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Abstract

Shadows in videos are difficult to detect because of the
large shadow deformation between frames. In this work,
we argue that accounting for shadow deformation is essen-
tial when designing a video shadow detection method. To
this end, we introduce the shadow deformation attention
trajectory (SODA), a new type of video self-attention mod-
ule, specially designed to handle the large shadow defor-
mations in videos. Moreover, we present a new shadow
contrastive learning mechanism (SCOTCH) which aims at
guiding the network to learn a unified shadow represen-
tation from massive positive shadow pairs across differ-
ent videos. We demonstrate empirically the effectiveness
of our two contributions in an ablation study. Furthermore,
we show that SCOTCH and SODA significantly outperforms
existing techniques for video shadow detection. Code is
available at the project page: https://lihaoliu-
cambridge.github.io/scotch_and_soda/

1. Introduction

Shadow is an inherent part of videos, and they have
an adverse effect on a wide variety of video vision tasks.
Therefore, the development of robust video shadow detec-
tion techniques, to alleviate those negative effects, is of
great interest for the community. Video shadow detection
is usually formulated as a segmentation problem for videos,
however and due to the nature of the problem, shadow de-
tection greatly differs from other segmentation tasks such
as object segmentation. For inferring the presence of shad-
ows in an image, one has to account for the global content
information such as light source orientation, and the pres-
ence of objects casting shadows. Importantly, in a given
video, shadows considerably change appearance (deforma-
tion) from frame to frame due to light variation and object
motion. Finally, shadows can span over different back-
grounds over different frames, making approaches relying
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Figure 1. Overview of our SCOTCH and SODA framework. A MiT
encoder extracts multi-scale features for each frame of the video
(stage 1). Then, our deformation attention trajectory is applied
to features individually to incorporate temporal information (stage
2). Finally, an MLP layer combines the multi-scale information to
generate the segmentation masks (stage 3). The model is trained
to contrast shadow and non-shadow features, by minimising our
shadow contrastive loss with massive positive shadow pairs.

on texture information unreliable.
Particularly, video shadow detection methods can be

broadly divided into two main categories. The first category
refers to image shadow detection (ISD) [9,15,35,36,43,46].
This family of techniques computes the shadow detec-
tion frame by frame. Although computationally saving,
these methods are incapable of handling temporal informa-
tion. The second category refers to video shadow detection
(VSD) [6, 9, 14, 16, 25]. These methods offer higher per-
formance as the analysis involves spatial-temporal informa-
tion. Hence, our main focus is video shadow detection.
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State-of-the-art video shadow detection methods rely on
deep neural networks, which are trained on large annotated
datasets. Specifically, those methods are composed of three
parts: (i) a feature extraction network that extracts spatial
features for each frame of the video: (ii) a temporal ag-
gregation mechanism [6, 14] enriching spatial features with
information from different frames; and (iii) a decoder, that
maps video features to segmentation masks. Additionally,
some works enforce consistency between frames prediction
by using additional training criterion [9,25]. We retain from
these studies that the design of the temporal aggregation
mechanism and the temporal consistency loss is crucial to
the performance of a video shadow detection network, and
we will investigate both of those aspects in this work.

The current temporal aggregation mechanisms available
in the literature were typically designed for video tasks
such as video action recognition, or video object segmenta-
tion. Currently, the most widely used temporal aggregation
mechanism is based on a variant of the self-attention mech-
anism [1, 29, 32, 40, 41]. Recently, trajectory attention [29]
has been shown to provide state-of-the-art results on video
processing. Intuitively, trajectory attention aggregates in-
formation along the object’s moving trajectory, while ignor-
ing the context information, deemed as irrelevant. However,
shadows in videos are subject to strong deformations, mak-
ing them difficult to track, and thus they might cause the
trajectory attention to fail.

In this work, we first introduce the ShadOw Deformation
Attention trajectory (SODA), a spatial-temporal aggregation
mechanism designed to better handle the large shadow de-
formations that occur in videos. SODA operates in two steps.
First, for each spatial location, an associated token is com-
puted between the given spatial location and the video,
which contains information in every time-step for the given
spatial location. Second, by aggregating every associated
spatial token, a new token is yielded with enriched spatial
deformation information. Aggregating spatial-location-to-
video information along the spatial dimension helps the net-
work to detect shape changes in videos.

Besides, we introduce the Shadow COnTrastive meCH-
anism (SCOTCH), a supervised contrastive loss with massive
positive shadow pairs aiming to drive our network to learn
more discriminative features for the shadow regions in dif-
ferent videos. Specifically, in training, we add a contrastive
loss at the coarsest layer of the encoder, driving the fea-
tures from shadow regions close together, and far from the
features from the non-shadow region. Intuitively, this con-
trastive mechanism drives the encoder to learn high-level
representations of shadow, invariant to all the various fac-
tors of shadow variations, such as shape and illumination.

In summary, our contributions are as follows:
• We introduce a new video shadow detection frame-

work, in which we highlight:

– SODA, a new type of trajectory attention that har-
monise the features of the different video frames
at each resolution.

– SCOTCH, a contrastive loss that highlights a mas-
sive positive shadow pairs strategy in order to
make our encoder learn more robust high-level
representations of shadows.

• We evaluate our proposed framework on the video
shadow benchmark dataset ViSha [6], and compare
with the state-of-the-art methods. Numerical and vi-
sual experimental results demonstrate that our ap-
proach outperforms, by a large margin, existing ones
on video shadow detection. Furthermore, we provide
an ablation study to further support the effectiveness of
the technical contributions.

2. Related Work
The task of video shadow detection has been extensively

investigated in the community, in which solutions largely
rely on analysing single frames (image shadow detection)
or continuous multiple frames (video shadow detection). In
this section, we review the existing techniques in turn, and
then summarize the recent achievements in the video pro-
cessing area to better illustrate the difference between exist-
ing work and our work.

2.1. Image Shadow Detection

Image shadow detection (ISD) can be cast as a se-
mantic segmentation problem, where image object seg-
mentation (IOS) methods can be used to solve this prob-
lem [8, 13, 19, 21, 22, 42]. However, IOS methods are not
specifically designed for shadow detection. Hence, when
re-training these methods directly for shadow detection, the
performance is unsatisfactory due to the data bias.

Techniques focused on image shadow detection incor-
porate problem-specific shadow knowledge into the model
architecture and the training criterion [7,9,15,16,35,36,43,
46]. For example, BDRAR [46] introduces a bidirectional
pyramidal architecture for shadow detection. DSD [43]
presents a distraction-aware shadow-module to reduce false
positives. Chen et al. [7] make use of non-labelled data,
during training, with a task-specific semi-supervised learn-
ing mechanism called MTMT. Wang et al. investigate the
detection of shadows along with their corresponding ob-
jects [35, 36]. Finally, FSDNet [16] proposes a compact
image shadow detection network. Whilst ISD techniques
have demonstrated potential results, their performance on
videos is limited by the lack of temporal information.

2.2. Video Shadow Detection

Another body of researchers has explored the task of
shadow detection from the lens of video analysis. The work
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of [6] proposes the TVSD model. It relies on a dual-gated
co-attention module, to aggregate features from different
frames, and uses a contrastive learning mechanism to drive
the encoder to discriminate frames from different videos.
Hu et al. [14] introduce an optical flow warping module
to aggregate features from different frames. STICT [25]
uses transfer learning, to transfer the knowledge of a super-
vised image shadow detection network to a video shadow
detection network, without labelled videos, by training the
network prediction to be consistent with respect to tempo-
ral interpolation [33]. Moreover, the technique called SC-
Cor [9] presents a weakly supervised correspondence learn-
ing mechanism to enhance the temporal similarity of fea-
tures corresponding to shadow region across frames.

2.3. Progresses in Video Processing

The specific nature of videos, containing spatial and tem-
poral information, has motivated the design of deep neural
network architectures for different video processing appli-
cations. Models based on 3D CNN [17, 31] process videos
by sequentially aggregating the spatio-temporal local infor-
mation using 3D convolutional filters, but fail to effectively
capture long-range temporal dependencies. To alleviate this
limitation, architectures using recurrent networks were in-
troduced in [2, 30]. Moreover, another set of works uses
spatio-temporal memory bank mechanism [27] or spatio-
temporal attention mechanism [32] into the coarse layers of
3D CNN architectures [18, 26, 37] to better integrate the
temporal information for video processing.

The success of the transformer network architecture, on a
wide variety of vision tasks [4,10], has motivated the use of
transformer for video tasks. While the self-attention mech-
anism in transformers appears to be well suited to capture
the long-range dependencies in videos, applying transform-
ers to videos raises many challenges, such as the quadratic
complexity in the input sequence length, and the large data
requirement induced by the lack of problem-specific induc-
tive bias. The works of [1, 41] propose to separate spatial
and temporal attention to reduce computational complexity,
and the authors of [40] propose to apply multiple encoders
on multiple views of the video. Recently, trajectory atten-
tion [29] was introduced as a way to incorporate an induc-
tive bias in the self-attention operation to capture objects
moving trajectories for better video recognition tasks.

2.4. Existing Works & Comparison to Our Work

All precedent works on VSD [6, 14, 25, 33] rely on con-
volutional neural network architectures. To the best of our
knowledge, our work is the first video shadow detection ap-
proach based on transformers.

Moreover, whilst the work of [29] also considers a type
of attention trajectory, their modelling hypothesis is that
the video objects do not change shape over time. This is

a strong assumption to fulfill for several vision applica-
tions such as shadow detection; as shadows significantly
change shape from frame to frame. Our work first miti-
gates this issue by modelling in the trajectories the inherent
deformation of the shadows. Notice that TVSD [6] uses an
image-level contrastive loss between frames from different
videos, and SC-Cor [9] uses weakly-supervised correspon-
dence learning for driving similar features from shadow-
region close together. Unlike these works, we introduce
a supervised contrastive strategy to contrast shadow fea-
tures from non-shadow features. We underline that existing
contrastive-based techniques assume that supervised con-
trastive learning is not performing better than its counter-
part. In this work, we show that a well-designed supervised
contrastive strategy indeed improves over existing works.

3. Methodology
In this section, we introduce all the components of the

video shadow detection method presented in this work. Af-
ter a global description of our framework (i), we introduce
SODA, our new video self-attention module (ii), and we de-
scribe the training criterion of our model, which includes
SCOTCH, our shadow contrastive mechanism (iii).

3.1. Framework Architecture Overview

Our proposed framework is composed of three main
stages. The overall workflow is illustrated in Figure 1, and
details are provided next.

¬ Stage 1: Feature Extraction. In this stage, Mix
Transformer (MiT) [39] is adopted as the encoder. MiT
takes video clips as input, and it outputs a set of different-
resolution spatial feature maps. Unlike ViT [10], which
only generates single-resolution feature maps, the hierar-
chical structure of MiT can generate CNN-like multi-level
multi-scale feature maps. These feature maps contain from
high-resolution detailed information to low-resolution se-
mantic information. By incorporating different levels of
resolutions, the performance of tasks such as semantic seg-
mentation can be boosted [39]. In this stage, MiT only en-
codes the spatial information of the given video clips (in-
put), that is, the temporal information is not yet incorpo-
rated.

¬ Stage 2: Harmonising Spatial and Temporal Infor-
mation. The multi-scale feature maps from Stage 1 are then
processed by the newly introduced shadow deformation at-
tention trajectory module (SODA). The goal of this module
is to capture the shadow’s deformation trajectory along the
frames in the video clips. Our deformation attention trajec-
tory module processes independently each feature map with
different-resolution. These processed feature maps are used
as input to the decoder in the next stage.

¬ Stage 3: Mask Shadow Generation. In this stage, a
light-weighted decoder, with only MLP layers, is adopted to
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Figure 2. Deformation attention trajectory module. The input feature maps z is used to generate q, k, v, respectively. The q and k are
first used to calculate the pointwise st-to-st similarity, followed by a softmax on t to get the time attention. The time attention aggregated
v can generate s-to-st (spatial-location-to-video) attention, named deformation attention. Then, the spatial-location-to-video attention is
integrated along the spatial dimension to capture the deformation attention trajectory. Lastly, the deformation attention trajectory is used
to generate the final feature map z′ with a second self-attention (q̂, k̂, v̂). In this figure, each square represents a spatial feature map. (The
channel dimension is not represented for simplicity).

reconstruct the shadow’s segmentation masks. The decoder
aims to mix the high- & low- resolution information, from
processed feature maps, for better semantic segmentation.
The output of the decoder is a segmented video that marks
out the shadows in each frame of the video.

3.2. SODA: ShadOw Deformation Attention trajec-
tory

Transformers have revolutionised several tasks in the
computer vision area. The key is the self-attention mecha-
nism that can accommodate with any given type of data and
domain. However, for videos, the standard self-attention
does not differentiate the spatial dimensions from the tem-
poral dimension. This can lead the attention to focus on the
redundant spatial information while neglecting the informa-
tive temporal variations in the videos. Nonetheless, video
analysis is inherent to such temporality. Most recently, tra-
jectory attention [29] has proposed to accommodate some-
how with such issues. However and even though trajectory
attention has demonstrated potential results, it has a ma-
jor limitation – the objects are assumed not to change over
time. This is a major constraint in several video tasks in-
cluding shadow detection; as shadows significantly undergo
deformation from one frame to another. In this subsection,
we introduce a new scheme called ShadOw Deformation
Attention trajectory (SODA) to mitigate current drawbacks
of the literature.

Like in the classical self-attention setting, it begins with
an input feature map generated from the encoder. Specif-
ically, let us denote fd ∈ Rt×h

d×w
d ×c, the generated fea-

ture map from the encoder, where d is the spatial down-
sampling ratio, c is the number of feature channels, and
t is the number of time frames in the video. fd is re-
shaped to a sequence of 1D token embedding denoted as
z ∈ Rn×c, where n = t × h

d × w
d . As shown in the

left part of Figure 2, z is then mapped to a set of query-

key-value vectors q, k, v ∈ Rn×c using linear projections
q = wq · z, k = wk · z, v = wv · z, with projection matrices
wq, wk, wv ∈ Rn×n.

Our scheme considers two main parts: (i) temporal at-
tention between the spatial location and video (Attention on
Time in Figure 2), (ii) intra-space attention to capture de-
formation statues within a spatial scene (Deformation At-
tention Trajectory in Figure 2). For the first part, given a
space-time position in the video st ∈ {1, · · · , n}, and a spa-
tial location s′ ∈ {1, · · · ,m}, where m = n

t , the temporal
attention (deformation) between the space-time position st
and the spatial locations s′ is computed as:

ŷsts′ =
∑
t′

vs′t′ ·
exp⟨qst, ks′t′⟩∑
t̄ exp⟨qst, ks′ t̄⟩

(1)

For brevity, the notation is slightly abused by omitting the
“softmax operation on time dimension” in the Fig. 2 ap-
plied to the fraction, as well as the scaling parameter

√
n

(we will keep this notation convention throughout the pa-
per). The deformation encodes the connection between one
space-time position and one spatial location, which indi-
cates how the content of the space-time position st is pre-
sented in spatial location s′.

Once the temporal attentions are computed, the intra-
space attention is then estimated to aggregate the spatial-
location-to-video responses to space-level deformation. To
do this, the computed deformation tokens are projected to a
new set of query-key-value vectors using linear projections:

q̂st = ŵq · ŷsts, k̂sts′ = ŵk · ŷsts′ , v̂sts′ = ŵv · ŷsts′ (2)

where ŷsts is the temporal connection from st to the same
spatial location s, and q̂st corresponds to the deformation
reference point st that is used to aggregate the location-to-
video connection:

ŷst =
∑
s′

v̂sts′ ·
exp⟨q̂st, k̂sts′⟩∑
s̄ exp⟨q̂st, k̂sts̄⟩

(3)
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where ŷst is the deformation attention output. The mean-
ingful location-to-video tokens are pooled out to form the
full space-level deformation status. By computing the intra-
space attention, the attended feature map can capture the de-
formation status in different frames of the video, thus boost-
ing the video shadow detection performance.

3.3. SCOTCH: Shadow COnTrastive meCHanism

Contrastive learning [5, 20, 23] has been proven to be an
effective mechanism for learning distinctive features. By
contrasting the positive pairs with high similarity and neg-
ative pairs with low similarity, the learned feature maps
can be more discriminative in downstream tasks including
classification and segmentation. In previous video shadow
detection task [6], positive and negative pairs are sampled
from frames from the same video and from two different
videos respectively. Since the frames from one video have
high similarity image content, the contrastive mechanism
can help to discriminate different video content.

However, the key element in video shadow detection
is the shadow itself instead of the video content. With
the goal of boosting the detection performance, we in-
troduce SCOTCH, a Shadow COnTrastive meCHanism.
SCOTCH seeks to better guide the segmentation process for
shadows and non-shadows regions in the videos. Specifi-
cally, to learn a unified shadow feature for different videos,
positive pairs are sampled from the shadow regions from
different frames in different videos, whilst negative pairs are
sampled as shadow and non-shadow regions on the frames
in different videos. We underline that unlike the classi-
cal contrastive loss used for unsupervised learning [5, 28],
where there is only a small number of positive pairs, we
proposed a massive positive shadow paired contrastive loss.
The key idea behind our loss is that – we seek to not only
maximise the difference between shadow and non-shadow
features, but also maximise the similarity between features
of shadows presented in different videos. All shadow and
non-shadow features are cropped from the last layer of the
encoder presented in Section 3.1, with the supervision of
the segmentation masks. The contrastive loss reads:

ℓcontrast
(
v,v+,v−) =

− log

[ ∑N
n=1 exp (v · v+

n /τ)∑N
n=1 exp

(
v · v+

n /τ
)
+
∑N

n=1 exp
(
v · v−

n /τ
)]
(4)

where v ∈ Rc is the query shadow feature. Moreover,
v+
n ,v

−
n ∈ Rn×c are the positive and negative groups re-

spectively, and τ is a temperature hyperparameter. The final
loss is computed across all frames in a mini-batch fashion.

Optimisation Scheme for Shadow Detection. Finally,
to compute the shadow segmentation loss, we follow the de-
fault setting in [6]. We use the binary cross entropy (BCE)

loss with a lovasz-hinge loss [3]. These two terms are added
to define the shadow segmentation loss as follows:

ℓseg = ℓbce + λ1ℓhinge (5)

Our optimisation scheme is then given by (4) and (5) as:

ℓfinal = ℓbce + λ1ℓhinge + λ2ℓcontrast (6)

where λ1 and λ2 are two hyper-parameters weighting the
relative effect of the hinge loss and the contrastive loss in
the final loss. In the following experiments, λ1, λ2 were
empirically set to a value of 1 and 0.1, respectively.

4. Experimental Results
This section details all experiments performed to validate

our proposed framework.

4.1. Dataset and Evaluation Metrics

Data Description. We utilise the largest and latest Video
Shadow dataset (ViSha) [6] to evaluate the effectiveness
of our proposed VSD method. The ViSha dataset has 120
videos, and each video contains between 29 and 101 frames.
ViSha is composed of a total of 11,685 frames correspond-
ing to a total duration of 390 seconds of video.

Data Pre-processing. We follow the setting introduced
in ViSha [6]. That is, we use the same train-test split, with
50 videos for training and 70 videos for testing. During
training, we also use the same data augmentation strategy as
[6] to enrich the variety of the dataset. Specifically, during
training, images are re-scaled to size 512 × 512, and are
randomly flipped horizontally. In testing, only re-scaling to
the unified size 512× 512 is used.

Evaluation Metrics. Following the evaluation protocol
used in [6, 9, 25], we employ four common evaluation met-
rics to measure the shadow detection accuracy: MAE, Fβ ,
IoU, and BER. Lower MAE and BER scores, and higher Fβ

and IoU scores indicate a better video shadow detection re-
sult. Moreover, we also provide the shadow BER (S-BER)
and the non-shadow BER scores (N-BER) to further com-
pare different VSD methods.

Implementation Details. Our proposed segmentation
architecture is built using the PyTorch-lightning [11] deep-
learning framework. The parameters of the feature extrac-
tion encoder are initialised using the weights from the MiT-
B3 model pre-trained for image segmentation on ADE20K
dataset [44, 45], publicly available on HuggingFace [38].
The remaining parameters (attention modules and the MLP
decoder) are randomly initialised using “Xavier” meth-
ods [12]. During training, AdamW optimizer [24] is used
with an initial learning rate of 1× 10−6 without decay. All
experiments and ablation studies are trained for 36 epochs,
for a training time of approximately 12 hours on NVIDIA
A100 GPU with 80G RAM with batch size of 8.
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METHODS EVALUATION METRICS

Tasks Techniques MAE ↓ Fβ ↑ IoU ↑ BER ↓ S-BER ↓ N-BER ↓

IOS

⋆ FPN [19] 0.044 0.707 0.512 19.49 36.59 2.40
PSPNet [42] 0.051 0.642 0.476 19.75 36.44 3.07

DSS [13] 0.045 0.696 0.502 19.77 36.96 2.59
R3Net [8] 0.044 0.710 0.502 20.40 37.37 3.55

ISD

BDRAR [46] 0.050 0.695 0.484 21.29 40.28 2.31
⋆ DSD [43] 0.043 0.702 0.518 19.88 37.89 1.88
MTMT [7] 0.043 0.729 0.517 20.28 38.71 1.86

FSDNet [16] 0.057 0.671 0.486 20.57 38.06 3.06

VOS

PDBM [30] 0.066 0.623 0.466 19.73 34.32 5.16
COSNet [26] 0.040 0.705 0.514 20.50 39.22 1.79

⋆ FEELVOS [34] 0.043 0.710 0.512 19.76 37.27 2.26
STM [27] 0.068 0.597 0.408 25.69 47.44 3.96

VSD

TVSD [6] 0.033 0.757 0.567 17.70 33.97 1.45
STICT [25] 0.046 0.702 0.545 16.60 29.58 3.59
SC-Cor [9] 0.042 0.762 0.615 13.61 24.31 2.91

⋆ SCOTCH and SODA 0.029 0.793 0.640 9.066 16.26 1.44

Table 1. Comparisons between our proposed technique and SOTA techniques on the ViSha dataset. “MAE” denotes mean absolute error,
“Fβ” denotes F-measure score, “IoU” denotes intersection over union, “BER” denotes balance error rate, and “S-BER” means shadow
BER, “N-BER” means non-shadow BER. The ↑ denotes the higher the value is the better the performance is, whilst the ↓ means the
opposite. ⋆ indicates the best performed network in each category.

4.2. Comparison to SOTA Techniques

Compared Methods. Video shadow detection is a rela-
tively recent topic, and there are only three directly-related
methods designed for this task. Hence, following exist-
ing VSD methods, we make comparisons against 4 dif-
ferent kinds of methods, including image object segmen-
tation (IOS), image shadow detection (ISD), video object
segmentation (VOS), and video shadow detection (VSD).
For IOS, they are FPN [19], PSPNet [42], DSS [13], and
R3-Net [8], while the ISD methods are BDRAR [46],
DSD [43], MTMT [7], and FSDNet [16]. The com-
pared VOS methods include PDBM [30], COSNet [26],
FEELVOS [34], and STM [27], while compared VSD meth-
ods are TVSD [6], STICT [25], and SC-Cor [9]. We obtain
the results by re-training their network parameters with uni-
fied training parameters or by downloading the results from
the TVSD [6] repository.

Quantitative Comparisons. Table 1 summarises MAE,
Fβ , IoU, and BER scores of our network against SOTA tech-
niques. For each category, we use ⋆ to mark out the method
with the best performance. From these quantitative results,
we observe that the IOS and ISD report readily competing
results. These results are expected as the modelling hypoth-
esis for both families of techniques relies on only the image
level analysis. Whilst VOS techniques consider also tempo-
ral information, these techniques are customised as a gen-
eral framework for video object segmentation. However,
shadow detection is more complex due to the fast change
in appearance between frames. Notably, we observe that
VSD techniques indeed provide a substantial performance

improvement compared to other methods; as they are de-
signed considering the complexity of shadows.

More importantly, our method outperforms all other
techniques by a significant margin for all evaluation met-
rics – further supporting the superiority of our approach.
In particular, our method yields to a balanced error rate of
9.066 which is more than 4 points below SC-Cor, the latest
SOTA technique, in terms of BER. The error rate for the
shadow label (denoted as S-BER in Table 1) of our method
is 8 points below SC-Cor. We also underline that our sig-
nificant improvement in performance comes with a negligi-
ble computational cost. We report the test time in Table 2,
where we observe that our SCOTCH and SODA framework
only requires a fraction of time than compared methods.

Visual Comparison. Figure 3 visually compares the
shadow segmentation masks from our method and the com-
pared methods on different input video frames. For video
frames with black objects at the first three rows, we find that
compared methods tend to wrongly identify those black ob-
jects as shadow ones, while our method can still accurately
detect shadow pixels under the corruption of black objects.
Moreover, compared methods tend to miss some shadow re-
gions when the input video frames contain multiple shadow
detection, as shown in the 4-th row to the 8-th row of Fig-
ure 3. On the contrary, our method can identify all these
shadow regions of input video frames, and our detection re-
sults are most consistent with the ground truth in the 2nd
column of Figure 3. We also provide the video segmenta-
tion masks on the project page to demonstrate the temporal
coherence of the results provided by our method.

Model size and inference time. Table 2 further
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(a) Image (b) GT (c) Ours (d) FPN (e) DSD (f) FEELVOS (g) TVSD (h) STICT (i) SC-Cor

Figure 3. Visual comparisons of video shadow detection results produced by our network (SCOTCH and SODA) and compared methods.
Apparently, our method can more accurately identify shadow pixels and our results are more consistent with the ground truth in the 2nd
column. The video segmentation results can be found on the project page. (d-e) are the methods with the highest performance in IOS, ISD,
and VOS in Table 1, whilst (g-i) are all from the VSD area.

Networks Params GMACs Time BER

TVSD [6] 243.32 158.89 32.4 17.70
STCIT [25] 104.68 40.99 13.5 16.60
SC-Cor [9] 232.63 218.4 21.8 13.61

SCOTCH and SODA 211.79 122.46 9.15 9.006

Table 2. Comparison of model size (Params), computational com-
plexity (GMACs), inference time (Time), and segmentation accu-
racy (BER). Specifically, the units for Params and Time are (MB)
and (Mins), respectively. We denote the best and second best in
bold and underline font.

compares our network and three state-of-the-art video
shadow detection methods in terms of the model size
(Params), computational complexity (GMACs), inference
time (Time), and segmentation accuracy (BER). Appar-
ently, among the three compared VSD methods, STICT
has the smallest testing time (13.5 minutes). Compared to
STICT, our method further reduces the inference time from
13.5 minutes to 9.15 minutes to test all 70 testing videos

with 6,897 images. Although our method takes 2nd rank
in terms of the model size and computational complexity,
they are only larger than STICT. This is because we only
use a light-weighted MLP layer as the decoder to integrate
the multi-resolution feature maps, which is computational-
saving. In terms of performance, our method has a superior
BER performance than STICT by reducing the BER score
from 16.60 to 9.006, which indicates that with a minor com-
promise on the model size, our method can more accurately
identify video shadows than STICT, TVSD, and SC-Cor.

4.3. Ablation Study

In Table 3, we perform ablation studies on our main con-
tributions to evaluate the effectiveness of each component.

Baseline with MiT backbone. In order to evaluate
the role of the MiT backbone on the final performance of
our method, we define the segmentation network with MiT
backbone as the baseline, which is trained by using the clas-
sical segmentation loss (5), but without the deformation at-
tention trajectory and shadow level contrastive mechanism.
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Components Evaluation Metrics
Backbone Attention Contrast MAE ↓ Fβ ↑ IoU ↑ BER ↓

MiT ✗ ✗ 0.048 0.755 0.584 13.18

MiT Trajectory ✗ 0.048 0.760 0.593 12.35
MiT SODA ✗ 0.041 0.791 0.613 10.55

MiT ✗ Image 0.048 0.761 0.588 12.85
MiT ✗ Shadow 0.041 0.767 0.592 12.02
MiT ✗ SCOTCH 0.034 0.771 0.606 11.29

† MiT SODA SCOTCH 0.029 0.793 0.640 9.066

Table 3. Ablation study on different components of our proposed
methods on the ViSha dataset. The ↑ denotes the higher the value
is the better the performance is, whilst the ↓ means the opposite.
“†” denotes our final methods with the highest performance in all
evaluation metrics. Notations : best, second best, third best.

This baseline already provides results on par or better than
the previous three works in the VSD area (see Table 1 for
comparison), even without considering any kind of tempo-
ral information. This illustrates the superior performance of
the MiT transformer-based architecture over convolutional
architectures on the task of video shadow detection.

Attention mechanisms. We then evaluate the effective-
ness of different attention mechanisms, including trajectory
attention [29] and our newly introduced shadow deforma-
tion attention. Both types of attention modules provide an
improvement over the baseline, which was to be expected
as those modules give the ability to consider the temporal
information within the videos. Our deformation attention
trajectory module also appears to provide better results than
the trajectory attention, indicating the importance of consid-
ering the deformation in the design of the attention module.

Contrastive losses. Next, we compare the effect of two
types of contrastive criterion, the image level contrastive
loss used in TVSD [6], and our feature-level shadow con-
trastive loss. The inter-frame contrastive learning slightly
improves the baseline, whereas our shadow contrastive loss
provides a significant improvement over the baseline. Those
results illustrate the superiority of the features-level con-
trastive loss over the frame-level contrastive loss.

Final model. SCOTCH reduces the variance of the spatial
shadow features, while SODA processes the spatial features
at different time-step to consider the temporal information
in the video. Thus, SCOTCH and SODA have a complemen-
tary effect, as feeding SODA with more robust spatial fea-
tures from SCOTCH, we are able to reach the best perfor-
mance, outperforming all the previous settings.

4.4. Attention Map Visualisation

In Figure 4, we visually compare the attention maps
from the baseline model (second row) with our proposed
SCOTCH and SODA (third row). We can observe that the base-
line model highlights the object part, whilst ours focuses
more on the shadow region with the help of contrastive
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Figure 4. Attention maps visualisation. The low-resolution lay-
ers of the MiT encoder are selected for the visualization, with the
query from the center of the ground truth shadow mask. From
top to bottom row are the input video blended with segmenta-
tion mask, attention maps for baseline MiT methods, and attention
maps from ours SCOTCH and SODA with deformation attention tra-
jectory and shadow contrastive mechanism.

learning. We can also observe that the baseline model might
lose track of shape in different frames (third column), whilst
our approach provides consistent shape information at dif-
ferent times with the help of the deformation attention tra-
jectory. Hence, the model using the shadow deformation
attention trajectory and the shadow contrastive loss is better
at tracking the shadow region during different frames, while
ignoring the non-shadow part of the image.

5. Conclusion

In this paper, we introduced SCOTCH and SODA, a new
transformer video shadow detection framework. We de-
veloped shadow deformation attention trajectory (SODA),
a self-attention module specially designed to handle the
shadow deformation in videos, and we introduced a shadow
contrastive mechanism (SCOTCH) to guide our network to
better discriminate between shadow and non-shadow fea-
tures. We demonstrate the effectiveness of the contributions
with ablation studies. Finally, we show that our proposed
method outperforms by a large margin concurrent video
shadow segmentation works on the ViSha dataset.
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