This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised
Domain Adaptation

Mattia Litrico

Alessio Del Bue

Pietro Morerio

Pattern Analysis and Computer Vision (PAVIS) - Istituto Italiano di Tecnologia

mattia.litrico@phd.unict.it, alessio.delbue@iit.it, pietro.morerio@iit.it

Abstract

Standard Unsupervised Domain Adaptation (UDA) meth-
ods assume the availability of both source and target data
during the adaptation. In this work, we investigate Source-
free Unsupervised Domain Adaptation (SF-UDA), a specific
case of UDA where a model is adapted to a target domain
without access to source data. We propose a novel approach
for the SF-UDA setting based on a loss reweighting strategy
that brings robustness against the noise that inevitably af-
fects the pseudo-labels. The classification loss is reweighted
based on the reliability of the pseudo-labels that is measured
by estimating their uncertainty. Guided by such reweight-
ing strategy, the pseudo-labels are progressively refined by
aggregating knowledge from neighbouring samples. Further-
more, a self-supervised contrastive framework is leveraged
as a target space regulariser to enhance such knowledge
aggregation. A novel negative pairs exclusion strategy is pro-
posed to identify and exclude negative pairs made of samples
sharing the same class, even in presence of some noise in the
pseudo-labels. Our method outperforms previous methods
on three major benchmarks by a large margin. We set the new
SF-UDA state-of-the-art on VisDA-C and DomainNet with
a performance gain of +1.8% on both benchmarks and on
PACS with +12.3% in the single-source setting and +6.6%
in multi-target adaptation. Additional analyses demonstrate
that the proposed approach is robust to the noise, which re-
sults in significantly more accurate pseudo-labels compared
to state-of-the-art approaches.

1. Introduction

Deep learning methods achieve remarkable performance
in visual tasks when the training and test sets share a similar
distribution, while their generalisation ability on unseen data
decreases in presence of the so called domain shift [18,48].
Moreover, DNNs require a huge amount of labelled data to
be trained on a new domain entailing a considerable cost
for collecting and labelling the data. Unsupervised Domain

Adaptation (UDA) approaches aim to transfer the knowledge
learned on a labelled source domain to an unseen target
domain without requiring any target label [2, 13,22,57].

Common UDA techniques have the drawback of requiring
access to source data while they are adapting the model
to the target domain. This may not always be possible in
many applications, i.e. when data privacy or transmission
bandwidth become critical issues. In this work, we focus
on the setting of Source-free adaptation (SF-UDA) [37,55,

,60], where source data is no longer accessible during
adaptation, but only unlabelled target data is available. As
a result, standard UDA methods cannot be applied in the
SF-UDA setting, since they require data from both domains.

Recently, several SF-UDA methods have been proposed,
focusing on generative models [36,43], class prototypes [37],
entropy-minimisation [37,61], self-training [37] and auxil-
iary self-supervised tasks [55]. Yet, generative models re-
quire a large computational effort to generate images/features
in the target style [36], entropy-minimisation methods of-
ten lead to posterior collapse [37] and the performance of
self-training solutions [37] suffer from noisy pseudo-labels.
Self supervision and pseudo-labelling have also been intro-
duced as joint SF-UDA strategies [55,60], raising the issue
of choosing a suitable pretext task and refining pseudo-labels.
For instance, Chen et al. [5] propose to refine predictions
within a self-supervised strategy. Yet, their work does not
take into account the noise inherent in pseudo-labels, which
leads to equally weighting all samples without explicitly ac-
counting for their uncertainty. This may cause pseudo-labels
with high uncertainty to still contributing in the classification
loss, resulting in detrimental noise overfitting and thus poor
adaptation.

In this work, we propose a novel Source-free adaptation
approach that builds upon an initial pseudo-labels assign-
ment (for all target samples) performed by using the pre-
trained source model, always assumed to be available. To
obtain robustness against the noise that inevitably affects
such pseudo-labels, we propose to reweight the classification
loss based on the reliability of the pseudo-labels. We mea-
sure it by estimating pseudo-labels uncertainty, after they
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Figure 1. (a) We obtain the refined pseudo-label ¢ (green circle with black outline) for the current sample by looking at pseudo-labels of
neighbour samples. (b) Predictions from neighbours are used to estimate the uncertainty of §; by computing the weight w through Entropy
H. (c) A temporal queue Q. storing predictions at past T epochs, i.e. {e — T, ..., e — 1}, is used within the contrastive framework to exclude
pairs of samples sharing the same class from the list of negative pairs (query, key).

have been refined by knowledge aggregation from neigh-
bours sample, as shown in Figure 1 (a). The introduced
loss reweighting strategy penalises pseudo-labels with high
uncertainty to guide the learning through reliable pseudo-
labels. Differently from previous reweighting strategies, we
reweight the loss by estimating the uncertainty of the refined
pseudo-labels by simply analysing neighbours’ predictions,
as shown in Figure 1 (b).

The process of refining pseudo-labels necessarily requires
a regularised target feature space in which neighbourhoods
are composed of semantically similar samples, possibly shar-
ing the same class. With this objective, we exploit an aux-
iliary self-supervised contrastive framework. Unlike prior
works, we introduce a novel negative pairs exclusion strat-
egy that is robust to noisy pseudo-labels, by leveraging past
predictions stored in a temporal queue. This allows us to
identify and exclude negative pairs made of samples belong-
ing to the same class, even if their pseudo-labels are noisy,
as shown in Figure 1 (c).

We benchmark our method on three major domain adap-
tation datasets outperforming the state-of-the-art by a large
margin. Specifically, on VisDA-C and DomainNet, we set
the new state-of-the-art with 90.0% and 69.6% accuracy,
with a gain of +1.8% in both cases, while on PACS we im-
prove the only existing SF-UDA baseline [1] by +12.3% and
+6.6% in single-source and multi-target settings. Ablation
studies demonstrate the effectiveness of individual compo-
nents of our pipeline in adapting the model from the source
to the target domain. We also show how our method is able
to progressively reduce the noise in the pseudo-labels, better

than the state-of-the-art.

To summarise, the main contributions of this work are:

* We introduce a novel loss re-weighting strategy that
evaluates the reliability of refined pseudo-labels by es-
timating their uncertainty. This enables our method to
mitigate the impact of the noise in the pseudo-labels.
To the best of our knowledge, this is the first work
that estimates the reliability of pseudo-labels after their
refinement.

We propose a novel negative pairs exclusion strategy
which is robust to noisy pseudo-labels, being able to
identify and exclude those negative pairs composed of
same-class samples.

We validate our method on three benchmark datasets,
outperforming SOTA by a large margin, while also
proving the potential of the approach in progressively
refining the pseudo-labels.

The remainder of the paper is organized as follows. In
Section 2, we discuss related works in the literature. Sec-
tion 3 describes the proposed method. Section 4 illustrates
the experimental setup and reports the obtained results. Fi-
nally, conclusions are drawn in Section 5 together with a
discussion of limitations.

2. Related Work

Domain Adaptation. Standard Unsupervised Domain
Adaptation (UDA) methods aim to adapt a model trained
on a source domain, in order to work also on an unseen
target domain, when domain shift is present between the
two. Many early methods relied on aligning statistics of
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the distributions [46], reducing the discrepancy between do-
mains [12,13,22,40,57,58], as well as exploiting generative
models [22]. However, all these methods required the ac-
cess to both source and target data during the adaptation.
Recently, some Source-free adaptation methods have been
proposed, adapting to the target domain using only the source
model and unlabelled target data [5,36,37,43,55,60,61,66].
TENT [61] and SHOT [37] introduced entropy minimisation
and pseudo-labeling. On-target [60] proposed to combine
a pseudo-labels generation and a self-supervised task, but
the pseudo-labels are not refined during the adaptation. In-
stead, [5] proposed a self-supervised strategy to refine the
pseudo-labels. The main limitation is that all the pseudo-
labels equally contributed to the loss, without considering
the noise that inevitably affects the (possibly refined) pseudo-
labels. Moreover, it did not employ any other countermea-
sure to mitigate the effects of this noise.

Self-supervised Learning and Pseudo Labeling. Self-
supervised methods are successful in learning transferable
representations of visual data [4, 6-8, 16, 19, 20, 29, 45].
Specifically, [6, 8, 19] showed how contrastive-based pre-
text tasks could help in enhancing the generalisation abil-
ity of deep models. Moreover, some self-supervised ap-
proaches have been recently exploited in both UDA [51,52]
and SF-UDA [5,55,60] settings. Pseudo-labeling is a sim-
ple but effective technique used in semi-supervised learn-
ing [31,54], self-supervised learning [4] and domain adap-
tation [5, 37, 38, 60]. It consists in using labels predicted
by the model as self-supervision. Fix-Match [54] and On-
target [60] are methods that used pseudo-labels but they did
not perform any labels refinement. In this work, we use
both self-supervision and pseudo-labeling as an approach to
exploit the structure of the target features space to progres-
sively refine pseudo-labels.

Learning with Noisy Labels. While deep learning models
achieve competitive results with carefully labelled data, their
performance decreases when they are trained with noisy
labels. Zhang et al. [67] demonstrated that a deep neu-
ral network can easily overfit an entire dataset with any
ratio of corrupted labels which results in poor generalisa-
tion on test data. To address this problem, different ap-
proaches have been proposed focusing on the creation of
noise-robust losses [15, 27,41, 63], the estimation of the
noise-transition matrix [17], the selection of clean from
noisy samples [35, 64], as well as the reweighting of the
loss based on the reliability of the given label [24, 33, 39].
Works in [49] and [24] proposed to reweight the loss based
on weights learned using a meta-learned curriculum, but
they require a noisy-free validation set which does not fit
the SF-UDA setting. Furthermore, they do not refine noisy
labels meaning that the amount of noise in the labels will
not be reduced during training. In addition, our reweighting
strategy does not require either noise-free validation set or

target labels. Last, NEL [!] combined a Negative Learn-
ing loss with a pseudo-labels refinement framework based
on ensembling. Negative Learning [27] refers to an indirect
learning method which uses complementary labels to combat
noise. While we also exploit a Negative Learning loss, we
do not require an ensemble of networks in order to perform
refinement, which results in a large computational cost.

3. Proposed Method

This work addresses the Source-free adaptation problem
for the task of image classification. Let D, be the source data
composed by pairs {xs, ys }, where x5 € Xy and ys € Vs
are images and ground truth labels, respectively. Let D, be
the target data composed by only images {z¢} ;, where
xi € X,. The underlying labels y! € )); are available only
for evaluation purposes. In the SF-UDA setting, the source
data Dy cannot be used during adaptation. Regardless of this
limitation, given the trained source model only, we adapt the
model to work on the unlabelled target data D;.

The model has a typical architecture composed by a fea-
tures extractor f, : Xy — RP and a classifier h, : RY —
R, where P is the length of features vectors and C is the
number of classes.

At the beginning of the adaptation process, the source
model is used to generate pseudo-labels for each of the un-
labelled target image xi. Due to the domain shift between
source and target domains, the source model makes a con-
sistent amount of incorrect assignments, which can be inter-
preted as noise in pseudo-labels. The goal of the adaptation
phase is thus to progressively refine the noisy pseudo-labels,
which in turn results to progressively adapt the source model
to the target domain.

3.1. Pseudo-label Refinement via Nearest neigh-
bours Knowledge Aggregation

Similar to [5], the refinement of the pseudo-labels is ac-
complished by aggregating knowledge from nearest neigh-
bours samples. The underlying idea is that similar samples
are likely to have the same label. Moreover, here we assume
that features from semantically similar images should lie
close in the feature space. This assumption is satisfied by
employing a contrastive framework that pulls close features
from similar samples. The strategy used to aggregate the
knowledge from neighbours is pictorially shown in Figure 1
(a) and it is based on soft voting.

More formally, given a target image x; and a weak aug-
mentation t,,, drawn randomly from the distribution 7,
we obtain a features vector z = f;(t,q (7)) from the weakly
augmented image t,,, (). The features z are then used to
search the neighbours of the sample z; in the target features
space. Consequently, the pseudo-label of x; is refined by
aggregating knowledge from the selected neighbours. To this
aim, the probability outputs from the selected neighbours
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Figure 2. We average prediction scores of the neighbour samples
(red vectors) to obtain the average score vector p;. If the network
consistently predicts the same class for neighbour samples, p; has
low entropy and we thus assign a high weight to the refined pseudo-
label 9:, considering it reliable.

are averaged to perform a soft-voting strategy [42]:

(o) _ 1 (e)
0=z, (1)

=s
where 7 is the set of indices of the selected neighbours and
the superscript c indicates that the averaging operation is
performed for each class. To obtain a refined pseudo-label,
we use the argmax operation upon p:

§i = argmax p”. )

The refined pseudo-labels are then used as self-supervision
for target samples (see Sec. 3.4).

The aforementioned refining process needs a representa-
tion of the target features space where to search for neighbour
samples. This is allowed by a bank B of length M, which
stores pairs {27, p’ };”il of features and predictions obtained
from weakly augmented target samples that are selected
randomly from the target dataset. The neighbours are then
selected by computing the cosine distances between the fea-
tures of z; and features stored in the bank. The K samples
with the lowest distance are selected as neighbours. Fol-
lowing [20], to maintain the information stored in the bank
more stable, we use a slowly changing momentum model
9:(-) = hi(f{(+)) to update features 2’ and predictions p’.

3.2. Loss Reweighting with Uncertainty

The refined pseudo-labels g, are used as a self-supervised
signal for computing a standard classification loss on target
data, as explained in Sec. 3.4. However, since the refinement
is an iterative process, the refined pseudo-labels obtained
with neighbours’ knowledge aggregation still contain some
noise. Therefore, equally weighting all the pseudo-labels
will disrupt the adaptation, since the model is trained with

incorrect labels. To solve this issue, we propose a novel
way to reweight the classification loss by estimating the
uncertainty of pseudo-labels after their refinement. Such
estimation is performed by considering the neighbours only,
disregarding the pseudo-label of the sample itself. We built
upon the intuition that since pseudo-labels are obtained from
neighbours’ predictions, their uncertainty can be determined
by the neighbours’ accuracy. But since we do not have any
target label, we cannot compute the neighbours’ accuracy. In
this section, we thus want to answer the following question:
Can we empirically estimate the uncertainty of a pseudo-
label using only neighbours’ predictions?

To answer this question, we introduce a method based
on entropy-based uncertainty estimation using the consen-
sus among neighbours’ predictions. The underlying idea is
that if the network predicts the same class for the neighbour
samples, we could consider the derived pseudo-labels reli-
able (low uncertainty). Otherwise, if neighbours’ predictions
mostly disagree with each other, the obtained pseudo-labels
should be considered unreliable (high uncertainty). More-
over, we observe that the averaged scores vector p;, obtained
by averaging neighbours’ probabilistic outputs, has low en-
tropy in the former case and high entropy in the latter case,
as illustrated in the example of Figure 2. Hence, we reweight
the classification loss in Eq. (7) computing a weight w that
puts more importance on pseudo-labels obtained from p;
with low entropy and less importance to pseudo-labels ob-
tained from p; with high entropy.

More formally, given a target sample x; we obtain the
averaged scores vector p; from the soft-voting strategy, as
explained in Sec. 3.1. Note that p, is obtained by averaging
probability distributions, so it is still a probability distribu-
tion. Then, we compute the entropy of p; as:

C
H(pe) = E[I(p)] = — Y b logs bf, 3)
c=1

where C' is the number of classes in the dataset. Entropy is
also re-scaled by its maximum as follows:

H(p:) = lf:[;ftc)y .

“)

From the normalised entropy value 7{(f;), we obtain the
weight w for the sample x; as:

Wz, = exp(=H(pr))- (5)

The motivation behind the negative exponential function

is twofold. First, the negative sign is used to invert the
behaviour of the exponential function to put more weight on
low entropy values and less weight on high entropy values.
Then, the exponential function does not penalise too much
samples near to the decision boundary that naturally have low
consistency in neighbours’ predictions. Tab. 6 (Experiments
Section), demonstrates the effectiveness of the exponential
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Figure 3. A couple of target images would be wrongly considered
as a negative pair if only comparing the latest predictions (green
box). Instead, since z} and :ci share the same pseudo-labels (at
least once) in the past T epochs, i.e. {e — T, ...,e — 1}, we exclude
them from the list of negative pairs.

reweighting compared to a linear one.

3.3. Temporal Queue for Negative Pairs Exclusion

As described in Sec. 3.1, the process of pseudo-labels
refining through neighbours samples is based on the assump-
tion that features vectors extracted from same-class samples
lie closer in the features space rather than features from
different-class samples. To match this requirement, we use a
contrastive framework on target data during the adaptation.
Since target data is unlabelled, we employ a self-supervised
contrastive training. Similar to [20], we pull together features
from different augmentations of the same image (positive
pairs) and we push away features from other instances (nega-
tive pairs). For each sample x;, we select two strong augmen-
tations tg,,t., € Tsq from the distribution 7Tg,. Then, we
generate two strongly-augmented samples ¢, (), t, ()
and we encode them into query ¢ = fi(tsq(2+)) and key
k = fl(t,,(x:)) features. Queries and keys features will be
used to build the positive pairs. To build negative pairs, we
also maintain a queue (). that stores keys features {k*} ¥ ;
computed in each mini-batch. The negative pairs are then
composed by pairing features from the queue.

MoCo [20] uses the pairs (g, k) as positive and all the
pairs {(g, k%) }¥| as negative pairs by minimising and max-
imising their cosine distance. Since features are stored in (),
independently from the class, even features from samples
sharing the same class will be pushed apart, which is in con-
trast with our objective. Recently, Chen et al. [5] propose a
strategy to exclude some negative pairs from the contrastive
loss. For every negative pair, they just compare the pseudo-
labels of the two samples composing the pair. If the two
samples share the same pseudo-label, then the negative pair
is masked out. Otherwise, the negative pair composed of
the two samples is included in the negative pairs list. How-
ever, the exclusion strategy of [5] does not take into account
the noise that inevitably affects the pseudo-labels during
the adaptation. If one or both samples that compose the
negative pair have noisy (incorrect) pseudo-labels, the com-
parison will be totally distorted. As a result, a high number

of “false negative” pairs (pairs made by samples sharing the
same class but with different pseudo-labels) will be wrongly
included in the negative pairs list. Hence, features from sam-
ples sharing the same class will be wrongly pushed away
due to the noise.

We introduce a novel negative pairs exclusion strategy
able to identify and exclude pairs made of samples that
belong to the same class, even in presence of noise in the
pseudo-labels. Differently from [5], which rely on current
pseudo-labels only, the proposed exclusion strategy looks
at the history of pseudo-labels that samples had during the
training. By looking at the history of pseudo-labels, we have
a higher probability to observe, at least one time, the correct
label in the history rather than by looking only at the current
pseudo-label. Hence, even if a sample has a noisy pseudo-
label in the current epoch, the history will probably reveal
its correct one and this allows us to correctly identify and
exclude negative pairs made of samples sharing the same
class.

To this end, we turn the queue (). into a temporal queue
by also storing for each key features the refined pseudo-
labels {g’ JT:1 of the T past epochs, i.e {e — T, ...,e — 1}.
Then, we exclude from the negative pairs list all the pairs
that shared the same pseudo-labels at least once in the past T’
epochs, as illustrated in Figure 3. Accordingly, we optimise
the following InfoNCELoss [59]:

exp(q-ky/T)
> jen;, €xp(q - kj/7)

where N is the set of indices of samples in Q). that never
shared with the query sample the same pseudo-labels in the
past T epochs. In Sec. 4.2, we analyse the behaviour of our
method using different values for 7.

(6)

ctr
L{"" = Lingonce = — log

3.4. Joint training with self-learning

The refined pseudo-labels obtained with neighbours’
knowledge aggregation are used to compute a classifica-
tion loss on target data in order to adapt the model to the
new domain. We use the refined pseudo-labels ¢, obtained
from a weakly-augmented image ¢, (z;) as self-supervision
for the strongly-augmented version ¢, ().

The refining of the pseudo-labels is an iterative process,
so it progressively improves the pseudo-labels accuracy dur-
ing the training. This means that, mostly in the early stage of
the training, some noise is still present in the pseudo-labels.
In addition to the proposed reweighting and exclusion strate-
gies, to mitigate the effect of the noisy pseudo-labels, we use
the negative learning loss [27, 28] as classification loss. Dif-
ferently from [27,28], which use the negative learning loss
concurrently or alternating with a standard positive loss, we
do not use the positive loss in the entire training. In Sec. 4.2,
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we discuss the benefits given by using only the negative loss.
As a result, our classification loss is the following:

C
Lfls = — Ea;te?(t |:wwt : ch lOg (1 - pga) ’ (7)

c=1

where ¢ is a complementary label § € {1, ..., C}\{@:} cho-
sen randomly from the set of labels and without the refined
pseudo-labels, ps, = 0(g¢(tsq(2¢))) is the probabilistic out-
put for the strongly-augmented image ¢, (x+)) and w,, is the
weight that estimates the uncertainty of ¢, as explained in
Sec. 3.2. The random selection of the complementary label
7 is coherent with the negative learning framework [27].

To prevent the posterior collapse, we follow the standard
state-of-the-art protocol by optimising the following regular-
isation term:

C

LY = Esex, Y Pyloghi By = Enie, o(gi(tsa(1))).

c=1

The overall loss function used for the target data training is
the following:

Ly = nL{" + v L' + v L§™, (8)

where 71 = 9 = y3 = 1 are non-tuned hyper-parameters.

4. Experiments and Results

Datasets. To evaluate the goodness of our approach, we
employ experiments on PACS [34], VisDA-C [47] and Do-
mainNet [46].

- PACS contains 4 domains (Art-Painting, Cartoon, Photo
and Sketch) and 7 object categories with a large domain shift
due to different styles. We perform experiments for both
single-source and multi-target settings and we compare the
average results among domain combinations.

- VisDA-C is a challenging large-scale dataset with a large
synthetic-to-real domain gap across 12 object categories. We
report and compare the per-class top-1 accuracy and their
average (Avg.).

- DomainNet is a large-scale dataset. Following [50], we use
a subset of it that contains 126 classes from 4 domains (Real,
Sketch, Clipart, Painting) and we refer to it as DomainNet-
126. We evaluate 7 domain shifts built from the 4 domains
and we report the top-1 accuracy under each domain shift as
well as their average (Avg.).

Implementation details. We use standard classification
architectures comprising a feature extractor followed by a
classifier. For fair comparison purposes, we choose the same
ResNet 18/50/101 models [2 1] used by competitors as back-
bones in the experiments. Specifically, we use ResNet18 for
PACS, ResNet50 for DomainNet and ResNet101 for VisDA-
C experiments (as detailed in the caption of each Table).
Following SHOT [37], we add an extra 256-dimensional
fully-connected+BatchNorm bottleneck after the encoder

Single-Source UDA
Method SF-UDA|P—+A P—C P—>S|A—P A—C A— S|Avg.
NEL[I] v | 826 805 323 | 984 843 561 |724
Ours v | 875 842 758 | 988 846 772 [847

Table 1. Classification accuracy (%) on PACS for the single-source
setting. All methods use the ResNet-18 backbone. Highest accura-
cies are in bold. We surpass the NEL [ 1] baseline by 12.3%.

Multi-Target UDA | P—ACS | A—PCS |
Method  SF-UDA| A C S | P C S |Avg

1-NN X 152 18.1 25.6(22.7 19.7 22.7|20.7
ADDA [57] X 243 20.1 22.4|32.5 17.6 18.9|22.6
DSN [3] X 284 21.1 25.6|29.5 25.8 24.6|25.8
ITA [14] X 31.4 23.0 28.2|35.7 27.0 28.9]29.0
X
v

KD [44] 24.6 322 33.8|35.6 46.6 57.5|46.6
NEL [1] |80.1 76.1 25.9|96.0 82.8 49.8|68.4
Ours v |747 70.1 68.7|94.6 70.8 71.5|75.0

Table 2. Classification accuracy (%) on PACS for the multi-target
setting. All methods use the ResNet-18 backbone. Highest accu-
racies are in bold. We surpass the SF-UDA baseline NEL [1] by
6.6%.

output. For experiments on PACS and VisDA-C, we also
apply WeightNorm [53] on the classifier.

For source training, we initialise the ResNet backbone
with ImageNet-1K [10] pre-trained weights available in the
Pytorch model zoo. We train the source model with the stan-
dard cross-entropy loss and with label-smoothing like in [56].
For the adaptation phase, the target model is initialised with
the source model’s parameters. For more details, the code
that is available at https://github.com/MattiaLitrico/Guiding-
Pseudo-labels-with-Uncertainty-Estimation-for-Source-
free-Unsupervised-Domain-Adaptation.

4.1. Results

PACS: single-source and multi-target SF-UDA. In Tab. 1
and Tab. 2 we show results obtained on the PACS dataset for
single-source and multi-target experiments, respectively. For
the single-source setting, we evaluate our method over six
standard domain shifts using one domain as source domain
and one as target domain. We surpass the SOTA in every
experiment and with a large margin of +12.3% on average.
For the multi-target setting, we built two target domains by
merging either the art-painting, cartoon and sketch domains
(ACP) or the photo, cartoon and sketch domains (PCS). Re-
sults show that our approach improves SOTA baseline by
+6.6% on average.

VisDA-C synthetic — real. Tab. 3 compares our method
with state-of-the-art unsupervised domain adaptation and
Source-free adaptation methods on the VisDA-C dataset
with the synthetic to real shift. For the UDA setting, our
method overcomes the strong baseline CAN [26] by +2.8%
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Method SE-UDA | plane beycl bus car horse knife mcycl person plant sktbrd train truck | Avg.
CDAN+BSP [9] X 924 610 81.0 575 8.0 806 90.1 770 842 779 821 384 | 759
SWD [30] X 90.8 825 817 705 91.7 695 863 71.5 874 63.6 856 292 | 764
MCC [25] X 88.7 803 805 715 901 932 850 71.6 8.4 738 8.0 369 | 788
CAN [26] X 97.0 872 825 743 978 962  90.8 80.7 96.6 963 875 599 | 872
DivideMix [35] v | 950 824 853 781 942 903 90.1 813 925 919 912 6038 | 86.1
SHOT [37] v 953 875 787 556 941 942 814 80.0 918 90.7 865 59.8 | 83.0
DIPE [62] v 952 876 788 559 939 950 84.1 81.7 921 889 854 58.0 | 83.1
NEL [1] v 945 608 923 873 873 932 876 911 569 834 937 86.6 | 84.2
A2 Net [65] v 940 878 856 668 937 951 858 812 91.6 882 865 56.0 | 843
G-SFDA [66] v 96.1 883 855 741 971 954 895 794 954 929 89.1 426 | 854
SFDA-DE [11] v 953 912 775 721 957 978 855 86.1 955 930 863 61.6 | 8.5
AdaContrast [5] v 97.0 847 840 773 967 938 919 84.8 943 9311 941 49.7 | 86.8
CoWA [32] v 96.8 903 87.0 674 972 966 904 873 956 955 918 625 | 882
Ours v | 973 962 905 91.8 90.0 942 874 877 970 843 930 81.0 | 90.0

Table 3. Classification accuracy (%) on VisDA-C synthetic — real. All methods use the ResNet-101 backbone. The proposed approach
outperforms the UDA state-of-the-art by 2.8% on average (Avg.) and the previous SF-UDA state-of-the-art by 1.8% on average (Avg.)

Method

SF-UDA‘R—)C R—-P P—-C C—>S S—-P R—=S P—»R‘Avg.

we achieve an increment of performances of +20.7% on the

44.8 65.7 41.9 34.9

61.3

473 353

62.4

MCC [25] x|
DivideMix [35] | 68.1

TENT [61]
SHOT [37]
AdaContrast [5]

724 | 489
| 672

69.5 67.7 64.3 71.3

58.5
67.7
70.2

| 742

65.7
68.4
69.8

70.4

57.9
66.9
68.6

68.8

48.5
60.1
58.0

64.0

524
66.1
65.9

67.5

54.0
59.9
61.5

67.0
80.8
80.5

77
67.1
67.8

| 69.6

NSNS

Ours 65.7 76.5

Table 4. Classification accuracy (%) on 7 domain shifts of
DomainNet-126. All methods use the ResNet-50 backbone. The
proposed approach achieves the highest accuracy on 6 domain shifts
and the highest accuracy on average (Avg.).

Pseudo-label  Contrastive Negative Temporal-queue Uncertainty ~Avg.
refinement  regularisation learning exclusion reweighting ~Acc.
v X X X X 523

v v X X X 78.9

v 4 v X X 82.1

v v v v X 85.8

4 4 v v v 90.0

Table 5. Ablation studies of sub-components of the proposed
method measured by classification accuracy (%) on VisDA-C. First
row the pseudo-label refinement Sec. 3.1. Second row the con-
trastive regularisation Sec. 3.3. Third row the negative learning
loss Sec. 3.4. Fourth row the proposed temporal-queue exclusion
Sec. 3.3. Fifth row the proposed uncertainty reweighting Sec. 3.2.

and outperforms all the other baselines by an even larger
margin, even though we do not use source data at all dur-
ing adaptation. For the more challenging setting SF-UDA,
we achieve the highest per-class average accuracy by a no-
table margin of +1.8% on a recent baseline. In addition, our
method achieves a comparable accuracy in every class, while
all the baselines drastically fail for at least one class.

DomainNet-126. In Tab. 4 we show results on 7 domain
shifts of the large-scale dataset DomainNet-126 comparing
with both UDA and SF-UDA baselines. Even if our approach
does not require accessing source data during the adaptation,

average performance when compared with the UDA method
MCC [25]. In addition, our method achieves the highest ac-
curacy on 5 domain shifts and it outperforms state-of-the-art
SF-UDA approaches by +1.8% on average. We also obtain
stable performance across domains, with accuracies always
above 60.0%, which makes our method more suitable in
practical contexts thanks to its reliability in all settings.
Label noise removal baseline. For both VisDA-C and
DomainNet-126, we also compare our method with Di-
videMix [35], a strong label noise removal baseline. Results
in Tab. 3 and Tab. 4 show that despite DivideMix is competi-
tive with some SF-UDA baselines, our approach improves
performance by +3.9% and +2.4%. As also suggested in
Ahmed et al. [1], the noise in pseudo-labels (called shift-
noise) caused by the domain shift is very skewed and thus
difficult to handle by standard label noise algorithms.

4.2. Analysis

Ablation Study. In Tab. 5, we report the results of ablation
studies for individual components of our pipeline on VisDA-
C. First, we only exploit pseudo-labels refinement (Sec. 3.1)
achieving a lower accuracy of 52.3%. By inserting the con-
trastive regularisation (second row of Tab. 5), we boost the
accuracy by +26.6%. The third row of the table shows the
effectiveness of the negative learning loss (Sec. 3.4) com-
pared to a positive one, with an increment of performances of
+3.2%, while the fourth presents results obtained by enabling
the temporal queue-based exclusion strategy introduced in
Sec. 3.3, which brings another performance gain of +3.7%.
Finally, in the last row, we show the boost in performance
obtained by the proposed uncertainty reweighting approach
(Sec. 3.2) which further boosts performance by 4.2%.
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Figure 4. Classification accuracy on VisDA-C (%) versus length of
the queue Q. in Sec. 3.3.

Length of the Temporal Queue. Figure 4 plots the trend
of the accuracy with different values of 7', i.e. the temporal
length of the queue Q. (see Sec. 3.3). We achieve the best
performance using 7" = 5 that allows us to have a negligi-
ble memory overhead to memorise the 7" past predictions.
Note that the worst accuracy is obtained using 7' = 1 that
corresponds to a naive exclusion strategy using only current
predictions.

Guiding the Pseudo-labels Refinement. Figure 5 plots the
trend of the accuracy of the refined pseudo-labels during
the adaptation. AdaContrast [5] is highly affected by the
noise in the pseudo-labels resulting in progressively decreas-
ing the pseudo-labels accuracy. On the contrary, Figure 5
demonstrates the effectiveness of the proposed reweighting
and exclusion strategies in increasing the robustness to the
noise. As a consequence, our method is able to progressively
improve the accuracy of pseudo-labels and thus guides the
learning through more accurate labels.

Hard sample selection. We test a hard strategy based on
entropy margin [23]: we set a threshold on the entropy and
train the network only with samples above the threshold.
Results in Tab. 6 show that our smoother solution performs
largely better. We hypothesize that the smoothness of our
reweighting strategy allows to not highly penalise samples
that inevitably have an high entropy, such as samples near
the boundaries.

Linear vs Exponential Loss Reweighting. Tab. 6 (Top)
demonstrates the effectiveness of using an exponential func-
tion in Eq. (5) rather than a linear one. Although using
a linear reweighting our method overcomes multiple base-
lines, with an accuracy of 85.1%, the proposed exponential
reweighting achieves a gain of performance of +4.9%.
Negative vs Positive Learning. Tab. 6 (Bottom) shows
results obtained optimising, as classification loss, only a
standard positive loss (first row), a linear combination of a
positive and a negative loss (second row), and only a negative
learning loss. Although the noise affects the pseudo-labels,
our method achieves satisfying performance even using a
positive loss. This emphasises the role of our reweighting
strategy in dealing with noise. Nonetheless, using only the
negative loss we achieve a gain of performances of +4.8%.

825 828 833

—— AdaContrast
—8— Ours

69.1

Epochs
Figure 5. Accuracy of the refined pseudo-labels on VisDA-C. The
noise is not handled in AdaContrast [5] and the model progressively
overfits wrong pseudo-labels. On the contrary, our reweighting and
exclusion strategies mitigate the effects of noisy samples, resulting
in progressively improving the pseudo-labels accuracy.

Method Acc.
Ours w/ hard entropy margin 85.9
Ours w/ linear weighting 85.1
Ours w/ positive 83.0
Ours w/ positive+negative 85.2
QOurs 90.0

Table 6. Classification accuracy (%) on VisDA-C comparing linear
vs exponential weighting in Eq. (5) and positive vs negative classi-
fication loss.

5. Conclusion

In this work, we introduced a novel approach for SF-UDA
in image classification. Our method aggregates knowledge
from neighbours to refine pseudo-labels and estimates their
uncertainty in order to mitigate the impact of wrong assign-
ments. We also introduced a novel negative pairs exclusion
strategy, used inside a contrastive framework, to identify
and exclude pairs made of samples sharing the same class.
Our method surpassed the SOTA by a large margin on ma-
jor DA benchmarks. Additional analyses experimentally
demonstrated the effectiveness of the introduced strategies
in increasing the robustness against noise, as well as improv-
ing the accuracy of the pseudo-labels that results in guiding
the adaptation with significantly more accurate labels.

Limitations and Impact. The proposed approach, if com-
pared to other Source-free UDA methods, comes with the
reasonable overhead of maintaining and updating a queue
during training. Concerning possible negative impact, our
method shares potential downsides of any other UDA algo-
rithm: while in general they can allow to reliably deploy Al
systems in new domains, such systems could be subjected to
inappropriate use or lead to harmful applications.
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