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Figure 1. The inversion and editing results of our model in the real images. We show from the left to right of each row: an input image,
inversion results, and our editing results. We edit images by modifying the attributes in the embedding space following [21, 54]. The ↓
means a decreased magnitude of the manipulation attribute.

Abstract

GAN inversion and editing via StyleGAN maps an in-
put image into the embedding spaces (W , W+, and F)
to simultaneously maintain image fidelity and meaningful
manipulation. From latent space W to extended latent
space W+ to feature space F in StyleGAN, the editability
of GAN inversion decreases while its reconstruction quality
increases. Recent GAN inversion methods typically explore
W+ and F rather than W to improve reconstruction fidelity
while maintaining editability. As W+ and F are derived
from W that is essentially the foundation latent space of
StyleGAN, these GAN inversion methods focusing on W+

and F spaces could be improved by stepping back to W . In
this work, we propose to first obtain the proper latent code
in foundation latent space W . We introduce contrastive
learning to align W and the image space for proper la-
tent code discovery. Then, we leverage a cross-attention en-
coder to transform the obtained latent code in W into W+

and F , accordingly. Our experiments show that our explo-

*Y. Song and Q. Chen are the joint corresponding authors.

ration of the foundation latent space W improves the repre-
sentation ability of latent codes in W+ and features in F ,
which yields state-of-the-art reconstruction fidelity and ed-
itability results on the standard benchmarks. Project page:
https://kumapowerliu.github.io/CLCAE.

1. Introduction

StyleGAN [29–31] achieves numerous successes in im-
age generation. Its semantically disentangled latent space
enables attribute-based image editing where image content
is modified based on the semantic attributes. GAN in-
version [62] projects an input image into the latent space,
which benefits a series of real image editing methods [4,36,
49, 65, 72]. The crucial part of GAN inversion is to find
the inversion space to avoid distortion while enabling ed-
itability. Prevalent inversion spaces include the latent space
W+ [1] and the feature space F [28]. W+ is shown to
balance distortion and editability [56, 71]. It attracts many
editing methods [1, 2, 5, 20, 25, 53] to map real images into
this latent space. On the other hand, F contains spatial im-
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age representation and receives extensive studies from the
image embedding [28, 48, 59, 63] or StyleGAN’s parame-
ters [6, 14] perspectives.

The latent space W+ and feature space F receive wide
investigations. In contrast, Karras et al. [31] put into explor-
ing W and the results are unsatisfying. This may be because
that manipulation in W will easily bring content distortions
during reconstruction [56], even though W is effective for
editability. Nevertheless, we observe that W+ and F are
indeed developed from W , which is the foundation latent
space in StyleGAN. In order to improve image editability
while maintaining reconstruction fidelity (i.e., W+ and F),
exploring W is necessary. Our motivation is similar to the
following quotation:

“You can’t build a great building on a weak foundation.
You must have a solid foundation if you’re going to have a
strong superstructure.”

—Gordon B. Hinckley
In this paper, we propose a two-step design to improve

the representation ability of the latent code in W+ and F .
First, we obtain the proper latent code in W . Then, we use
the latent code in W to guide the latent code in W+ and F .
In the first step, we propose a contrastive learning paradigm
to align the W and image space. This paradigm is derived
from CLIP [51] where we switch the text branch with W .
Specifically, we construct the paired data that consists of
one image I and its latent code w ∈ W with pre-trained
StyleGAN. During contrastive learning, we train two en-
coders to obtain two feature representations of I and w, re-
spectively. These two features are aligned after the train-
ing process. During GAN inversion, we fix this contrastive
learning module and regard it as a loss function. This loss
function is set to make the one real image and its latent code
w sufficiently close. This design improves existing stud-
ies [31] on W that their loss functions are set on the image
space (i.e., similarity measurement between an input image
and its reconstructed image) rather than the unified image
and latent space. The supervision on the image space only
does not enforce well alignment between the input image
and its latent code in W .

After discovering the proper latent code in W , we lever-
age a cross-attention encoder to transform w into w+ ∈
W+ and f ∈ F . When computing w+, we set w as the
query and w+ as the value and key. Then, we calculate the
cross-attention map to reconstruct w+. This cross-attention
map enforces the value w+ close to the query w, which en-
ables the editability of w+ to be similar to that of w. Be-
sides, w+ is effective in preserving the reconstruction abil-
ity. When computing f , we set the w as the value and key,
while setting f as the query. So w will guide f for fea-
ture refinement. Finally, we use w+ and f in StyleGAN to
generate the reconstruction result.

We named our method CLCAE (i.e., StyleGAN in-

version with Contrastive Learning and Cross-Attention
Encoder). We show that our CLCAE can achieve state-
of-the-art performance in both reconstruction quality and
editing capacity on benchmark datasets containing human
portraits and cars. Fig. 1 shows some results. This indi-
cates the robustness of our CLCAE. Our contributions are
summarized as follows:

• We propose a novel contrastive learning approach to
align the image space and foundation latent space W
of StyleGAN. This alignment ensures that we can ob-
tain proper latent code w during GAN inversion.

• We propose a cross-attention encoder to transform la-
tent codes in W into W+ and F . The representation
of latent code in W+ and feature in F are improved to
benefit reconstruction fidelity and editability.

• Experiments indicate that our CLCAE achieves state-
of-the-art fidelity and editability results both qualita-
tively and quantitatively.

2. Related Work

2.1. GAN Inversion

GAN inversion [70] is the task to find a latent code
in a latent space of pretrained-GAN’s domain for the
real image. As mentioned in the GAN inversion sur-
vey [62], the inversion methods can be divided into three
groups: optimization-based, encoder-based, and hybrid.
The optimization-based methods [1, 2, 7, 11, 11, 19, 64, 71]
try to directly optimize the latent code or the parameters of
GAN [53] to minimize the distance between the reconstruc-
tion image. The encoder-based methods [5, 10, 20, 25, 28,
33,44,50,52,56]learn a mapper to transfer the image to the
latent code. The hybrid methods [69,70] combine these two
methods.

StyleGAN Inversion. Our work belongs to the StyleGAN
inversion framework. Typically, there are three embedding
spaces (i.e., W [30], W+ [1], and F [28]) and they are
the trade-off design between the distortion and editability.
The W is the foundation latent space of StyleGAN, sev-
eral works [56,71] have shown inverting the image into this
space produces a high degree of editability but unsatisfied
reconstruction quality. Differently, the W+ is developed
from W to reduce distortions while suffering less editing
flexibility. On the other hand, the F space consists of spe-
cific features in SyleGAN, and these features are generated
by the latent input code of foundation latent space W in the
StyleGAN training domain. The F space contains the high-
est reconstruction ability, but it suffers the worst editability.
Different from these designs that directly explore W+ and
F , we step back to explore W and use it to guide W+ and
F to improve fidelity and editability.
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2.2. Latent Space Editing

Exploring latent space’s semantic directions improves
editing flexibility. Typically, there are two groups of meth-
ods to find meaningful semantic directions for latent space
based editing: supervised and unsupervised methods. The
supervised methods [3, 13, 17, 54] need attribute classifiers
or labeled data for specific attributes. InterfaceGAN [54]
use annotated images to train a binary Support Vector Ma-
chine [45] for each label and interprets the normal vectors
of the obtained hyperplanes as manipulation direction. The
unsupervised methods [21,55,58,65] do not need the labels.
GanSpace [21] find directions use Principal Component
Analysis (PCA). Moreover, some methods [24, 49, 60, 72]
use the CLIP loss [51] to achieve amazing text guiding im-
age manipulation. And some methods use the GAN-based
pipeline to edit or inpaint the images [37–41].In this paper,
we follow the [56] and use the InterfaceGAN and GanSpace
to find the semantic direction and evaluate the manipulation
performance.

2.3. Contrastive Learning

Contrastive learning [8, 15, 16, 18, 22, 47] has shown ef-
fective in self-supervised learning. When processing multi-
modality data (i.e., text and images), CLIP [51] provides a
novel paradigm to align text and image features via con-
trastive learning pretraining. This cross-modality feature
alignment motivates generation methods [32, 49, 60, 61, 72]
to edit images with text attributes. In this paper, we are in-
spired by the CLIP and align the foundation latent space W
and the image space with contrastive learning. Then, we
set the contrastive learning framework as a loss function to
help us find the suitable latent code in W for the real image
during GAN inversion.

3. Method

Fig. 3 shows an overview of the proposed method. Our
CNN encoder is from pSp [52] that is the prevalent encoder
in GAN inversion. Given an input image I , we obtain la-
tent code w in foundation latent space W ∈ R512. This
space is aligned to the image space via contrastive learning.
Then we set the latent code w as a query to obtain the latent
code w+ in W+ ∈ RN×512 space via W+ cross-attention
block. The size of N is related to the size of the generated
image (i.e., N = 18 when the size of the generated image
is 1024 × 1024). Meanwhile, we select the top feature in
the encoder as f in F ∈ RH×W×C space and use w to re-
fine f with F cross-attention block. Finally, we send w+

and f to the pretrained StyleGAN pipeline to produce the
reconstruction results.
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Figure 2. The process of contrastive learning pre-training. The
encoders and projection heads extract the embedding of the image
and latent code. Then we make the paired embeddings similar to
align the image and latent code distribution. After alignment, we
fix the parameters in the contrastive learning module to enable the
latent code to fit the image during inversion.

3.1. Aligning Images and Latent Codes

We use contrastive learning from CLIP to align image I
and its latent code w. After pre-training, we fix this module
and use it as a loss function to measure the image and latent
code similarity. This loss is set to train the CNN encoder in
Fig. 3 as to align one image I and its latent code w.

The contrastive learning module is shown in Fig. 2. We
synthesize 100K (I) and latent code(w) pairs with pre-
trained StyleGAN. The I and w are fed into the module
where there are feature extractors (i.e., CNN for I and
transformer for w) and projection heads. Specifically, our
minibatch contains S image and latent code pairs (I ∈
R256×256×3, w ∈ R512). We denote their embeddings after
projection heads (i.e., hidden state) as hI(I) ∈ R512 and
hw(w) ∈ R512, respectively. For the i-th pair from one
minibatch (i.e., i ∈ [1, 2, ..., S]), its embeddings are hI(Ii)
and hw(wi). The contrastive loss [46,68] can be written as

L(I→w)
i = − log

exp
[
⟨hI(Ii), hw(wi)⟩ /t

]
∑S

k=1 exp
[
⟨hI(Ii), hw(wk)⟩ /t

] , (1)

L(w→I)
i = − log

exp
[
⟨hw(wi), hI(Ii)⟩ /t

]
∑S

k=1 exp
[
⟨hw(wi), hI(Ik)⟩ /t

] , (2)

where ⟨·⟩ denotes the cosine similarity, and t ∈ R+ is a
learnable temperature parameter. The alignment loss in the
contrastive learning module can be written as

Lalign =
1

S

S∑
i=1

(
λL(I→w)

i + (1− λ)L(w→I)
i

)
, (3)

where λ = 0.5. We use the CNN in pSp [52] as the im-
age encoder, and StyleTransformer [25] as the latent code
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Figure 3. The pipeline of our method. With the input image, we first predict the latent code w with feature T1. The w is constrained
with the proposed Lalign. Then two cross-attention blocks take the refined w as a foundation to produce the latent code w+ and feature f .
Finally, we send the w+ to StyleGAN via AdaIN [26] and replace the selected feature in StyleGAN with f to generate the output image.

encoder. Then in the GAN inversion process, we fix the
parameters in the contrastive learning module and compute
Lalign to enable the latent code to fit the image. Aligning
images to their latent codes directly via supervision Lalign

enforces our foundation latent space W+ close to the image
space to avoid reconstruction distortions.

3.2. Cross-Attention Encoder

Once we have pre-trained the contrastive learning mod-
ule, we make it frozen to provide the image and latent code
matching loss. This loss function is utilized for training the
CNN encoder in our CLCAE framework shown in Fig. 3.
Our CNN encoder is a pyramid structure for hierarchical
feature generations (i.e., T1, T2, T3). We use T1 to generate
latent code w via a map2style block. Both the CNN encoder
and the map2style block are from pSp [52]. After obtain-
ing w, we can use I and w to produce an alignment loss via
Eq. 3. This loss will further update the CNN encoder for im-
age and latent code alignment. Also, we use w to discover
w+ and f with the cross-attention blocks.

3.2.1 W+ Cross-Attention Block

As shown in Fig. 3, we set the output of W+ cross-attention
block as the residual of w to predict w+. Specifically,
we can get the coarse residual ∆w+ ∈ RN×512 with the
CNN’s features and map2style blocks first. Then we send
each vector ∆w+

i ∈ R512 in ∆w+ and w ∈ R512 to the

W+ cross-attention block to predict the better ∆w+
i , where

i = 1, ..., N . In the cross-attention block, we set the w as
query(Q) and ∆w+

i as value(V ) and key(K) to calculate the
attention map. This attention map can extract the potential
relation between the w and ∆w+

i , and it can make the w+

close to the w. Specifically, the Q, K, and V are all pro-
jected from ∆w+

i and w with learnable projection heads,
and we add the output of cross-attention with w to get final
latent code w+

i in W+, the whole process can be written as

Q = wWw+

Q ,K = ∆w+
i W

w+

K , V = ∆w+
i W

w+

V ,

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V,

w+
i = w +Attention(Q,K, V ),

(4)

where Ww+

Q , Ww+

K , Ww+

V ∈ R512×512 and the feature di-
mension d is 512. We use the multi-head mechanism [57]
in our cross-attention. The cross-attention can make the w+

close to the w to preserve the great editability. Meanwhile,
the reconstruction performance can still be preserved, since
we get the refined w via the Lalign.

3.2.2 F Cross-Attention Block

The rich and correct spatial information can improve the
representation ability of f as mentioned in [48]. We use
the T3 ∈ R64×64×512 as our basic feature to predict f as
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shown in Fig. 3, since the T3 has the richest spatial infor-
mation in the pyramid CNN. Then we calculate cross atten-
tion between the w and T3 and output a residual to refine
the T3. In contrast to the W+ cross-attention block, we set
the w as value(V ) and key(K) and T3 as query(Q), this is
because we want to explore the spatial information of w to
support the T3. Finally, we use a CNN to reduce the spatial
size of the cross-attention block’s output to get the final pre-
diction f , the shape of f matches the feature of the selected
convolution layer in F space. We choose the 5th convolu-
tion layer following the FS [63]. The whole process can be
written as:

Q = T3W
f
Q,K = wW f

K , V = wW f
V ,

Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V,

f = CNN
[
Attention(Q,K, V ) + T3

]
,

(5)

where W f
Q, W f

K , W f
V ∈ R512×512 and the feature dimen-

sion d is 512. Finally, we send the w+ to the pretrained
StyleGAN (G) via AdaIN [26] and replace the selected
feature in G with f to get the final reconstruction result
G(w+, f).

Image Editing. During the editing process, we need to get
the modified ŵ+ and f̂ . For the ŵ+, we obtain it with
the classic latent space editing methods [21, 54]. For the
f̂ , we follow the FS [63] to generate the reconstruction re-
sult G(w+) and the edited image G(ŵ+) respectively first.
Then we extract the feature of the 5th convolution layer of
G(ŵ+) and G(w+) respectively. Finally, we calculate the
difference between these two features and add it to the f to
predict the f̂ . The whole process to get the f̂ is:

f̂ = f +G5(ŵ)−G5(w), (6)

where the G5(w̃) and G5(w) is the feature of 5-th convo-
lution layer. With the modified ŵ+ and f̂ , we can get the
editing results G(ŵ+, f̂).

3.3. Loss Functions

To train our encoder, we use the common ID and recon-
struction losses to optimize the three reconstruction results
I1rec = G(w), I2rec = G(w+) and I3rec = G(w+, f) simul-
taneously. Meanwhile, we use the feature regularization to
make the f close to the original feature in G similar to the
FS [63].

Reconstruction losses. We utilize the pixel-wise L2 loss
and LLPIPS [67] to measure the pixel-level and perceptual-
level similarity between the input image and reconstruction

image as

Lrec =

3∑
i=1

(
λLPIPS LLPIPS

(
I, Iirec

)
+ λ2L2

(
I, Iirec

))
,

(7)
where the LLPIPS and L2 are are weights balancing each
loss. We set the LLPIPS = 0.2 and L2 = 1 during training.

ID loss. We follow the e4e [56] to use the identity loss to
preserve the identity of the reconstructed image as

Lid =

3∑
i=1

(
1−

〈
R(I),R(Iirec)

〉)
. (8)

For the human portrait dataset, the R is a pretrained ArcFace
facial recognition network [27]. For the cars dataset, the R
is a ResNet-50 [23] network trained with MOCOv2 [9].

Feature regularization. To edit the f with Eq. 6, we need
to ensure f is similar to the original feature of G. So we
adopt a regularization for the f as

Lfreg =
∥∥f −G5(w+)

∥∥2
2
. (9)

Total losses. In addition to the above losses, we add the
Lalign to help us find the proper w. In summary, the total
loss function is defined as:

Ltotal = λrec Lrec + λIDLID + λfreg Lfreg + λalignLalign,
(10)

where λrec , λID, λfreg and λalign are the weights that adjust
the contribution of each loss term. And we set the λrec = 1,
λID = 0.1, λfreg =0.01 and λalign = 1 respectively by default.

4. Experiments
In this section, we first illustrate our implementation de-

tails. Then we compare our method with existing methods
qualitatively and quantitatively. Finally, an ablation study
validates the effectiveness of our contributions. More re-
sults are provided in the supplementary files. We will re-
lease our implementations to the public.

4.1. Implementation Details

During the contrastive learning process, we follow the
CLIP [51] and use the Adam optimizer [34] to train the im-
age and latent code encoders. We synthesize the image-
latent code pair dataset with the pre-trained StyleGAN2 in
cars and human portrait domains. We set the batch size to
256 for training. During the StyleGAN inversion process,
we train and evaluate our method on cars and human por-
trait datasets. For the human portrait, we use the FFHQ [30]
dataset for training and the CelebA-HQ test set [43] for
evaluation. For cars, we use the Stanford Cars [35] dataset
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Figure 4. Visual comparison of inversion and editing between our method and the baseline methods (e4e [56], pSp [52], ST [25],
restylee4e [5] and restylepSp [5]) in the W+ group. We produce CLCAEw+ = G(w+) to compare with them. Our method is more
effective in producing manipulation attribute relevant and visually realistic results. ↓ means a reduction of the manipulation attribute.

for training and testing. We set the resolution of the in-
put image as 256 × 256. We follow the pSp [52] and use
the Ranger optimizer to train our encoder for GAN inver-
sion, the Ranger optimizer is a combination of Rectified
Adam [42] with the Lookahead technique [66]. We set the
batch size to 32 during training. We use 8 Nvidia Telsa
V100 GPUs to train our model.

4.2. Qualitative Evaluation

Our CLCAE improves the representation ability of the
latent code in W+ and feature in F spaces. We evaluate
qualitatively how our latent codes w+ and f improve the
output result. To clearly compare these two latent codes,
we split the evaluation methods into two groups. The first
group consists of methods only using latent code w+, we
denote this group as ‘group W+’. The second group con-
sists of methods using both w+ and f , we denote this group
as ‘group F’. When comparing to the group W+, we use
our results CLCAEw+ computed via G(w+) for fair com-
parisons. When comparing to the group F , we use our re-
sults computed via G(w+, f). During image editing, we
use InterfaceGAN [54] and GanSpace [21] to find the se-
mantic direction and manipulate the face and car images,
respectively.

W+ space. Fig. 4 shows the visual results where our
CLCAEw+ is compared to e4e [56], pSp [52], restylepSp [5],
restylee4e [5] and StyleTransformer (ST) [25]. Both our
CLCAEw+ and e4e show better inversion performance in

the human portrait. This phenomenon is caused by the over-
fitting of those methods in (b)∼ (e), since the W+ space
pays more attention to the quality of the reconstruction.
The CLCAEw+ and e4e can produce w+ close to the w,
which improves the robustness of these two methods. More-
over, our CLCAEw+ is more capable of avoiding distortions
while maintaining editability than other methods, including
e4e (see the second row). This is because our w+ is based
on the solid w that does not damage the reconstruction per-
formance of w+. For the domain of cars, we observe that
pSp and restylepSp are limited to represent editing ability
(see the (b) and (e) of the viewpoint row). On the other
hand, e4e and ST are able to edit images, but their recon-
struction performance are unsatisfying. In contrast to these
methods, our CLCAEw+ maintains high fidelity and flexi-
ble editability at the same time.

F space. Fig. 5 shows our comparisons to PTI [53], Hy-
per [6], HFGI [59], and FS [63] in the F space. The results
of PTI, Hyper, HFGI, and FS contain noticeable distortion
in the face (e.g., the eyes in the red box regions in (a)∼ (d))
and the car (e.g., the background in (a)∼ (c) and the red box
regions in car images). Although FS [63] reconstructs the
background of the car image well, it loses editing flexibil-
ity (e.g., see (d) of 4 rows). This is because the FS method
relies too much on F space, which limits the editability. In
contrast, our results are in high fidelity as well as a wide
range of editability with powerful f and w+.
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Figure 5. Visual comparison of inversion and editing between our method and the baseline methods (PTI [53], Hyper [6], HFGI [59],
and FS [63]) in the F group. We produce CLCAE = G(w+, f) to compare with them. Our method not only generates high-fidelity
reconstruction results but also retains the flexible manipulation ability. ↓ means a reduction of the manipulation attribute.

(b) CLCAEw
w/o  Lalign

(c) CLCAEw (d) CLCAEw
+

w/o     Att

(e) CLCAEw+ (f) CLCAE 

w/o  Att

(g) CLCAE  (f) Input（a）Optimization

Figure 6. Visual results of ablation study. The (a) is an Optimization [31] method which inverts the image to the W space. The (b) and
(c) are the results generated by w with and without Lalign respectively. By comparing (a), (b), and (c), we can see that Lalign can help our
method produce better latent code w than optimization-based methods. (c) and (d) are the results generated by w+ with and without W+

cross-attention block respectively. The (e) and (f) are the results generated by both w+ and f with and without F cross-attention block,
respectively. The performance gap between every two results can prove the effectiveness of w+ and f cross-attention blocks.

4.3. Quantitative Evaluation

Inversion. We perform a quantitative comparison in
the CelebA-HQ dataset to evaluate the inversion perfor-
mance. We apply the commonly-used metric: PSNR,
SSIM, LPIPS [67] and ID [27]. Table 1 shows these eval-
uation results. The PTI in F group and RestylepSp in W+

group have better performance than our method in ID and
LPIPS metric, respectively. But these two method takes a
lot of time for the optimization operation or the iterative

process. With the simple and effective cross-attention en-
coder and the proper foundation latent code, our method
can achieve good performance in less time.

Editing. There is hardly a straight quantitative measure-
ment to evaluate editing performance. We use the Inter-
FaceGAN [54] to find the manipulation direction and edit
the image, then we calculate the ID distance [27] between
the original image and the manipulation one. For a fair
comparison, during the ID distance evaluation, we use the
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Table 1. Quantitative comparisons of state-of-the-art methods on the CelebA-HQ dataset. We conduct a user study to measure the editing
performance. The number denotes the preference rate of our method against the competing methods. Chance is 50%. ↓ indicates lower is
better while ↑ indicates higher is better.

Group W+ F
Method e4e [56] pSp [52] TS [25] restylee4e [5] restylepSp [5] CLCAEw+ PTI [53] Hyper [6] HFGI [59] FS [63] CLCAE

PSNR↑ 19.08 20.39 20.50 19.45 21.20 21.23 23.49 22.09 22.13 24.08 24.50
SSIM↑ 0.53 0.56 0.57 0.54 0.57 0.59 0.65 0.61 0.62 0.67 0.68

Inversion LPIPS↓ 0.20 0.16 0.16 0.19 0.13 0.15 0.09 0.10 0.12 0.07 0.06
ID↑ 0.50 0.56 0.59 0.50 0.65 0.65 0.83 0.74 0.68 0.75 0.79

Time↓ 0.029s 0.028s 0.026s 1.154s 1.150s 0.071s 355.323s 1.161s 0.036s 0.581s 0.080s

Editing
ID↑ (Smile) 0.44 0.52 0.53 0.47 0.64 0.62 0.57 0.62 0.54 0.66 0.67
User Study↓ 70% 60% 62% 84% 73% - 74% 72% 60% 96% -

”smile” manipulation direction and adopt the same editing
degree for CLCAE and other baselines. Besides using the
object metric to evaluate the editing ability, we conduct a
user study on the manipulated results from compared meth-
ods. We randomly collected 45 images of faces and cars for
9 groups of comparison methods, each group has 5 images,
and these images are edited with our method and a baseline
method, respectively. 20 participants need to select the one
edited image with higher fidelity and proper manipulation.
The user study is shown in Table 1. The results indicate that
most participants support our approach.

4.4. Ablation Study

Effect of contrastive learning. We compare the optimiza-
tion method [31] to evaluate whether our method can pre-
dict the solid latent code in foundation W space. The opti-
mization method (a) can invert the image to the W with a
fitting process. The visual comparisons are shown in Fig. 6,
CLCAEw in (c) is the reconstruction results generated with
our latent code w. Our method outperforms the optimiza-
tion method in the ability of reconstruction and identity
preservation. This is because the proposed Lalign can di-
rectly calculate the distance between the latent code w and
the image, while the optimization method only measures the
difference in the image domain. Meanwhile, we present the
results generated by w without Lalign in (b) to prove our con-
trastive learning validity further. The associated numerical
results are shown in Table 2.

Effect of the W+ Cross-Attention. To validate the effec-
tiveness of W+ cross-attention block, we remove it and use
the coarse residual as w+ directly to do a comparison exper-
iment. As shown in Fig. 6, the experiment results in (d) have
distortion (see the eyes regions of the first row and the hair
regions of the second row). And the cross-attention block
in (e) can improve performance. This is because the cross-
attention block utilizes the solid latent code w to support
our method to predict better w+. The numerical analysis
results are shown in Table 2.

Effect of the F Cross-Attention. We analyze the effect of
F cross-attention block by comparing the results produced

Table 2. Quantitative ablation study on the CelebA-HQ dataset. ↓
indicates lower is better while ↑ indicates higher is better.

Method
Optimization

[31]

CLCAEw

w/o Lalign
CLACEw

CLCAEw+

w/o W+ Att
CLCAEw+

CLCAE

w/o F Att
CLCAE

PSNR↑ 16.95 18.15 19.36 20.61 21.23 23.93 24.50

SSIM↑ 0.53 0.52 0.54 0.57 0.59 0.66 0.679

LPIPS↓ 0.23 0.26 0.22 0.20 0.15 0.10 0.06

ID↑ 0.19 0.26 0.50 0.56 0.65 0.70 0.79

Time↓ 193.50s 0.022s 0.022s 0.028s 0.071s 0.074s 0.080s

with it and without it. We can see the visual comparison
in Fig. 6. The results in (f) show that our method has ar-
tifacts in the hair and eye regions of the face without the
F cross-attention block. And our method with F cross-
attention block demonstrates better detail (see the hair and
eyes in (g)). This phenomenon can prove that the F cross-
attention block can extract the valid information in w and
refine the f , which also tells us the importance of a good
foundation. The numerical evaluation in Table 2 also indi-
cates that F cross-attention block improves the quality of
reconstructed content.

5. Conclusion and Future Work

we propose a novel GAN inversion method CLCAE that
revisits the StyleGAN inversion and editing from the foun-
dation space W viewpoint. CLCAE adopts a contrastive
learning pre-training to align the image space and latent
code space first. And we formulate the pre-training pro-
cess as a loss function Lalign to optimize latent code w in W
space during inversion. Finally, CLCAE sets the w as the
foundation to obtain the proper w+ and f with proposed
cross-attention blocks. Experiments on human portrait and
car datasets prove that our method can simultaneously pro-
duce powerful w, w+, and f . In the future, we will try to ex-
pand this contrastive pre-training process to other domains
(e.g., Imagenet dataset [12]) and do some basic downstream
tasks such as classification and segmentation. This attempt
could bring a new perspective to contrastive learning.
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 2020.

[19] Jinjin Gu, Yujun Shen, and Bolei Zhou. Image processing
using multi-code gan prior. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
2020.

[20] Shanyan Guan, Ying Tai, Bingbing Ni, Feida Zhu, Feiyue
Huang, and Xiaokang Yang. Collaborative learning for faster
stylegan embedding. arXiv preprint arXiv:2007.01758,
2020.

[21] Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and
Sylvain Paris. Ganspace: Discovering interpretable gan con-
trols. arXiv preprint arXiv:2004.02546, 2020.

[22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 2020.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015.

[24] Xianxu Hou, Linlin Shen, Or Patashnik, Daniel Cohen-Or,
and Hui Huang. Feat: Face editing with attention. arXiv
preprint arXiv:2202.02713, 2022.

[25] Xueqi Hu, Qiusheng Huang, Zhengyi Shi, Siyuan Li,
Changxin Gao, Li Sun, and Qingli Li. Style trans-
former for image inversion and editing. arXiv preprint
arXiv:2203.07932, 2022.

[26] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE international conference on computer vi-
sion, 2017.

[27] Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu,
Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue Huang.
Curricularface: adaptive curriculum learning loss for deep
face recognition. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020.

[28] Kyoungkook Kang, Seongtae Kim, and Sunghyun Cho. Gan
inversion for out-of-range images with geometric transfor-
mations, 2021.

[29] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative ad-
versarial networks with limited data. Advances in Neural
Information Processing Systems, 33:12104–12114, 2020.

10080



[30] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019.

[31] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 8110–8119, 2020.

[32] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. Dif-
fusionclip: Text-guided diffusion models for robust image
manipulation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022.

[33] Hyunsu Kim, Yunjey Choi, Junho Kim, Sungjoo Yoo, and
Youngjung Uh. Exploiting spatial dimensions of latent in
gan for real-time image editing, 2021.

[34] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[35] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.
3d object representations for fine-grained categorization. In
Proceedings of the IEEE international conference on com-
puter vision workshops, 2013.

[36] Ji Lin, Richard Zhang, Frieder Ganz, Song Han, and Jun-Yan
Zhu. Anycost gans for interactive image synthesis and edit-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2021.

[37] Hongyu Liu, Xintong Han, ChengBin Jin, Huawei Wei,
Zhe Lin, Faqiang Wang, Haoye Dong, Yibing Song, Jia
Xu, and Qifeng Chen. Human motionformer: Transferring
human motions with vision transformers. arXiv preprint
arXiv:2302.11306, 2023.

[38] Hongyu Liu, Bin Jiang, Yibing Song, Wei Huang, and Chao
Yang. Rethinking image inpainting via a mutual encoder-
decoder with feature equalizations. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part II 16, pages 725–741.
Springer, 2020.

[39] Hongyu Liu, Bin Jiang, Yi Xiao, and Chao Yang. Coher-
ent semantic attention for image inpainting. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 4170–4179, 2019.

[40] Hongyu Liu, Ziyu Wan, Wei Huang, Yibing Song, Xintong
Han, and Jing Liao. Pd-gan: Probabilistic diverse gan for im-
age inpainting. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9371–
9381, 2021.

[41] Hongyu Liu, Ziyu Wan, Wei Huang, Yibing Song, Xintong
Han, Jing Liao, Bin Jiang, and Wei Liu. Deflocnet: Deep im-
age editing via flexible low-level controls. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10765–10774, 2021.

[42] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen,
Xiaodong Liu, Jianfeng Gao, and Jiawei Han. On the vari-
ance of the adaptive learning rate and beyond. arXiv preprint
arXiv:1908.03265, 2019.

[43] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild, 2015.

[44] Junyu Luo, Yong Xu, Chenwei Tang, and Jiancheng Lv.
Learning inverse mapping by autoencoder based generative
adversarial nets. In International Conference on Neural In-
formation Processing, 2017.

[45] William S Noble. What is a support vector machine? Nature
biotechnology, 2006.

[46] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

[47] Tian Pan, Yibing Song, Tianyu Yang, Wenhao Jiang, and Wei
Liu. Videomoco: Contrastive video representation learning
with temporally adversarial examples. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2021.

[48] Gaurav Parmar, Yijun Li, Jingwan Lu, Richard Zhang, Jun-
Yan Zhu, and Krishna Kumar Singh. Spatially-adaptive mul-
tilayer selection for gan inversion and editing. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

[49] Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or,
and Dani Lischinski. Styleclip: Text-driven manipulation of
stylegan imagery. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021.

[50] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and
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