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Abstract

Image-text pretrained models, e.g., CLIP, have shown
impressive general multi-modal knowledge learned from
large-scale image-text data pairs, thus attracting increas-
ing attention for their potential to improve visual represen-
tation learning in the video domain. In this paper, based
on the CLIP model, we revisit temporal modeling in the
context of image-to-video knowledge transferring, which is
the key point for extending image-text pretrained models to
the video domain. We find that current temporal model-
ing mechanisms are tailored to either high-level semantic-
dominant tasks (e.g., retrieval) or low-level visual pattern-
dominant tasks (e.g., recognition), and fail to work on the
two cases simultaneously. The key difficulty lies in modeling
temporal dependency while taking advantage of both high-
level and low-level knowledge in CLIP model. To tackle
this problem, we present Spatial-Temporal Auxiliary Net-
work (STAN) – a simple and effective temporal modeling
mechanism extending CLIP model to diverse video tasks.
Specifically, to realize both low-level and high-level knowl-
edge transferring, STAN adopts a branch structure with
decomposed spatial-temporal modules that enable multi-
level CLIP features to be spatial-temporally contextual-
ized. We evaluate our method on two representative video
tasks: Video-Text Retrieval and Video Recognition. Exten-
sive experiments demonstrate the superiority of our model
over the state-of-the-art methods on various datasets, in-
cluding MSR-VTT, DiDeMo, LSMDC, MSVD, Kinetics-400,
and Something-Something-V2. Codes will be available at
https://github.com/farewellthree/STAN

1. Introduction

Recent years have witnessed the great success of image-
text pretrained models such as CLIP [31]. Pretrained on
over 400M image-text data pairs, these models learned
transferable rich knowledge for various image understand-
ing tasks. Similarly, video domains also call for a CLIP-like

model to solve downstream video tasks. However, it is hard
to get a pretrained model as powerful as CLIP in the video
domain due to the unaffordable demands on computation re-
sources and the difficulty of collecting video-text data pairs
as large and diverse as image-text data. Instead of directly
pursuing video-text pretrained models [16, 26], a potential
alternative solution that benefits video downstream tasks is
to transfer the knowledge in image-text pretrained models
to the video domain, which has attracted increasing atten-
tion in recent years [11, 12, 25, 28, 29, 40].

Extending pretrained 2D image models to the video do-
main is a widely-studied topic in deep learning [4, 7], and
the key point lies in empowering 2D models with the ca-
pability of modeling temporal dependency between video
frames while taking advantages of knowledge in the pre-
trained models. In this paper, based on CLIP [31], we revisit
temporal modeling in the context of image-to-video knowl-
edge transferring, and present Spatial-Temporal Auxiliary
Network (STAN) – a new temporal modeling method that
is easy and effective for extending image-text pretrained
model to diverse downstream video tasks.

We find that current efforts on empowering CLIP with
temporal modeling capability can be roughly divided into
posterior structure based methods and intermediate struc-
ture based methods as shown in Fig. 1(a). Posterior struc-
ture based methods [11,12,25] employ a late modeling strat-
egy, which take CLIP as a feature extractor and conduct
temporal modeling upon the embeddings of video frames
extracted independently from CLIP. Upon the highly se-
mantic embeddings, though the structure is beneficial for
transferring the well-aligned visual-language representation
(i.e., high-level knowledge) to downstream tasks, it hardly
captures the spatial-temporal visual patterns (i.e., low-level
knowledge) among different frames, which is important for
video understanding. As shown in Fig. 1(b), compared to
the CLIP baseline that employs a naive mean pooling to
aggregate the features of all frames to obtain a video rep-
resentation, the performance improvement brought by the
typical posterior structure, i.e. CLIP4clip-seqTrans [25] is
trivial, especially on the video action recognition task where
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Figure 1. (a) Illustration of temporal modeling with posterior structure (left), intermediate structure (middle) and our branch structure(right).
(b) Performance comparison among the posterior structure based CLIP4clip-seqTrans [25] , intermediate structure based XCLIP [28] and
our branch structure based STAN. We take the CLIP model with a naive mean pooling to aggregate the features of all frames into video
representations as the baseline. We present the improvement brought by different methods over this baseline w.r.t. Recall@1 on MSRVTT
for video-text retrieval and Top-1 accuracy on Kinetics-400 for video recognition.

spatial-temporal visual patterns are crucial.

In contrast to posterior structure based methods, inter-
mediate structure based methods [4, 28, 29] strengthen the
spatial-temporal modeling capability of CLIP via plugging
temporal modeling modules directly between CLIP layers,
and achieve 3.7% improvement over the baseline on the
video action recognition task. However, we find that in-
serting additional modules into CLIP would impact the pre-
trained high-level semantic knowledge in the model, which
only outperforms the baseline by 0.2% on the video-text
retrieval tasks. Therefore, modeling temporal dependency
while taking advantage of knowledge in different levels of
representation is important for extending the CLIP model to
the video domain.

Unlike the above methods, inspired by FPN [22] that
introduces a branch network to strengthen multi-level rep-
resentation learning for CNNs, our proposed STAN em-
ploys a new branch structure outside of the visual back-
bone, as shown in Fig. 1(a). Thanks to the branch structure,
STAN augments the features of video frames with spatial-
temporal contexts at different CLIP output levels without
affecting the forward-propagating of CLIP itself. Thus, it
is able to take advantage of both high-level and low-level
knowledge in the pretrained model simultaneously, and ef-
fectively extends CLIP to diverse downstream video tasks.
STAN consists of multiple layers with a spatial-temporal
separated design. Specifically, the layer operates spatial-
temporal modeling via alternatively stacking two separate
modules – an intra-frame module and a cross-frame module,
which enables the layer to boost the performance of model
via reusing the pretrained parameter of CLIP layers to ini-
tialize the intra-frame spatial modules. We further investi-
gate two instantiations of cross-frame modules, i.e., the self-
attention-based module and 3D convolution based module,
to facilitate the comprehensive understanding of STAN in

different implementations.
We evaluate our STAN on both the high-level semantic-

dominant task (i.e., video-text retrieval) and low-level vi-
sual pattern-dominant task (i.e.,, video recognition), trial-
ing our methods from the two different perspectives. Ex-
tensive experiments demonstrate our expanded models are
generally effective on the two different tasks. For video-
text retrieval, we surpass the CLIP4clip by +3.7%, +3.1%,
and +2.1% R@1 on MSRVTT, DiDemo, and LSMDC.
For video recognition, we achieve competitive performance
on Kinetics-400, with 88× fewer FLOPs than Swin3D-L
[24] and improve CLIP baseline by 20%+ on Something-
Something-V2.

Our main contributions are summarized as: (1) we re-
visit temporal modeling in the context of image-to-video
knowledge transferring and figure out that the key challenge
lies in modeling temporal dependency while taking advan-
tage of both high-level and low-level knowledge; (2) we
propose Spatial-Temporal Auxiliary Network (STAN) – a
new branch structure for temporal modeling, which facil-
itates representation learning of video frames with includ-
ing spatial-temporal contexts at different levels and better
transfer the pretrained knowledge in CLIP to diverse video
tasks; (3) our method achieves competitive results on both
video-text retrieval and video recognition tasks compared to
SOTA methods.

2. Related Work
Visual-Language Pre-Training. Visual-Language pre-
training has drawn growing attention in past years [26, 35,
36]. Recently, the contrastive language-image pretraining
on web-scale data [17, 31, 45] achieves great success for
its remarkable performance when transferring to various
downstream tasks. One of the most famous works is the
CLIP [31], which has revealed surprising capacities of zero-
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shot recognition and domain generalization [25, 30, 48].
However, language-video datasets suffer from either finite
scale [3] or noisy subtitle annotations [26, 44] as well as
expensive computation consumes, hence the limited im-
provement from the pretraining. Thereby, efforts are made
[11, 12, 23, 25, 27–29, 41] to adapt the language-image pre-
training models to video tasks, which even get better results
than methods pretrained on video datasets.
CLIP for Video-Text Retrieval. CLIP contains rich vision-
text aligned knowledge, which is favoured by the video-
text retrieval task. Early works [11, 12, 14, 25, 47] try to
add temporal modeling modules as a posterior structure to
CLIP, e.g., the sequential transformer in [25] and the tem-
poral difference transformer in [11]. Despite the progress
they have made, the temporal modeling is limited in high-
level embeddings and not effective enough as shown in Fig.
1(b). There are also some works that modify CLIP from the
perspective of disentangling and multi-level representation
interaction [14, 27, 41], and achieve general advancement
on various video-text retrieval datasets. However, these
methods can only be applied to tasks with sentence input
(i.e., multimodal tasks), and are not suitable for recognition
tasks. In contrast, our method advances the retrieval as well
as other video tasks through effective temporal modeling.
CLIP for Video Recognition. Compared to the retrieval
task, the recognition task requires a model to better mod-
eling the dynamic visual patterns in videos, where the vi-
sual patterns in CLIP learnt from large-scale image-text
pretraining data are valuable. Therefore, there are num-
bers of works migrating the CLIP to video recognition
[3, 18, 28, 29, 40]. Some of them focus on the prompting
or sampling modeling [3, 18, 28], and others [4, 28, 29, 40]
design temporal modules as a intermediate structure illus-
trated in Fig 1(a). Ni et al [28] insert the message to-
ken to input frame tokens to capture sequence informa-
tion. Pan et al [29] develop 3D convolution modules as
adapters plugged between the CLIP layers. Unlike the
aforementioned methods, we propose a branch structure
based method for better transferring image-text model to
the video domain.

3. Methodology
3.1. Motivation and Overview

CLIP is a large-scale image-text pretrained model which
learns general multi-modal knowledge from 400 million
image-text pairs. It consists of two encoders for the extrac-
tion of image and text representation respectively, where
the visual encoder is composed of a stack of transformer-
based [38] encoder layers. From the bottom to the top of
layers, the visual encoder gradually learns the visual pat-
terns at different levels of abstraction [46], and at last out-
puts high-level visual embedding semantically aligned with

the corresponding embedding in the text modality.
CLIP-based image-to-video transferring aims to improve

the learning of video representation with the pretrained
knowledge in CLIP, where the key point lies in empower-
ing the image encoder in CLIP with the capability of mod-
eling temporal dependency between video frames. Current
works typically introduce extra modules as a posterior or
intermediate structure of CLIP visual encoder for explic-
itly temporal modeling towards different downstream video
tasks. For high-level semantic knowledge dominant tasks,
e.g., video-text retrieval, the posterior structure takes ad-
vantage of the pretrained visual-language alignment knowl-
edge via operating temporal modeling upon the outputs of
CLIP. As for visual pattern dominant tasks, e.g., video ac-
tion recognition, the intermediate structure benefits from
the pretrained visual patterns knowledge in CLIP, named
as low-level knowledge, and empowers the encoder with
the capability of learning spatial-temporal patterns from the
video. Nevertheless, the posterior structure and the inter-
mediate structure based temporal modeling methods fail to
transfer the high-level and low-level knowledge to the video
domain simultaneously.

Therefore, we propose Spatial-Temporal Auxiliary Net-
work (STAN), a new temporal modeling mechanism for
CLIP-based image-to-video knowledge transferring. As
shown in Fig. 2, STAN consists of a stack of K spatial-
temporal layers and acts as a branch structure beside the
CLIP visual encoder. Given a video with T frames, the
frames are fed into the CLIP visual backbone to obtain in-
termediate outputs at last K + 1 level of CLIP layers. We
denote the outputs of the kth selected CLIP layer as:

V k = {fk
i,j ∈ RD|i ∈ [1, T ], j ∈ [0, L]}, (1)

which is a visual embedding sequence of the video where T ,
L and D are the frame number, per-frame patch number and
embedding dimension, respectively. In V k, fk

i,0 indicates
the embedding of [CLS] token in the ith frame of the video
while fk

i,j>0 represents the visual embedding of jth patch in
the frame. Then, we feed each intermediate output V k into
the corresponding level of layer in STAN for the modeling
of spatial-temporal correspondence between video frames.
At last, we fuse the output of the last CLIP layer with the
output of STAN to get the final representation of the video.

Compared to the posterior structure based methods,
STAN operates spatial-temporal modeling on multi-level
CLIP representations and thereby is able to better cap-
ture the visual dynamics information in the video. Mean-
while, unlike previous intermediate structure based meth-
ods, which insert additional modules into CLIP visual en-
coder, the branch structure of STAN avoids destroying the
inherent structure of the visual encoder and thereby protect
the pretrained knowledge, especially the high-level visual-
text alignment knowledge in CLIP.
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Figure 2. The overview of our proposed STAN architecture, including the global overview of our backbone (left), details of the internal
structure of our spatial-temporal module (middle), and implementations of the cross-frame module (right).

3.2. Spatial-Temporal Auxiliary Network

STAN consists of a stack of K spatial-temporal layers,
where the input for each layer is constructed based on the
output of a CLIP visual layer. For the kth layer in STAN,
its input is an embedding sequence of the video denoted as:

V ′k = {f ′k
0,0, f

′k
1,1, .., f

′k
1,L, .., f

′k
T,1, .., f

′k
T,L}, (2)

where f ′k
0,0 is the embedding of [CLS] token for the whole

video while others are embedding of image patches in dif-
ferent frames. The output of the STAN layer is also an em-
bedding sequence with the same size as its input, which is
denoted as:

Ṽ k = {f̃k
0,0, f̃

k
1,1, .., f̃

k
1,L, .., f̃

k
T,1, .., f̃

k
T,L}, (3)

At the first STAN layer, to construct its input from V 1,
we first average the embedding of [CLS] tokens in each
frame as a new embedding f ′1

0,0 = 1
T

∑
i∈T f1

i,0, and then
update patch embeddings in V 1 with spatial and temporal
position embeddings as:

f ′1
i,j = Dropout(f1

i,j + Post(t) + Poss(j)), (4)

where j > 0 while Post and Poss are the learnable embed-
dings for the temporal and spatial position of each patch.
For the other layers in STAN, the input V ′k is constructed
based on the output from the previous STAN layer Ṽ k−1

and CLIP output V k as follows:

f ′k
0,0 = f̃k−1

0,0 +Wk
proj

1

T

∑
i∈T

fk
i,0, (5)

f ′k
i,j = f̃k−1

i,j +Wk
projf

k
i,j , (6)

where i ∈ [1, T ], j ∈ [1, L], and Wk
proj ∈ RD×D is a

projection layer.

Given the input embedding sequence of the video, STAN
layer learns the spatial-temporal information among the
video frames. As shown in Fig. 2, it operates temporal
modeling via alternatively stacking two separated modules
– an intra-frame module and a cross-frame module. Thanks
to the separated design, we are able to reuse the structure in
CLIP visual encoder layer as our intra-frame spatial module
and initialize it with the pretrained model, which effectively
improves the performance on downstream tasks. Same as
CLIP, the intra-frame module is also a self-attention block
responsible for spatial modeling. For simplicity, we omit
the superscript of embedding and denote the embeddings in
frame i as Xi ∈ R(L+1)×D, where the embedding of [CLS]
token in the video is duplicated and concatenated with patch
embeddings. In each frame, the spatial module updates em-
beddings via self-attention:

X̂i = softmax(XiWQ(XiWK)
T/

√
D)(XiWV) +Xi, (7)

where WQ/WK/WV indicate the linear projections for the
query, key and value in self-attention layer of the spatial
module. After that, the duplicated [CLS] embeddings in
each frame are averaged as the video [CLS] embeddings.

The cross-frame module is responsible for temporal
modeling. For simplicity, we omit the superscript of em-
bedding and denote the collection of jth patch embed-
dings in different frames as Yj ∈ RT×D. At each spa-
tial position, the patch embeddings are updated as Ŷj =
Temp(Yj), where Temp() indicates the message passing
strategy across temporal dimension which can be instanti-
ated in different ways. In the next section, we present a self-
attention-based cross-frame module and a 3D convolution-
based cross-frame module, and study the performance of
the two instantiations.
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3.3. Temporal Modeling in STAN

In deep learning, there are various ways to achieve tem-
poral modeling, for example, 3D convolution [7,37], tempo-
ral self-attention [2,4] and proxy tokens [10,28]. In this pa-
per, we investigate two most popular instantiations of tem-
poral modeling in the proposed framework, i.e., the self-
attention based module and convolution based module, to
facilitate the comprehensive understanding of STAN in dif-
ferent implementations.
Self-attention based module. Self-attention has a natural
advantage in sequence modeling due to its global modeling
capability. At each spatial position, the patch embeddings
from different frames are updated as:

Ŷi = softmax(YiWQ(YiWK)
T/

√
D)(YiWV) + Yi, (8)

where WQ/WK/WV indicate the linear projections for the
query, key, and value in self-attention layer of the cross-
frame module. Through temporal attention, each patch is
contextualized with temporal information at the same loca-
tions.
Convolution based module. Convolution operator has
been widely adapted for effective temporal modeling in
CNNs [7, 37, 42], e.g., C3D [37], S3D [42]. Though self-
attention gains increasing attention, convolution still owns
the advantage of better local modeling and easier easier to
converge. Therefore, we also implement the cross-frame
module of STAN based on the convolution operator. Specif-
ically, we stack the patch embeddings of the video to form
a 3D feature cube Y ∈ RT×W×H×D and then update the
features as follows:

Y = Up(Gelu(3DConv(Down(Y )))) + Y, (9)

where the Down() and Up() are the point-wise convolution
operators with channel size of D

8 and D, which reduce and
restore the dimension of patch embeddings. As for the ker-
nel size of 3D convolution, the dimensions for T, H, and W
are set to 3, 1, and 1 respectively.

4. Experiments
4.1. Experiment Settings

Datasets. We evaluate our method on both the high-
level semantic-dominant task i.e.,, video-text retrieval, and
low-level visual pattern-dominant task i.e.,, video recogni-
tion, trialing our methods from the two different perspec-
tives. For video-text retrieval, we employ MSR-VTT [43],
DiDemo [1] and LSMDC [32]; for video recognition, we
adopt Kinetics-400 [19] and Something-Something-v2 [15].

MSR-VTT is the most popular benchmark consisting of
10,000 YouTube videos with 20 captions for each video.
DiDemo contains 10,000 videos and 40,000 sentences with
longer video duration than other retrieval datasets. LSMDC

is a large-scale video-text retrieval benchmark with 118,081
videos from 202 movies, which is more diverse in concept
and duration than other datasets.

Kinetics-400 (K-400) is a popular video action recog-
nition dataset that has 260,000 videos with average 300
frames and 400 action classes. Something-Something-v2
(SSv2) is a video action recognition benchmark especially
for temporal modeling, which contains 220,485 videos and
174 action classes. In K-400, most of the action categories
are biased to static scene context [34]. In SSv2, the classes
of action are less relevant to the static scene context but
closely related to the dynamic information in videos.

Implementation Details. We set the number of STAN lay-
ers to 4 for all datasets except on SSv2 when it is set to 6.
We employ the simple cross-entropy loss and NCE loss for
fine-tuning on video recognition and video-text retrieval, re-
spectively. Following previous work [25], we fine-tune the
model with a frame number of 12 and a token length 32 for
MSRVTT, LSMDC, K400, and SSv2. On Didemo where
videos have a longer duration, the frame number and token
number are set to 64 and 64. The batch size is set to 128 for
all datasets. We adopt Adam as our optimizer with weight
decay of 0.02. The learning rates are initialized to 2e-6 and
2e-5 for parameters in CLIP and parameters in STAN re-
spectively, and then decay following a cosine annealing de-
cay schedule. For more details and code, please refer to
supplementary materials.

4.2. Comparisons with State-of-the-art

Video-Text Retrieval. We compare our STAN with cur-
rent SOTAs including both video-text pretrained and CLIP-
pretrained methods across different benchmarks. Compar-
isons on MSR-VTT, DiDemo abd LSMDC are reported in
Table 1, 2, and 3, respectively. For CLIP-pretrained meth-
ods, unless denoted with B/16, all the methods are based on
CLIP-B/32. For our method, we report the results achieved
by both CLIP-B/32 and CLIP-B/16, and denote STAN with
self-attention and 3D convolution based inter-frame module
as STAN-self and STAN-conv, respectively.

As shown in Table 1, 2 and 3, CLIP-based methods gen-
erally achieve superior performance than the video-text pre-
trained methods, which demonstrates the great potential of
transferring image-text pretrained models to the video do-
main. Among the CLIP-based methods, our STAN achieves
SOTA performance across all three benchmarks at both
CLIP-B/32 and CLIP-B/16 model scales. Specifically, with
comparable model size, STAN outperforms the posterior
structure based method, i.e., CLIP4clip [25] by 2.9% at
R@1 averaged on the three datasets, which shows obvious
advantage of the branch structure. Compared to the other
SOTAs, e.g., DRL [41], which advances video-text retrieval
via improving the cross-modality interaction upon visual-
language outputs of CLIP, STAN shows a different way to
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Table 1. Comparisons on MSR-VTT [43]. We train on Training-
9K and test on Test-1k-A. * means extra tricks (e.g., DSL [8] and
QB-Norm [5]) are utilized during inference.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
Pretrained on large-scale video-text dataset
ClipBERT [20] 22.0 46.8 59.9 6.0
Frozen [3] 31.0 59.5 70.5 3.0
HD-VILA [44] 35.6 65.3 78.0 3.0
All-in-one [39] 37.9 68.1 77.1 -
BridgeFormer [13] 37.6 64.8 75.1 3.0
Clover [16] 38.6 67.4 76.4 2.0
CLIP pretrained
Clip4clip [25] 44.5 71.4 81.6 2.0
CenterCLIP [47] 44.2 71.6 82.1 2.0
CLIP2Video* [11] 47.2 73.0 83.0 -
CAMoE* [8] 47.3 74.2 84.5 3.0
CLIP2TV-B/16 [12] 49.3 74.7 83.6 2.0
DRL-B/16* [41] 53.3 80.3 87.6 1.0
Our method
STAN-self-B/32 46.9 72.8 82.8 2.0
STAN-conv-B/32 46.6 72.8 82.2 2.0
STAN-self-B/32* 49.0 74.8 83.5 2.0
STAN-self-B/16 50.0 75.2 84.1 1.5
STAN-self-B/16* 54.1 79.5 87.8 1.0

Table 2. Comparisons on DiDemo [1]. We concatenate all cap-
tions of a video into a single query. * means extra tricks (e.g.,
DSL [8] and QB-Norm [5]) are utilized during inference.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
Pretrained on large-scale video-text dataset
ClipBERT [20] 20.4 48.0 60.8 6.0
Frozen [3] 31.0 59.8 72.4 3.0
HD-VILA [44] 28.8 57.4 69.1 4.0
All-in-one [39] 32.7 61.4 73.5 3.0
BridgeFormer [13] 37.0 62.2 73.9 3.0
Clover [16] 48.6 74.3 82.2 2.0
CLIP pretrained
Clip4clip [25] 43.4 70.2 80.6 2.0
CAMoE* [8] 43.8 71.4 - -
CLIP2TV [12] 45.5 69.7 80.6 2.0
DRL-B/16 [41] 49.0 76.5 84.5 2.0
Our method
STAN-self-B/32 46.2 70.4 80.0 2.0
STAN-conv-B/32 46.5 71.5 80.9 2.0
STAN-conv-B/32* 51.3 75.1 83.4 1.0
STAN-conv-B/16 49.4 74.9 84.5 1.0
STAN-conv-B/16* 54.6 78.4 85.1 1.0

achieve competitive performance, which improves the tem-
poral modeling capability of CLIP itself. Therefore, em-
powering CLIP model with stronger video representation
learning capability, STAN is potentially compatible with
the other SOTAs which present advanced techniques oper-
ated upon CLIP outputs, e.g., hierarchical video-text inter-
action [27, 41] and hard sample modeling [11]. We leave
them for future work. Additionally, we also notice that both
the self-attention and 3D convolution instantiated model,
i.e., STAN-self and STAN-conv, achieve competitive per-
formance with a slight difference. Specifically, STAN-conv
is comparable with STAN-self when transferring to smaller
datasets, e.g., MSRVTT (-0.3 at R@1) and DiDeMo (+0.3
at R@1) while STAN-self is better on larger scale dataset,
e,g., LSMDC (+0.6 at R@1). The results further suggest
that self-attention instantiated STAN would be the better
choice when transferring CLIP to large-scale downstream

Table 3. Comparison on LSMDC [32]. * means extra tricks (e.g.,
DSL [8] and QB-Norm [5]) are utilized during inference.

Methods R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓
Pretrained on large-scale video-text dataset
Frozen [3] 15.0 30.8 40.3 20.0
HD-VILA [44] 17.4 34.1 44.1 15.0
BridgeFormer [13] 17.9 35.4 44.5 15.0
Clover [16] 22.7 42.0 52.6 9.0
CLIP pretrained
Clip4Clip [25] 21.6 41.8 49.8 8.0
CAMoE* [8] 25.9 46.1 53.7 -
CCLIP-B/16 [47] 24.2 46.2 55.9 8.0
DRL-B/16 [41] 26.5 47.6 56.8 7.0
Our method
STAN-self-B/32 23.7 42.7 51.8 9.0
STAN-conv-B/32 23.1 42.2 51.0 9.0
STAN-self-B/32* 26.2 46.0 53.9 9.0
STAN-self-B/16 27.1 49.3 58.7 6.0
STAN-self-B/16* 29.2 49.5 58.8 6.0

datasets, while 3D convolution instantiated STAN would be
better for the small ones. In Appendix, we present more
results with visualization.
Video Recognition. To evaluate the spatial-temporal mod-
eling capability of STAN, we compare it to other SOTAs
on video recognition benchmarks, i.e., Kinetics-400 (K400)
and Something-Something-v2 (SSv2). The results are re-
ported in Table 4 and Table 5 respectively. On K400
benchmark, CLIP-based methods achieve competitive re-
sults with much smaller model size compared to the image-
pretrained methods, which shows the superiority of image-
text pretraining. For example, our VIT-B/16 based STAN
outperforms VIT-Huge based ViViT [2] and Swin3D-L
based Video-swin [24], which have more than 15× and 88×
GFLOPs compared to our method. Meanwhile, our method
achieves SOTA performance among CLIP-based methods,
which demonstrates the effective of our method on trans-
ferring CLIP to the video domain. As for SSv2 bench-
mark, we find that, without temporal modeling, bare CLIP
model [9] achieves only 44.0% top-1 accuracy which dra-
matically under-performs ImageNet-21K pretrained Times-
former [6], though it owns pretrained knowledge obtained
from a much larger image-text dataset. The result suggest
that the domain gap is significant between SSv2 and CLIP
model, and temporal modeling capability is desired for the
action recognition task on SSv2. STAN brings about more
than 20% performance improvement over the CLIP baseline
and achieves competitive compared to other CLIP-based
methods, which demonstrates that STAN empowers CLIP
with strong temporal modeling capability.

4.3. Ablation Study

To verify the contribution of different components in our
method, we conduct ablation experiments on both video-
text retrieval tasks (i.e., MSR-VTT and DiDemo) and video
action recognition tasks (i.e., K400 and SSv2). First of all,
according to the results reported in Table 6, we can con-
clude that components in STAN are compatible with each
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Table 4. Comparison between our method and the state-of-the-arts on Kinetics-400 validation set [19]. We report the FLOPs of all views.
Methods Pretrain Frames Testing Views GFLOPs Top-1 Accuracy Top-5 Accuracy

Large-scale image pretraining
TimeSformer-L [4] ImageNet-21 K 96 1× 3 7140 80.7 94.7
Video-Swin-L (384 ↑) [24] ImageNet-21 K 32 10× 5 105350 84.9 96.7
MViTv2-L (312 ↑) [21] ImageNet-21 K 40 5× 3 42420 86.1 97.0
ViViT-H [2] JFT-300M 32 4× 3 17352 84.8 95.8
TokenLearner-L/10 [33] JFT-300M - 4× 3 48912 85.4 96.3
Large-scale image-text pretraining
CLIP-B/16 [9] CLIP-400M 8 4× 3 - 81.1 94.8
Action-CLIP-B/16 [40] CLIP-400M 32 10× 3 16890 83.8 96.2
A6 [18] CLIP-400M 16 − - 76.9 93.5
STadapter-CLIP-B/16 [29] CLIP-400M 8 1× 3 455 82.0 95.7
STadapter-CLIP-B/16 [29] CLIP-400M 32 1× 3 1821 82.7 96.2
X-CLIP-B/16 [28] CLIP-400M 8 4× 3 1740 83.8 96.7
X-CLIP-B/16 [28] CLIP-400M 16 4× 3 3444 84.7 96.8
Our method
STAN-conv-B/16 CLIP-400M 8 1× 3 714 83.1 96.0
STAN-self-B/16 CLIP-400M 8 1× 3 593 84.2 96.5
STAN-self-B/16 CLIP-400M 16 1× 3 1187 84.9 96.8

Table 5. Comparison on Something-Something-v2 validation set [15]. We report the FLOPs of all views. * means our implementation.
Methods Pretrain Frames Testing Views GFLOPs Top-1 Accuracy Top-5 Accuracy

TimeSformer-HR [4] ImageNet-21 K 16 1× 3 5109 62.5 -
ViViT-L [2] K400 16 4× 3 11892 65.4 89.8
MViT-B-24 [21] K600 32 1× 3 708 68.7 91.5
Video-Swin-B [24] K400 32 1× 3 963 69.6 92.7
CLIP-B/16 [9] CLIP-400M 8 1× 3 - 44.0 76.2
X-CLIP-B/16* [40] CLIP-400M 8 1× 3 435 63.1 89.0
STadapter-CLIP-B/16 [40] CLIP-400M 8 1× 3 489 67.1 91.2
STadapter-CLIP-B/16 [40] CLIP-400M 32 1× 3 1955 69.5 92.6
Our method
STAN-conv-B/16 CLIP-400M 8 1× 3 845 65.2 90.5
STAN-self-B/16 CLIP-400M 8 1× 3 688 67.6 91.4
STAN-self-B/16 CLIP-400M 16 1× 3 1376 69.5 92.7

other while each of them contributes to the transferring of
CLIP. Specifically, when we remove the branch structure
and multi-level feature learning, and append STAN as a pos-
terior structure upon the CLIP, the performance of STAN
decreased a lot on all four benchmarks, which demonstrates
the superiority of our model structure compared to the pos-
terior structure. Besides, we find that without the Cross-
Frame module, STAN still brings about performance im-
provement over baseline, which suggests that our method
is beneficial to image-to-video knowledge transferring for
CLIP model. With the help of Cross-Frame module, the
complete STAN further outperforms the baseline by a larger
margin and achieves SOTA performance on both video-
text retrieval and video recognition tasks, which reveals our
method is able to model temporal dependency while taking
advantage of knowledge in different level of representation.

4.4. Further discussion on STAN

The effect of different temporal modeling structures. As
aforementioned, posterior structure based temporal model-
ing for CLIP transferring is popular for high-level knowl-
edge dominant tasks, e.g., video-text retrieval, while in-

termediate structures are employed for low-level knowl-
edge dominant tasks, e.g., video recognition. In section
4.2, we demonstrate the superiority of our branch struc-
tured based method compared to other structures on dif-
ferent tasks, respectively. Here, we further adopt posterior
structures for video recognition and intermediate structure
for video-text retrieval to better understand the effect of dif-
ferent temporal modeling structures. For posterior struc-
tures, we employ the Sequential Transformer (Seq Trans) in
CLIP4clip [25] and Temporal Differential Block (TDB) in
CLIP2video [11]. For intermediate structures, we choose
the Message Token (Msg Token) in XCLIP [28] and ST-
adapter [29]. Note that, for a fair comparison, we only re-
port the performance achieved by the temporal modeling
structures without other extra techniques (e.g., prompting
modeling in [11] and [28] ). As shown in Table 7, posterior
structures are more effective than intermediate structures in
transferring CLIP to video-text retrieval tasks, but brings
trivial improvement on the video recognition task. In con-
trast, intermediate structures perform well on video recog-
nition, but bring little improvement over baseline on video-
text retrieval. As for our branch structure based STAN, it
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Table 6. Ablation studies on different datasets. For MSRVTT and DiDemo, we use CLIP-B/32 as backbone and report Recall@1; for K400
and SSv2, we use CLIP-B/16 as backbone and report Top1 Accuracy. We adopt temporal self-attention here in our Cross-Frame module.

Components Results
Cross-Frame Intra-Frame Branch structure Multi-level MSR-VTT DiDemo K400 SSv2

43.1 43.4 79.9 44
✓ ✓ 44.9 43.5 80.5 55.9
✓ ✓ ✓ 44.2 43.6 80.8 58.6

✓ ✓ ✓ 44.3 44.5 81.0 48.1
✓ ✓ ✓ 43.1 43.7 80.0 55.7
✓ ✓ ✓ ✓ 46.9 46.2 82.6 65.9

+ Testing Techniques (DSL [8] or 1× 3-views) 49.7 51.4 84.2 67.6

Table 7. Analysis of different structures on both video recognition
and retrieval tasks. * means our own implementation.

Method Style MSR-VTT K400
baseline - 43.1 79.9
Msg Token [28] Intermediate 43.2* 82.7
ST-adapter [29] Intermediate 42.5* 82.0
Seq Trans [25] Posterior 44.5 80.5*
TDB [11] Posterior 45.1 81.1*
STAN-selfN Branch 46.9 84.2

Table 8. The impact of different levels of inputs from CLIP layers
on STAN.

Methods Recall@1 on MSR-VTT Top1 Acc on SSv2
Baseline 43.1 44.0

In
te

rv
al 3 43.5 54.4

2 44.2 61.1
1 46.9 65.2

R
an

ge

1-4 43.4 62.2
5-8 43.9 62.3
9-12 46.9 65.2

not only successfully extends CLIP to both tasks but also
outperforms both the other two structure based methods,
which demonstrates that our structure is a better temporal
modeling method in the context of CLIP-based image-to-
video knowledge transferring.

The impact of multi-level inputs from CLIP layers.
STAN acts as a new branch beside the CLIP backbone,
which takes the video frame representation at different lev-
els of CLIP layers as inputs. To study the impact of the
choice of different CLIP representations, we fixed the num-
ber of STAN layers to 4 and vary the level range and interval
of selected CLIP layers. For the interval, we align the last
layer of CLIP and STAN, and vary the interval between the
selected CLIP layers. For example, interval=2 means STAN
receives outputs of every 2 CLIP layers as inputs, i.e., the
6th, 8th, 10th, and 12th layers. As shown in Table 8, inter-
val=1 is the best choice for both datasets. Then, we fix the
interval to 1, and vary the level range of selected CLIP lay-
ers. The result suggests that the mid-high level of pretrained
CLIP representation is more valuable for downstream tasks.

The impact of STAN layer number. Intuitively, increas-
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Figure 3. Analysis of the number of layers in STAN. We report the Re-
call@1 on MSR-VTT and Top1 Accuracy on SSv2 respectively.

ing layers in STAN would access more CLIP representation
levels bringing about stronger temporal modeling capabil-
ity. Nevertheless, it also increases the risk of over-fitting to
downstream tasks. Thereby, we study the effect of layer
number to find a better trade-off. As shown in Fig. 3,
for MSR-VTT retrieval, the performance improvement of
STAN reaches the peak at 4 layers, and the performance
drops with further increasing of layers. On SSv2, the per-
formance improvement of STAN tend to converge after 6
layers. Generally, STAN with 4 to 6 layers is a good choice
for different tasks.

5. Conclusion
In this paper, we study the temporal modeling in

CLIP-based image-to-video knowledge transferring. We
first uncover that current methods fail to work on high-
level semantic-dominant tasks and low-level visual pattern-
dominant tasks simultaneously. Then, to address this prob-
lem, we propose a simple and effective framework named
Spatial-Temporal Auxiliary Network (STAN) to expand
CLIP to diverse video tasks. Extensive experiments on
Video-Text Retrieval and Video Recognition tasks demon-
strate the superiority of our method.
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