trainable parameters,

our approach can be scaled up much more easily than MBT.

Specifically, we note that the large MBT variant (MBT-

L) requires 393M trainable parameters, which leads to the

out of memory issues on a 48GB A6000 GPU. In compar-

ison, the large variant of our LAVISH approach only re-

quires 14.5M trainable parameters, which enables memory-

efficient training and inference, while also achieving higher

accuracy than the best performing MBT variant (78.1% vs

77.8%). Lastly, we also observe that Swin-based variants

of our model achieve consistently better accuracy than the

ViT-based variants (81.1% vs 79.6%). We hypothesize that

since audio information in spectrograms may be more local

than in images, the locality preservation mechanism of Swin

may better capture sounds with similar frequencies.

2304



Table 2. Audio-Visual Segmentation. We evaluate our LAVISH approach on the AVSBench-S4 [93] dataset for audio-visual segmentation

task using the mean intersection over union (mIoU) metric. Our method achieves comparable performance as the state-of-the-art AVS [93]

approach without relying on an external audio encoder or large-scale audio pretraining.

Method
Visual

Encoder

Audio

Encoder

Visual

Pretrain Dataset

Audio

Pretrain Dataset

Trainable

Params (M) ↓
Total

Params (M) ↓
mIoU ↑

LVS† [11] ResNet18 ResNet18 ImageNet ✘ N/A N/A 37.9

MMSL† [63] ResNet-18 CRNN ImageNet AudioSet N/A N/A 44.9

AVS [93] PVT-V2 VGGish ❄ ImageNet AudioSet 102.4 174.5 78.7

AVS* Swin-V2-L VGGish ❄ ImageNet AudioSet 249.7 321.8 80.4

LAVISH Swin-V2-L ❄ (shared) ImageNet ✘ 37.2 266.4 80.1

Table 3. Audio-Visual Question Answering on the Music-AVQA [38] dataset. We report accuracy on 3 types of questions, e.g., audio (A),

visual (V), and audio-visual (AV). Our approach achieves the best accuracy across all three categories of questions including audio-only

questions. This verifies the effectiveness of frozen ViT augmented with our LAVISH adapters to generalize to audio-visual data.

Method
Visual

Encoder

Audio

Encoder

Visual

Pretrain Dataset

Audio

Pretrain Dataset

Trainable

Params (M) ↓

Total

Params (M) ↓

Question ↑

A V AV

AVSD† [70] VGG-19 VGGish ImageNet AudioSet N/A N/A 68.52 70.83 65.49

Pano-AVQA† [90] Faster RCNN VGGish ImageNet AudioSet N/A N/A 70.73 72.56 66.64

AVQA [38] ResNet-18 ❄ VGGish ❄ ImageNet AudioSet 10.6 94.4 74.06 74.00 69.54

AVQA* Swin-V2-L ❄ VGGish ❄ ImageNet AudioSet 12.23 312.1 75.46 75.64 74.51

AVQA* Swin-V2-L VGGish ❄ ImageNet AudioSet 240 312.1 73.16 73.80 73.16

LAVISH Swin-V2-L ❄ (shared) ImageNet ✘ 21.09 249.8 77.15 77.37 77.08

5.2. Audio­Visual Segmentation

In Table 2, we also evaluate our LAVISH approach on

the audio-visual segmentation task [93] on the AVSBench-

S4 [93] dataset. Based on our results, we first observe

that our framework outperforms the previous best AVS

method [93] (80.1% vs 78.7%) while using fewer trainable

parameters (37.2M vs. 249.7M) and without using an exter-

nal audio encoder or large-scale audio pretraining. To make

the comparison to the AVS baseline more thorough, we also

implement it using the same Swin-V2-L backbone used by

our LAVISH method. In this setting, AVS achieves similar

performance to our approach (80.4% vs. 80.1%). How-

ever, this AVS variant uses significantly more trainable pa-

rameters than our method (249.7M vs. 37.2M). Thus, these

results indicate that a frozen transformer augmented with

our LAVISH adapters can generalize to complex dense-

prediction tasks such as audio-visual segmentation.

5.3. Audio­Visual Question Answering

Finally, in Table 3, we evaluate our framework on

MUSIC-AVQA [38], which is an audio-visual question-

answering dataset containing three categories of questions

(audio, visual, and audio-visual) to assess each method’s

reasoning capabilities across different modalities. We com-

pare our LAVISH approach with the AVSD [70], Pano-

AVQA [90] and AVQA [38] methods. Like in the previ-

ous tasks, we implement a stronger AVQA baseline using

a frozen Swin-V2-L backbone (i.e., the same as for our vi-

sual encoder). Based on these results, we first observe that

our proposed method outperforms all prior approaches by

a large margin for all three types of questions (+3.09%,

+3.37%, and +7.54%). Interestingly, we notice that de-

spite not using a pretrained audio encoder or large-scale au-

dio pretraining, LAVISH achieves better results not only on

the visual and audio-visual questions but also on the audio-

based questions. This suggests that pretrained ViTs might

capture representations that are useful not only for the im-

age but also for the audio data. (i.e., audio images). We

also note that LAVISH exhibits larger performance gains on

audio-visual questions (+2.57%) than on visual (+1.73%)

or audio-based (+1.69%). This suggests that LAVISH

adapters can effectively fuse information across audio and

visual modalities for the AVQA task. Overall, all the above

results reveal that LAVISH is a plug-and-play module for

diverse audio-visual tasks and architectures.

5.4. Ablation Studies

Next, we investigate how different design choices of our

model affect the performance on the Audio-Visual Event

Localization (AVE) [80] dataset.

LAVISH Adapter Design. In Table 4, we investigate

the usefulness of bidirectional cross-modal fusion and the

importance of latent tokens. To do this, we first intro-

duce an AVISH baseline that has exactly the same de-

sign/implementation as LAVISH but does not use latent to-

kens in its cross-attention operations. Instead, it directly

performs cross-modal fusion on the original audio and vi-

sual tokens, which makes it a lot more costly than our LAV-

ISH scheme. Furthermore, to study the importance of bidi-

rectional cross-modal fusion, we compare our final bidi-

rectional LAVISH approach with the unidirectional vari-

ants that only use either audio-to-visual (A2V) or visual-

to-audio (V2A) cross-modal fusion, and also a baseline that
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Table 4. LAVISH Adapter Design. We investigate different de-

sign choices of our LAVISH adapter on the audio-visual event lo-

calization task. Audio-to-visual (A2V) and visual-to-audio (V2A)

indicate cross-modal fusion direction. AVISH is a variant of our

approach that has the same implementation but does not use latent

tokens. Our results indicate that both bidirectional cross-modal

fusion and latent tokens are essential for good performance.

Method A2V V2A Acc ↑

AVISH

✘ ✘ 77.9

✔ ✘ 78.7

✘ ✔ 76.1

✔ ✔ 79.8

LAVISH

✘ ✘ 77.9

✔ ✘ 78.8

✘ ✔ 78.7

✔ ✔ 81.1

does not use any cross-modal connections.

To evaluate the performance of each method, we use

audio-visual event classification accuracy. Based on the re-

sults, in Table 4, we first note that the bidirectional cross-

modal fusion performs better than the baseline without

any cross-modal connections for both AVISH (+1.9%) and

LAVISH (+3.2%) methods respectively. Additionally, we

observe that the bidirectional variants of AVISH and LAV-

ISH consistently outperform the unidirectional A2V and

V2A baselines (+1.1% and +3.7% for AVISH and +2.3%

and +2.4% for LAVISH ). This verifies that bidirectional

cross-modal fusion enables our model better to incorpo-

rate audio and visual cues into its representation. We also

investigate the importance of latent tokens by comparing

LAVISH directly with AVISH. We observe that LAVISH

outperforms AVISH across both unidirectional (+0.1% and

+2.6%) and bidirectional variants (+1.3%). Thus, these

results verify the effectiveness of both bidirectional cross-

modal fusion and latent tokens.

Computational Cost Analysis. Next, we compare the

efficiency of the previously described bidirectional AVISH

and LAVISH methods using the GFLOPs metric. Note

that because the backbone encoder is the same for both ap-

proaches, we only measure the computational cost of our in-

troduced LAVISH modules while excluding the cost of the

backbone. We observe that LAVISH is 20× times cheaper

than AVISH (11 vs. 217 GFLOPs), and LAVISH saves

about 20% GPU memory for training. This makes sense

because, unlike our approach, the AVISH baseline performs

cross-attention between every pair of visual and audio to-

kens. Due to the quadratic cost of cross-attention and a large

number of tokens, this operation is very expensive. In con-

trast, using a small number of latent tokens (e.g., 2) enables

efficient audio-visual fusion in our approach.

Comparison to Other Parameter-Efficient Schemes.

In Table 5, we also compare our LAVISH adapter with

Table 5. Comparison with Other Parameter-Efficient Methods.

All parameter-efficient schemes operate on both audio and visual

inputs. The CMA column depicts whether the cross-modal atten-

tion (CMA) is applied for fusing audio-visual information. Based

on these results, we report that our LAVISH approach achieves the

best performance while also being reasonably efficient in terms of

the number of trainable parameters.

Method CMA
Trainable

Params (M) ↓
Acc ↑

Prompt Tuning [37] ✘ 1.2 76.0

Compacter [32] ✘ 3.7 78.4

Compacter [32] ✔ 3.7 78.6

LoRA [29] ✘ 17.7 79.0

LoRA [29] ✔ 17.7 79.7

Adapter [27] ✘ 8.9 79.1

Adapter [27] ✔ 8.9 79.9

LAVISH ✔ 10.1 81.1

other parameter-efficient methods such as Adapter [27],

Compacter [32], and LoRA [29]. For each of these

baselines, we follow the same training pipeline as for our

LAVISH approach except that we replace our LAVISH

adapters with a corresponding parameter-efficient scheme

(e.g., Adapter, Compacter or LoRA). Our results suggest

that LAVISH outperforms LoRA (81.1% vs. 79.1%) while

also using fewer trainable parameters (10.1M vs. 17.7M).

Additionally, we note that although Compacter and Adapter

use fewer trainable parameters than LAVISH (10.1M vs.

8.9M and 3.7M), their accuracy is substantially lower

than for our approach (81.1% vs. 79.1% and 78.4%). In

sum, compared to other parameter-efficient schemes, our

LAVISH adapter provides better accuracy while still being

relatively parameter-efficient.

6. Conclusions

In this paper, we investigate whether frozen ViTs, pre-

trained only on images, can generalize to audio-visual

data. We demonstrate that without any audio pretraining

our LAVISH adapter outperforms the state-of-the-art ap-

proaches on diverse audio-visual understanding tasks such

as audio-visual event localization, audio-visual segmenta-

tion, and audio-visual question-answering. Furthermore,

compared to prior approaches, our method requires a signif-

icantly smaller number of trainable parameters, enabling ef-

ficient audio-visual adaptation. In the future, we will inves-

tigate our model’s generalization ability to the audio-only

and visual-language tasks, as well as the generalization of

pretrained audio models to the audio-visual data.
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