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Abstract

Generalized Zero-Shot Learning (GZSL) identifies un-
seen categories by knowledge transferred from the seen
domain, relying on the intrinsic interactions between vi-
sual and semantic information. Prior works mainly lo-
calize regions corresponding to the sharing attributes.
When various visual appearances correspond to the same
attribute, the sharing attributes inevitably introduce se-
mantic ambiguity, hampering the exploration of accurate
semantic-visual interactions. In this paper, we deploy
the dual semantic-visual transformer module (DSVTM)
to progressively model the correspondences between at-
tribute prototypes and visual features, constituting a pro-
gressive semantic-visual mutual adaption (PSVMA) net-
work for semantic disambiguation and knowledge trans-
ferability improvement. Specifically, DSVTM devises an
instance-motivated semantic encoder that learns instance-
centric prototypes to adapt to different images, enabling
the recast of the unmatched semantic-visual pair into the
matched one. Then, a semantic-motivated instance decoder
strengthens accurate cross-domain interactions between the
matched pair for semantic-related instance adaption, en-
couraging the generation of unambiguous visual represen-
tations. Moreover, to mitigate the bias towards seen classes
in GZSL, a debiasing loss is proposed to pursue response
consistency between seen and unseen predictions. The
PSVMA consistently yields superior performances against
other state-of-the-art methods. Code will be available at:
https://github.com/ManLiuCoder/PSVMA.

1. Introduction
Generalized Zero-Shot Learning (GZSL) [35] aims to

recognize images belonging to both seen and unseen cat-
egories, solely relying on the seen domain data. Freed
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Figure 1. The embedding-based models for GZSL. (a) The early
embedding-based method. (b) Part-based methods via attention
mechanisms. (c) Semantic-guided methods. (d) Our PSVMA. A,
S, F denote the category attribute prototypes, sharing attributes,
and visual features, respectively. The PSVMA progressively per-
forms semantic-visual mutual adaption for semantic disambigua-
tion and knowledge transferability improvement.

from the requirement of enormous manually-labeled data,
GZSL has extensively attracted increasing attention as a
challenging recognition task that mimics human cognitive
abilities [25]. As unseen images are not available during
training, knowledge transfer from the seen to unseen do-
mains is achieved via auxiliary semantic information (i.e.,
category attributes [15, 25], text descriptions [26, 38], and
word embedding [31, 32, 40]).

Early embedding-based methods [2,3,45,51] embed cat-
egory attributes and visual images and learn to align global
visual representations with corresponding category proto-
types, as shown in Fig. 1 (a). Nevertheless, the global
information is insufficient to mine fine-grained discrimi-
native features which are beneficial to capture the sub-
tle discrepancies between seen and unseen classes. To
solve this issue, part-based learning strategies have been
leveraged to explore distinct local features. Some works
[27, 29, 33, 47, 48, 52] apply attention mechanisms to high-
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light distinctive areas, as shown in Fig. 1 (b). These meth-
ods fail to develop the deep correspondence between vi-
sual and attribute features, which results in biased recog-
nition of seen classes. More recently, semantic-guided ap-
proaches (see Fig. 1 (c)) are proposed to employ the shar-
ing attribute and localize specific attribute-related regions
[8, 22, 30, 49, 50]. They establish interactions between the
sharing attributes and visual features during localization,
further narrowing the cross-domain gap. Actually, various
visual appearances correspond to the same sharing attribute
descriptor. For example, for the attribute descriptor “tail”,
the visual presentations of a dolphin’s and rat’s tail exhibit
differently. The above methods are suboptimal to build
matched visual-semantic pairs and inclined to generate am-
biguous semantic representations. Further, this semantic
ambiguity can hamper cross-domain interactions based on
unmatched visual-semantic pairs, which is detrimental to
the knowledge transferring from seen to unseen classes.

To tackle this problem, we propose a progressive
semantic-visual mutual adaption (PSVMA) network, as
shown in Fig. 1 (d), to progressively adapt the sharing at-
tributes and image features. Specifically, inspired by the
powerful ability of the vision transformers (ViT) [14] to
capture global dependencies, we apply ViT for visual em-
bedding and extract image patch features for the interac-
tion with semantic attributes. With the embedded visual
and attribute features, we devise the dual semantic-visual
transformer module (DSVTM) in PSVMA, which consists
of an instance-motivated semantic encoder (IMSE) and a
semantic-motivated instance decoder (SMID).

Concretely, in IMSE, we first perform instance-aware
semantic attention to adapt the sharing attributes to var-
ious visual features. Based on the interrelationship be-
tween attribute groups, we further introduce attribute com-
munication and activation to promote the compactness be-
tween attributes. In this way, IMSE recurrently converts
the sharing attributes into instance-centric semantic fea-
tures and recasts the unmatched semantic-visual pair into
the matched one, alleviating the problem of semantic ambi-
guity. Subsequently, SMID explores the cross-domain cor-
respondences between each visual patch and all matched
attributes for semantic-related instance adaption, providing
accurate semantic-visual interactions. Combined with the
refinement of the patch mixing and activation in SMID, the
visual representation is eventually adapted to be unambigu-
ous and discriminative. In addition, we design a novel de-
biasing loss for PSVMA to assist the process of knowledge
transfer by pursuing the distribution consistency of inferred
scores, mitigating the common bias towards seen domains.
Consequently, PSVMA can effectively achieve semantic
disambiguation and improve knowledge transferability by
progressive semantic-visual mutual adaption, gaining more
accurate inferences for both seen and unseen categories.

Our key contributions can be summarized as follows: (1)
We propose a progressive semantic-visual mutual adaption
(PSVMA) network that deploys the dual semantic-visual
transformer module (DSVTM) to alleviate semantic am-
biguity and strengthen feature transferability through mu-
tual adaption. (2) The sharing attributes are converted into
instance-centric attributes to adapt to different visual im-
ages, enabling the recast of the unmatched semantic-visual
pair into the matched one. Furthermore, accurate cross-
domain correspondence is constructed to acquire transfer-
able and unambiguous visual features. (3) Extensive ex-
periments over common benchmarks demonstrate the effec-
tiveness of our PSVMA with superior performance. Partic-
ularly, our method achieves 75.4% for the harmonic mean
on the popular benchmark AwA2, outperforming previous
competitive solutions by more than 2.3%.

2. Related work

2.1. Generalized Zero-Shot Learning

To transfer knowledge learned from the seen domain to
the unseen domain, semantic information assumes a crucial
role in providing a common space to describe seen and un-
seen categories. With the category attribute prototypes, gen-
erative GZSL approaches synthesize visual features of extra
unseen categories by generative adversarial nets [17,21,42],
variational auto-encoders [10, 12, 23], or a combination of
both [9, 34]. Although these methods compensate for the
absence of the unseen domain during training, the introduc-
tion of extra data converts the GZSL problem into a fully
supervised task.

The embedding-based method is the other mainstream
branch for GZSL that projects and aligns information orig-
inating from visual and semantic domains. Early works
[2,3,45,51] directly map the global visual and semantic fea-
tures into a common space for category predictions. Global
visual information, however, falls short in capturing sub-
tle but substantial differences between categories, weaken-
ing discriminative representations. To highlight discrimi-
native visual regions, recent efforts have attempted part-
based techniques. Some works [27, 52] crop and zoom in
on significant local areas employing coordinate positions
obtained by attention mechanisms. Distinctive visual fea-
tures are also emphasized by graph networks [20, 48] or
attention guidance [29, 33, 47]. Furthermore, the sharing
attribute prototypes, which are the same for all input im-
ages, have been introduced in semantic-guided methods
[8, 22, 30, 44, 49, 50] to localize attribute-related regions.
Among these methods, DPPN [44] updates attribute proto-
types and achieves superior performance. However, DPPN
ignores the deeply mutual interaction between semantic and
visual domains, which limits the capability of the alleviation
for semantic ambiguity.
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Figure 2. The framework of our proposed PSVMA. PSVMA deploys DSVTM between different visual layers and attribute prototypes, en-
couraging a progressive augmentation for semantic disambiguation and transferability improvement. The IMSE in DSVTM progressively
learns the instance-centric semantics to acquire a matched semantic-visual pair. The SMID in DSVTM constructs accurate cross-domain
interactions and learns unambiguous visual representations.

2.2. Transformers in GZSL

Transformers [41] have a strong track record of suc-
cess in Natural Language Processing (NLP) and have grad-
ually imposed remarkable achievements in computer vi-
sion tasks [13, 14, 16, 28]. Unlike CNNs, which are re-
garded as hierarchical ensembles of local features, trans-
formers with cascaded architectures are encouraged to de-
velop global-range relationships through the contribution of
self-attention mechanisms. Despite the effectiveness of the
transformer’s architecture (such as the vision transformer
(ViT) [14]), research on GZSL has lagged behind, with just
a tiny amount of work [4, 5, 11] using the ViT as a visual
backbone. ViT-ZSL [5] directly aligns the patch tokens of
ViT with the attribute information and maps the global fea-
tures of the classification token to the semantic space for
category prediction. IEAM-ZSL [4] not only captures the
explicit attention by ViT, but also constructs another im-
plicit attention to improve the recognition of unseen cate-
gories. DUET [11] proposes a cross-modal mask recon-
struction module to transfer knowledge from the semantic
domain to the visual domain. These works verify that, com-
pared to CNNs, ViT specifically attends to image patches
linked to category prototypes in GZSL. However, they ne-
glect the semantic ambiguity problem and fail to construct
matched semantic-visual correspondences, limiting trans-
ferability and discriminability. Additionally, the ViT model
they applied is pre-trained on ImageNet-21k, which gener-
ates information leakage and leads to the incomplete GZSL
problem.

3. Methodology

Problem Setting. GZSL attempts to identify unseen cate-
gories by the knowledge transferred from seen domain Ds

to unseen domain Du. Ds = {(x, y, ay)|x ∈ X s, y ∈
Ys, ay ∈ As}, where x refers to an image in X s, y and
ay refer to the corresponding label and category attributes.
Here, Du = {(xu, u, au)}, xu ∈ X u, u ∈ Yu, au ∈ Au,
and A = As∪Au. Let S denote the sharing attribute proto-
types to describe the word vectors of each attribute, which
are abstracted by a language model GloVe [37]. In GZSL,
the category space is disjoint between seen and unseen do-
main (Ys ∩ Yu = ∅), while the testing data contains both
seen and unseen categories (Y = Ys ∪ Yu). Therefore, an
important problem is the seen-unseen bias, i.e., testing sam-
ples are more likely to be assigned to the seen categories
observed during training. The goal of this work is to de-
sign an effective framework that explores semantic-visual
interactions for unbiased GZSL.

Overview. We first present the overall pipeline which is a
progressive semantic-visual mutual adaption (PSVMA) net-
work for GZSL (see Fig. 2). PSVMA expects two inputs:
visual features F l ∈ RNv×D and sharing attribute proto-
types S ∈ RNs×D, which are obtained by a ViT [14] visual
backbone and GloVe [37], respectively. Here, Nv and Ns

denote the patch length and attribute prototypes with D di-
mensional vectors, respectively. Noted that Nv does not
contain a class token that is in vanilla ViT and l refers to the
l-th transformer layer in ViT. With F l and S, we devise the
dual semantic-visual transformer module (DSVTM) to im-
prove the visual-semantic alignment and discover discrimi-
native attribute-related visual representations. As shown in
Fig. 2, DSVTM is a transformer-based structure that con-
tains an instance-motivated semantic encoder (IMSE) and
a semantic-motivated instance decoder (SMID), pursuing
semantic and visual mutual adaption for the alleviation of
semantic ambiguity. After progressive enhancements by
DSVTMs, a classification head is applied for inferring.
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Figure 3. The architectures of (a) IMSE and (b) SMID.

3.1. Instance-Motivated Semantic Encoder

In DSVTM, the proposed IMSE aims at progressively
learning instance-centric prototypes to produce accurately
matched semantic-visual pairs in a recurrent manner with
r(r = 1, ..., R) loops. As shown in Fig. 3 (a), IMSE con-
tains the instance-aware semantic attention, attribute com-
munication and activation, which are elaborated as follows.
Instance-Aware Semantic Attention. To adapt the shar-
ing attributes S to different instance features F l, IMSE first
executes cross-attention to learn attentive semantic repre-
sentations based on instance features. For the i-th attribute
Si, we search for the most relevant patch F l

j by modeling
the relevance M l,r

(i,j):

M l,r
(i,j) = q(LN(Si)) · k(LN(F l

j))
T (1)

where LN denotes the Layer Normalization, T denotes the
transpose function, q(·) and k(·) are the linear mapping
functions for the query and key. M l,r

(i,j) indicates the local-
ized region F l

j related to the attribute descriptor Si, forming
an affinity matrix M l,r ∈ RNs×Nv . To encourage the local-
ization ability of patches related to attributes, we apply a
semantic alignment loss to align M l,r with its category pro-
totypes ay:

Ll,r
sem = ∥ℏ(M l,r)− ay∥22 (2)

where ℏ is the 1-dimensional global max pooling (GMP)
operation. Then, M l,r is applied to select distinct visual
patches in F l related to each attribute, packed together into
instance-related attribute prototypes Sl,r ∈ RNs×D with a
residual connection:

Sl,r = softmax(M l,r) · v(LN(F l)) + S (3)

where v(·) is the linear mapping functions for the value.
Compared to the original sharing attribute prototype S, the
instance-motivated semantic attribute Sl,r is more discrim-
inative and more closely linked to specific instance.
Attribute Communication and Activation. As attribute
descriptors are interdependent, IMSE then conducts at-
tribute communication to compact the relevant attributes

and scatter the irrelevant attributes via a group compact at-
tention fgc(·):

fgc(S
l,r) = sigmoid(σ(ℏ(Sl,r) ·Wp1) ·Wp2) (4)

S̄l,r = fgc(S
l,r) · Sl,r + Sl,r (5)

where σ is the GELU [19] function. Wp1 ∈ RNS×NS
Ng and

Wp2 ∈ R
NS
Ng

×NS are the parameters of two fully-connected
(FC) layers, respectively. Ng denotes the number of at-
tribute groups given in the datasets (e.g., 28 groups for 312
attributes on CUB dataset [43]). To make use of the com-
pacted attribute prototypes S̄l,r, we further activate signif-
icant features and squeeze out trivial ones in each attribute
by an MLP layer:

Ŝl,r = MLP(S̄l,r) + S̄l,r + Sl,r (6)

Here, cooperated with residual connections of S̄l,r and Sl,r,
more instance-aware information can be preserved.

By implementing IMSE recurrently, we can progres-
sively adapt the sharing attributes by observing previ-
ously adapted ones and visual instances, distilling instance-
centric attribute prototypes. With the produced Ŝl,R, the
unmatched semantic-visual pairs (S, F l) can be recast into
matched pairs (Ŝl,R, F l) ultimately.

3.2. Semantic-Motivated Instance Decoder

Given the matched semantic-visual pair (Ŝl,R, F l) from
IMSE, we design a SMID to strengthen cross-domain in-
teractions and learn unambiguous visual representations via
the semantic-related instance attention, patch mixing and
activation, as shown in Fig. 3 (b).
Semantic-Related Instance Attention. To acquire
semantic-related visual representations, we first model
the cross-domain correspondence between the matched
semantic-visual pair (Ŝl,R, F l) via a cross-attention. Com-
pared to the attention in IMSE (Eq. (1)), here, we focus on
instance-centric attributes with respect to each visual patch
and obtain attention weights M̄ l,R:

M̄ l,R = q(LN(F l)) · k(LN(Ŝl,R))T (7)

M̄ l,R is applied to select information in Ŝl,R and helps to
aggregate significant semantic characteristics into the visual
patches:

F̃ l = softmax(M̄ l,R) · v(LN(Ŝl,R) + F l (8)

where F̃ l denotes the visual instance representation that
is aligned with the learned instance-centric attributes Ŝl,R.
By such semantic-related attention, we can construct more
accurate visual-semantic interactions and gather powerful
matching attribute information in F̃ l.
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Patch Mixing and Activation. Considering that the de-
tailed information between different patches is essential for
fine-grained recognition, we propose a patch mixing and
activation module to expand and refine the association be-
tween patches. Inspired by the concept of the manifold
of interest in [39], we mix patches by an inverted residual
layer with a linear bottleneck to improve the representation
power. This process can be formulated as:

F l
e = fe((F̃

l)T ) = σ((F̃ l)T ·We) (9)

F l
s = fs(F

l
e) = σ(F l

e ·Ws) (10)

F l
n = fn(F

l
s) = F l

s ·Wn (11)

where fe(·) is an expansion layer consisting of an FC layer
with parameters We ∈ RNv×Nh followed by an activation
function. Thus, the length of patch is expanded to a higher
dimension Nh(Nh > Nv) for the subsequent information
filtering implemented by a selection layer fs(·). Then, the
mixed and selected patches are projected back to the origi-
nal low-dimension Nv by a narrow linear bottleneck fn(·).
We utilize a shortcut to preserve complete information and
produce F̄ l = (F l

n)
T + F̃ l. After that, the refined features

in each visual patch are activated by an MLP layer with a
residual connection:

F̂ l = MLP(F̄ l) + F̄ l (12)

With SMID, we can take effects on the visual instance
based on adapted semantic attributes along the spatial di-
mension, realizing the attentive visual features to keep with
the attribute information. By unifying IMSE and SMID in
Z cascaded DSVTMs, our network can achieve progressive
semantic-visual mutual adaption to generate unambiguous
and transferable visual representations.
Classification Head. As shown in Fig. 2, after progressive
learning of Z DSVTM in visual layers and receiving the
final visual representation by the last DSVTM (denoted as
F̂L), a classification head fc(·) conducted on F̂L is adopted
for instance category prediction.

fc(F̂
L) = ℏ((F̂L)T )W (13)

where W denotes the learnable parameter with the size of
D × Ns, which is applied to project visual features into
class embedding space. fc(F̂L) is the predicted probability
of category attributes. Then, we measure the cosine sim-
ilarity cos(·) between fc(F̂

L) and category prototypes A
for classification:

score(ŷ|x) = τ · cos(fc(F̂L),A) (14)

where τ is the scaling factor. The category of instance x is
supervised by the classification loss Lcls defined as:

Lcls = − log
exp (score(y|x))∑

ŷ∈YS

exp (score(ŷ|x))
(15)

Table 1. Proposed Split (PS) of GZSL datasets to evaluate our
network. NS and Ng denote the number of attribute dimensions
and attribute groups, respectively. s and u are the number of seen
and unseen classes.

Datasets classes (s | u) images NS (Ng)
CUB [43] 200 (150 | 50) 11,788 312 (28)
SUN [36] 717 (645 | 72) 14,340 102 (4)

AwA2 [46] 50 (40 | 10) 37,322 85 (9)

3.3. Model Optimization and Inference

Optimization. In addition to the semantic alignment loss
and classification loss mentioned above, we design a debi-
asing loss Ldeb to mitigate the seen-unseen bias. To better
balance the score dependency in the seen-unseen domain,
Ldeb is proposed to pursue the distribution consistency in
terms of mean and variance:

Ldeb = ∥αs − αu∥22 + ∥βs − βu∥22 (16)

αs and βs denote the mean and variance value of seen pre-
dictions score(ŷs|x, ŷs ∈ Ys). αu and βu denote the mean
and variance value of score(ŷu|x, ŷu ∈ Yu).

Finally, the overall optimization goal can be defined as:

L = Lcls + λsemLsem + λdebLdeb (17)

where λsem and λdeb are the hyper-parameters for the se-

mantic alignment loss Lsem =
L∑

l=L−Z+1

R∑
r=1

Ll,r
sem and de-

biasing loss Ldeb.
Inference. During training, the model merely learns about
the knowledge of seen categories, whereas both seen and
unseen categories are contained at inference time. There-
fore, calibrated stacking (CS) [6] is applied to jointly define
the category:

ỹ = argmax
ŷ∈Ys∪Yu

(score(ŷ|x)− γIYS (ŷ)) (18)

IYS (·) denotes an indicator function, whose result is 1 when
ŷ ∈ YS and 0 otherwise. A calibrated factor γ is applied
to trade-off the calibration degree on seen categories and
decides the category ỹ of a sample x.

4. Experiment
4.1. Experimental Setup

Datasets. We evaluate PSVMA on three benchmark
datasets, i.e., Caltech-USCD Birds-200-2011 (CUB) [43],
SUN Attribute (SUN) [36], Animals with Attributes2
(AwA2) [46]. The seen-unseen classes division is set ac-
cording to Proposed Split (PS) [46] as shown in Tab. 1.
Metrics. Following [46], we apply the harmonic mean (de-
fined as H = 2 × S × U/(S + U)) to evaluate the per-
formance of our framework under GZSL scenarios. S and
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Table 2. Experimental Results (%) on public benchmarks. The best and second-best results are marked in red and blue, respectively.
Methods belonging to generative and embedding-based frameworks (denoted as “GEN.” and “EMB.”) are compared separately. ♢ denotes
the model is pre-trained on ImageNet-21k. ∗ indicates 2048 dimensional top-layer pooling units of ResNet101 without fine-tuning.

Methods Backbone Image size
CUB SUN AwA2

U S H U S H U S H

G
EN

.

LsrGAN (ECCV’20) [42] ResNet101 ∗ 48.1 59.1 53.0 44.8 37.7 40.9 - - -
CE-GZSL (CVPR’21) [17] ResNet101 ∗ 63.9 66.8 65.3 48.8 38.6 43.1 63.1 78.6 70.0
FREE (ICCV’21) [9] ResNet101 ∗ 55.7 59.9 57.7 47.4 37.2 41.7 60.4 75.4 67.1
HSVA (NeurIPS’21) [10] ResNet101 ∗ 52.7 58.3 55.3 48.6 39.0 43.3 56.7 79.8 66.3
ICCE (CVPR’22) [24] ResNet101 ∗ 67.3 65.5 66.4 - - - 65.3 82.3 72.8

EM
B

.

AREN (CVPR’19) [47] ResNet101 224×224 63.2 69.0 66.0 40.3 32.3 35.9 54.7 79.1 64.7
DVBE (CVPR’20) [33] ResNet101 448×448 53.2 60.2 56.5 45.0 37.2 40.7 63.6 70.8 67.0
DAZLE (CVPR’20) [22] ResNet101 224×224 56.7 59.6 58.1 52.3 24.3 33.2 60.3 75.7 67.1
APN (NeurIPS’20) [49] ResNet101 224×224 65.3 69.3 67.2 41.9 34.0 37.6 56.5 78.0 65.5
GEM-ZSL (CVPR’21) [30] ResNet101 448×448 64.8 77.1 70.4 38.1 35.7 36.9 64.8 77.5 70.6
DPPN (NeurIPS’21) [44] ResNet101 448×448 70.2 77.1 73.5 47.9 35.8 41.0 63.1 86.8 73.1
TransZero (AAAI’22) [7] ResNet101 448×448 69.3 68.3 68.8 52.6 33.4 40.8 61.3 82.3 70.2
MSDN (CVPR’22) [8] ResNet101 448×448 68.7 67.5 68.1 52.2 34.2 41.3 62.0 74.5 67.7
ViT-ZSL (IMVIP’21) [5] ViT-Large♢ 224×224 67.3 75.2 71.0 44.5 55.3 49.3 51.9 90.0 68.5
IEAM-ZSL (DGAM’21) [4] ViT-Large♢ 224×224 68.6 73.8 71.1 48.2 54.7 51.3 53.7 89.9 67.2
DUET (AAAI’23) [11] ViT-Base♢ 224×224 62.9 72.8 67.5 45.7 45.8 45.8 63.7 84.7 72.7
PSVMA (Ours) ViT-Base 224×224 70.1 77.8 73.8 61.7 45.3 52.3 73.6 77.3 75.4

U denote the Top-1 accuracy of seen and unseen classes,
respectively.
Implementation Details. Unlike previous GZSL works
that utilize ResNet [18] models as visual backbones, we
take ViT-Base [14] model pre-trained on ImageNet-1k as
the visual feature extractor. Note that, we discard the ViT
model pre-trained on a large dataset, e.g., ImageNet-21k,
where some classes overlap with unseen classes defined
in [46], leading to incomplete GZSL. Our framework is im-
plemented with Pytorch over an Nvidia GeForce RTX 3090
GPU. The factor γ and τ are set following [30].

4.2. Comparison with State-of-the-Arts

Comparisons with CNN Backbones. Here, we compare
our method with recent CNN-based methods which adopt
ResNet101 as the backbone. As shown in Tab. 2, our
PSVMA achieves the best harmonic mean H of 73.8%,
52.3% and 75.4% on CUB, SUN and AwA2, respectively.
These results demonstrate the effectiveness of PSVMA for
GZSL. Moreover, compared to the methods (e.g., APN [49],
GEM-ZSL [30], DPPN [44], MSDN [8], TransZero [7])
which utilize the sharing attribute prototypes, PSVMA ob-
tains significant H gains over 0.3%, 11.0%, and 2.3% on
CUB, SUN, and AwA2, respectively. This demonstrates
that PSVMA can learn better instance-centric attributes for
more accurate semantic-visual interactions, thus improving
knowledge transferability. Especially, even using the in-
put image size of 224 × 224, our method achieves com-
parable performance to the most SOTA method DPPN [44]

(448× 448) on CUB dataset and the best accuracy on other
two datasets for unseen classes.
Comparisons with ViT Backbones. To further investigate
the superiority of our method, we also compare PSVMA
with some ViT-based methods [4,5,11]. Generally, PSVMA
performs the best U and H on all datasets. We can see
that the seen-unseen performance is not always consistent.
Enhancing model transferability (increased U ) may reduce
discrimination (decreased S). This is because GZSL meth-
ods align with category attributes, but attribute labels of var-
ious categories are non-orthogonal to each other. Hence, we
pursue a trade-off between the seen and unseen domains to
improve overall H . Besides, compared to ViT-ZSL [5] and
IEAM-ZSL [4] which apply a large ViT architecture (i.e.,
ViT-Large), PSVMA exceeds them by a significant margin.
Although IEAM-ZSL is carefully designed to improve the
recognition of unseen categories by a self-supervised task,
it shows lower performance than PSVMA with U falling
1.5%, 13.5% and 19.9% on CUB, SUN, and AwA2 datasets.
Noted that these compared ViT-based methods use the pre-
trained models on ImageNet-21k, while our method only
applies the backbone pre-trained on ImageNet-1k.

4.3. Analysis of Semantic Disambiguation

To intuitively provide the semantic disambiguation abil-
ity of our method, we calculate predicted probability of cat-
egory attribute (Eq. (13)) as the confidence and compare
with several methods including APN [49], TransZero [7].
These two methods both use sharing attributes and have the

15342



dolphin rat

(a) (b) (c)

dolphin rat

0.134

0.000 

0.000 

0.156

Ours

TransZero

APN

GT

0.144

0.067

0.027 

0.235

Ours

TransZero

APN

GT

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

longneck claws strong

co
nf

id
en

ce

active newworld arctic domestic 
attributes

APN (Avg.) TransZero (Avg.) Ours  (Avg.) GT

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180

patches hairless toughskin bulbous lean flippers chewteeth

co
nf

id
en

ce

attributes

APN (Avg.) TransZero(Avg.) Ours (Avg.) GT

Figure 4. Visualization for attribute disambiguation. (a) Inter-class disambiguation between the dolphin and rat for attribute “tail”. Values
in the bar represent the confidence of corresponding attributes. (b) and (c) show the Intra-class disambiguation in the dolphin and rat,
receptively. The bar with a different mark corresponds to the image with the same mark. The blue, green and orange bars denote the results
of APN, TransZero and ours, receptively. The line graph represents the average results of three randomly selected images.

same attribute prediction and category decision formulas.
As shown in Fig. 4 (a), the attribute “tail” shows different
appearances in a dolphin’s and a rat’s image (red box). APN
and TransZero fail to infer the “tail” in the dolphin, while
our method predicts the attribute in both of the dolphin and
rat correctly with closer confidence to GT (ground truth).

Visual discrepancies for the same attribute information
occur not only between classes but also within a class, es-
pecially for non-rigid objects with variable postures. Tak-
ing the dolphin as an example, Fig. 4 (b) gives some at-
tribute predictions of three randomly selected dolphin im-
ages. In the three intra-class instances, our method suc-
cessfully determines that the dolphins do not have “long-
neck” properties yet all have a strong probability of being
“active”,“strong”, and “new world”. Overall, the average
attribute predictions of the three images are more consis-
tent with the GT compared to APN and TransZero methods.
The similar intra-class disambiguation phenomenon can be
observed in rats (see Fig. 4 (c)). These demonstrate that
the semantic-visual interactions explored by our matched
semantic-visual pair are beneficial for the knowledge trans-
ferring process, encouraging inter-class and intra-class at-
tribute disambiguation. This verifies that our method can ef-
fectively alleviate the semantic ambiguity and achieve more
accurate attribute prediction and category inference.

4.4. Ablation Study

To give a clear insight into each component in our frame-
work, we perform ablations to analyze the effectiveness of
significant components. Tab. 3 summarizes the results of
ablation studies. Firstly, the baseline method means that
we directly compute the scores between the visual features
extracted from ViT and the category prototypes to infer
the category. Compared to baseline, the model only using
SRIA which directly applies the sharing attributes to con-
duct semantic-related instance adaption achieves a signifi-
cant improvement. We then add the PMA in SMID, and
the H metric further increases, verifying that spatial explo-
ration captures discriminative features that promote cate-

gory inference. After that, we incorporate IASA into this
model to learn the instance-motivated semantic attribute.
Therefore, the model can get the H improvements of 1.3%,
1.8%, and 3.9% on CUB, SUN, and AwA2, respectively,
benefiting from semantic-visual mutual adaptation. In addi-
tion, when ACA module is conducted in IMSE to form our
full PSVMA, the model realizes performance increases on
both CUB and AwA2 datasets. We think that such improve-
ment stems from the compacted and activated attributes by
ACA. By combining all the components, our full model pro-
gressively adapts visual and semantic representations in a
mutual reinforcement manner, achieving H improvements
of 10.0%, 16.3%, and 7.6% on CUB, SUN, and AwA2 over
the baseline, respectively.

4.5. Hyperparameter Analysis

Effect of λsem and λdeb in Loss. In Fig. 5, we evaluate
the effect of loss weights λsem and λdeb in Eq. (17). We
first set the value of λdeb to 0 to analyze the effect of hyper-
parameter λsem. As λsem raises, the harmonic mean rises
slowly at first and then decreases when λsem > 0.5. Large
λsem over emphasizes the knowledge on the seen domain
by Eq. (2), resulting in poor generalization capability. Thus,
we set λsem = 0.5 for CUB and AwA2. Then, we gradu-
ally increase the value of λdeb. When more attention has
been paid to pursuing the distribution consistency between
seen and unseen predictions, we get better unseen perfor-
mance. However, both λsem and λdeb can not be too large to
avoid squeezing the capacity of classification loss, resulting
in identification accuracy reduction. Therefore, we fix λdeb

to 0.001 for CUB and 0.1 for AwA2 in our experiments.
Effect of R, Z in PSVMA. To achieve progressive
semantic-visual mutual adaption, PSVMA deploys Z
DSVTMs with R recurrent IMSEs between different visual
layers and semantic attributes. As shown in Fig. 6 (a) and
(b), when R = Z = 2, the model gains the best H = 73.8%
and 75.4% on CUB and AwA2 datasets. This demonstrates
that the progressive adaption for instance-centric attributes
and unambiguous visual representations are beneficial for
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Table 3. Analysis of each component in PSVMA. IASA and ACA denote the instance-aware semantic attention, and the attribute communi-
cation and activation, receptively. SRIA and PMA denote semantic-related instance attention, and patch mixing and activation, receptively.

baseline IMSE SMID CUB SUN AwA2
IASA ACA SRIA PMA U S H U S H U S H

✓ 59.8 68.4 63.8 43.8 30.6 36.0 58.0 81.6 67.8
✓ ✓ 63.5 71.11 67.1 57.7 32.2 41.3 63.2 75.6 69.3
✓ ✓ ✓ 70.0 70.0 70.0 60.3 41.8 49.4 65.0 77.3 70.6
✓ ✓ ✓ ✓ 70.0 72.8 71.3 61.4 43.9 51.2 71.1 78.1 74.5
✓ ✓ ✓ ✓ ✓ 70.1 77.8 73.8 61.7 45.4 52.3 73.6 77.3 75.4
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Figure 5. Effect of loss weights. λsem on (a) CUB and (b) AwA2. λdeb on (c) CUB and (d) AwA2.
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Figure 6. Effect of (a) R, (b) Z on CUB and AwA2 datasets.

semantic-visual interactions, improving the transferability
for GZSL. However, H decreases when R and Z are larger
than 2. This is due to the excessive learning of instance-
related information adapted over four times, which lim-
its the classification performance. When the progressive
learning exceeds 4 adaption, the model tends to learn the
instance-related information of the seen domain, which af-
fects its knowledge transfer ability to the unseen domain,
thus leading to the performance drop. Therefore, we choose
R = Z = 2 as default settings for progressive learning.
Furthermore, Fig. 7 intuitively demonstrates the effective-
ness of our progressive adaption. With 4-times learning
(column 1-4), the attribute localization gets more precise.
The same attribute “tail” for distinct images gets more spe-
cialized (row 1-2). Besides, our localization is much more
accurate compared with DPPN [44].

5. Conclusion
In this paper, we aim to semantic disambiguation and

propose a progressive semantic-visual mutual adaption
(PSVMA) network by deploying the dual semantic-visual
transformer module (DSVTM) executed among different
visual layers and attribute prototypes. Specifically, DSVTM
adapts the sharing attributes to different input images and
acquires instance-centric attributes, enabling the recast of
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Figure 7. Visualization of attention maps of our PSVMA and
DPPN [44]. The 1-4 columns imply the effectiveness of progres-
sive learning.

semantic-visual pair. With the matched pair, DSVTM
constructs accurate cross-domain interactions and distills
unambiguous visual representations adapted to target se-
mantics, improving the transferability. Besides, a debi-
asing loss mitigates seen-unseen bias to assist the knowl-
edge transfer process for GZSL. Extensive experiments on
three public datasets show the superiority of our PSVMA.
The codes using MindSpore [1] will also be released at
https://gitee.com/chunjie-zhang/psvma-cvpr2023.
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