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Abstract

Extending the success of 2D Large Kernel to 3D percep-
tion is challenging due to: 1. the cubically-increasing over-
head in processing 3D data; 2. the optimization difficulties
from data scarcity and sparsity. Previous work has taken
the first step to scale up the kernel size from 3 × 3 × 3 to
7× 7× 7 by introducing block-shared weights. However, to
reduce the feature variations within a block, it only employs
modest block size and fails to achieve larger kernels like
the 21 × 21 × 21. To address this issue, we propose a new
method, called LinK, to achieve a wider-range perception
receptive field in a convolution-like manner with two core
designs. The first is to replace the static kernel matrix with a
linear kernel generator, which adaptively provides weights
only for non-empty voxels. The second is to reuse the pre-
computed aggregation results in the overlapped blocks to
reduce computation complexity. The proposed method suc-
cessfully enables each voxel to perceive context within a
range of 21 × 21 × 21. Extensive experiments on two ba-
sic perception tasks, 3D object detection and 3D semantic
segmentation, demonstrate the effectiveness of our method.
Notably, we rank 1st on the public leaderboard of the 3D
detection benchmark of nuScenes (LiDAR track), by sim-
ply incorporating a LinK-based backbone into the basic de-
tector, CenterPoint. We also boost the strong segmentation
baseline’s mIoU with 2.7% in the SemanticKITTI test set.
Code is available at https://github.com/MCG-NJU/LinK.

1. Introduction
There is a consensus that a large receptive field con-

tributes positively to many downstream vision tasks. For
example, Transformer [2, 3] benefits a lot from the global
relation with self-attention and becomes the leading topic
in classification [2], segmentation [4], and detection [5].
However, self-attention is not the only route to a large re-
ceptive field. Previous works like the RepLKNet [6] and
SLaK [7] investigated the potential of obtaining wide-range

*Corresponding author.

Standard
Kernel

LinK (Ours)LargeKernel3D

Linear Kernel
Generator

Input

Output

Figure 1. Comparisons among the standard kernel, the LargeK-
ernel3D’s [1] block-shared kernel, and our LinK’s kernel from a
generator. Instead of storing a dense kernel matrix, LinK generates
sparse kernels online according to the input data. The amount of
learnable parameters will not increase along with the kernel size,
which enables the scaling up of larger kernel.

information through a large convolutional kernel. They
have achieved comparable results with the Transformer-
based methods. Considering that the convolution operator is
more friendly to existing chip architecture, the large kernel
method is efficient in real applications. This raises an im-
mediate question in the 3D perception: can the philosophy
of large kernel generalize to the 3D task?

The answer is yes. LargeKernel3D [1] takes the first step
and successfully achieves better metrics on both segmenta-
tion and detection. Time and space consumption are core
concerns during the extension since they increase cubically
in the 3D task. LargeKernel3D [1] introduces a spatial shar-
ing kernel to scale the 3D kernel up to 7× 7× 7 and restrict
the rapid growth of parameters amount. However, com-
pared with the 2D counterparts, which have developed the
huge size of 31× 31 [6] and even 51× 51 [7], the 7× 7× 7
seems to be not large enough, hence only benefiting from
limited context. There are at least two reasons to hinder its
size expansion: first, although the parameter amount is un-
der control, the total amounts of operation on each voxel
are still increasing cubically; second, its assumption that
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the outer parts can share a block-wise weight is too strong
to work well in a larger block. So, enlarging the 3D kernel
size effectively and efficiently is still a challenging problem.

To handle these issues, we propose a new method,
called LinK, to implement a wider-range perception in a
convolution-like manner. Two core designs make up the
method. The first is to replace the static kernel weights
with a linear kernel-generating module to provide weights
only for those non-empty areas since the 3D input is very
sparse. Meanwhile, this module is layer-wisely shared,
which avoids the circumstances that some weights allo-
cated to the blank spaces are not optimized in one itera-
tion. The second is to reuse the pre-computed aggregation
results in the overlapped blocks, which makes the compu-
tation complexity independent of the kernel size. In other
words, we can implement arbitrary kernel sizes with con-
sistent overhead based on the proposed LinK. Brief com-
parisons among the proposed method and other methods are
depicted in Fig 1.

Extensive experiments on the public benchmarks of 3D
detection and semantic segmentation tasks demonstrate the
effectiveness of LinK. Notably, we achieve the 1st place
on the famous 3D detection leaderboard, nuScenes (LiDAR
track) [8], by simply replacing the backbone of a classic
detection method with the LinK-based backbone. As for
the segmentation task, we boost the strong baseline’s mIoU
with 2.7% in the SemanticKITTI test split [9]. We will un-
fold the details in the following sections.

2. Related Work

2.1. 3D Backbone

According to the input data format (without consider-
ing the multi-view 2D representations in this paper), the 3D
backbones are grouped into the voxel-based and the point-
based method.

Early voxel-based methods [10] directly adopt the 3D
convolutional layers to process the volumetric data at the
cost of cubic growth of time-space complexity, which for-
bids a fine voxel resolution. Some researchers propose to
optimize the 3D convolution with a compact data struc-
ture. Octree-based methods [11, 12] introduce to organize
the data into an octree. PVCNN [13] chooses to keep the
coarse voxel resolution and compensates for the geomet-
ric details with a point branch. Other researchers lever-
age sparse convolutions to reduce the computation over-
head. To solve the submanifold dilation problem of regular
sparse convolutions, Graham et al. [14] propose submani-
fold sparse convolutional networks (SSCNs) that keep the
same level of sparsity throughout the network. Minkowsk-
iNet [15] proposes 4-dimensional convolutional neural net-
works for spatio-temporal perception. All these methods
are restricted to small kernel sizes, and they enlarge the

receptive field by stacking more layers. Inspired by Re-
pLKNet [6], LargeKernel3D [1] explores ways to scale up
the small kernel to a large one.

To exploit the disorder, point-based methods directly
learn from the points’ coordinates without any voxeliza-
tion or projection. The series of PointNet [16, 17] learn
point-wise features with MLP and aggregate global fea-
tures with max-pooling. To imitate the 2D convolution,
some position-adaptive kernel generation methods [18–23]
are proposed to learn the spatial kernel distribution. An-
other line of work [24, 25] focus on graph-based networks,
which consider each point in a point cloud as a vertex of
a graph and generate directed edges based on the neigh-
bors of each point. To purse an efficient network, APP-
Net [26] proposes a ”push-pull” operator to reduce the re-
dundancy in overhead. Recently, encouraged by the suc-
cess of Transformer [27] in natural language processing,
PCT [28] and Point Transformer [29] design self-attention
layers for point clouds and construct Transformer networks
for various tasks.

2.2. LiDAR-based 3D Perception

Detection. LiDAR-based 3D detection aims to predict 3D
rotated bounding boxes of objects from point clouds. Here,
we mainly focus on outdoor scenarios. SECOND [30] im-
proves VoxelNet [10] by optimizing sparse 3D convolu-
tions. PointPillars [31] replaces voxel representation with
a pillar one, which organizes the point clouds in vertical
columns for better efficiency. Some researchers also ex-
tend 2D detection frameworks to 3D space and achieve re-
markable results. Inspired by the R-CNN family [32, 33]
for 2D detection, PointRCNN [34] and PV-RCNN [35]
use similar detection pipelines with two stages. Center-
Point [36] is evolved from CenterNet [37] and Center-
Track [38], which adopts a center-based representation for
3D objects. Transfusion-L [39] is a query-based detector
(like DETR [5] and Deformable-DETR [40]) and builds a
transformer decoder with a small set of object queries.
Segmentation. In 3D semantic segmentation, one is re-
quired to infer the label of each 3D point. The point-based
methods [17, 41] face the overhead issue since their ran-
dom access to memory is too expensive to deal with the
large-scale outdoor scene. Voxel-based methods dominate
this task using sparse convolution. Following PVCNN [13],
SPVNAS [42] proposes sparse point-voxel convolution.
To tackle the imbalanced distribution of points, Cylin-
der3D [43] proposes a cylindrical partition and builds a
3D cylinder convolution network. RPVNet [44] utilizes
three different representations of points (range-based, point-
based, and voxel-based) and fuses them into a unified net-
work. For better training of the network, 2DPASS [45] and
PVKD [46] enhance the network with distillation strategies.

Unlike these methods focusing on improving the archi-
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tectures or the training process, this paper proposes a uni-
versal backbone for 3D perception tasks.

3. Methodology
This section introduces all of the designs of our method.

We begin with two backgrounds to clarify our work’s inno-
vation in section 3.1. Then, the detailed procedures are pro-
vided in section 3.2. Finally, we show how to incorporate
the proposed backbone into two basic 3D perception tasks:
object detection and semantic segmentation, in section 3.3.

3.1. Background

3.1.1 Introduction to 3D Sparse Convolution

Convolution-based methods aggregate the weighted influ-
ences within a pre-specified range. The weights are deter-
mined by the local relative positions to the convolutional
center. Formula 1 shows the general process of the 3D con-
volutional operator [14, 15].

gp =
∑
n∈N

wn · fp+n, (1)

where p is the convolution center. N denotes the non-empty
neighbors within a specified range. f∗ and g∗ are the input
and output features, respectively. wn is the kernel corre-
sponding to the relative location n. Different from the 2D
images, the Lidar data are spatially sparse. This means that
kernels allocated to the empty areas will not participate in
the convolution computation, leaving them to fail to be up-
dated during backward propagation. This slows down the
optimization process. Meanwhile, regardless of the inputs,
the kernel of every location must be stored for the poten-
tial calling. This causes a cubically-increasing amount of
parameters in a large 3D kernel. For example, for a sin-
gle convolution layer with a kernel size of 213, Cin = 32,
Cout = 64, more than 18M learnable parameters are wait-
ing for calling, although most of them will be idle during
the inference.

3.1.2 Introduction to the Push-Pull Strategy

The core function of the convolution operation is to intro-
duce spatial interaction. When the convolutional window
slides on the feature map, locations covered by the window
will be involved in computation with kernels. The over-
lapped area participates in computation repeatedly, which
introduces redundancy. To deal with this issue in the point
cloud task, APP-Net [26] proposes a so-called APP oper-
ator, which decomposes the spatial interaction into three
steps: a push step, γ(pi → proxy), to push pi’s fea-
ture into a cluster-sharing proxy, an aggregation step in
the proxy to fuse cluster-wise information, and a pull step,
λ(proxy → pj), to pull feature from the auxiliary proxy for

each point pj . Since points within the same cluster share the
same aggregation proxy, APP operator avoids the redundant
aggregation computation in each cluster. The push step, pull
step, and aggregation in the proxy are designed comprehen-
sively to satisfy the requirement that

γ(pi → proxy) ◦ λ(proxy → pj) = η(pi → pj). (2)

◦ denotes an operator to combine γ(∗) and λ(∗). η(pi →
pj) is a function to measure the relation between pi and pj
directly. According to Formula 2, the influence from the
proxy is reducible in the final. The design of APP opera-
tor is tightly coupled with the point cloud modality, how to
activate its ability in processing voxel data is not explored
yet.

3.2. Linear Kernel in 3D

According to the statements in section 3.1.1, we con-
clude that storing the kernel value of every discrete location
is neither memory-efficient nor friendly to the optimization
process for the 3D large kernel. Thus we propose to adopt a
neural network module w(n) to generate the kernel online
rather than store the static kernel values wn. This makes the
amount of learnable parameters not increase with the kernel
size. Furthermore, the empty voxels would not slow down
the optimization process.

Although resolving the storing cost and optimization is-
sue, there is still a challenge before adopting the generation
module to 3D large kernel. The computations between the
kernel and feature map introduce cubically increasing over-
head. To deal with it, we provide two critical designs in the
following parts: the Linear Kernel Generator, and
the Block Based Aggregation. The whole process
is depicted in Fig 2.

3.2.1 Linear Kernel Generator

A larger kernel extracts the input information at the cost of
processing each area for more times. We devote to finding
reusable common parts in the overlapped area to reduce the
overhead.

We start the analysis through a toy example. Given two
blocks A = {a, b, c, d, e} and B = {a, b, c, g, h}, where
each element denotes a voxel, the overlapped area is O =
{a, b, c},as shown in Fig 3. We try to aggregate A’s features
to a and B’s features to b using the local offsets, and the
influences from the overlapped parts are as follows:{

fO→a = w(a− a)fa + w(b− a)fb + w(c− a)fc,
fO→b = w(a− b)fa + w(b− b)fb + w(c− b)fc.

(3)

According to Formula 3, each element in O contributes to
a and b using different offsets, so we cannot reuse the over-
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Figure 3. The comparison between modeling the local offsets and
global coordinates. w(x−y) actively measures how x influences y
through modeling the offset from x to y. k(x) generates kernel for
x using its global coordinates. When y queries neighbor features,
the relation between x and y can be composed from k(x) and k(y).

lapped aggregation results through modeling the local off-
sets.

Considering that the global coordinate for each voxel is
fixed and unique, we think about decomposing the local off-
set into combinations of the global coordinates. Specifi-
cally, we first define a new kernel generator as follows:

k(x) = Ψ(σ(x)) (4)

where σ(x) = W × x is a linear mapping function, W ∈
RCin×3. Ψ(∗) is an activation function. Inspired by APP-
Net [26], we adopt trigonometric functions for the activa-
tion, e.g.,

{k(0)(x) = cos(σ(x)), k(1)(x) = sin(σ(x))}, (5)

which provides the following relation based on the sum-to-
product formula:

k(0)(x− y) = cos(σ(x)) · cos(σ(y))
+ sin(σ(x)) · sin(σ(y))

=k(0)(x) · k(0)(y) + k(1)(x) · k(1)(y). (6)

where x and y are the global coordinates, and x − y is lo-
cal offset. Equation 6 decomposes local offset into global
positions.

Then we compute the following two auxiliary aggrega-
tions for the overlap area:

{
f
(0)
O = k(0)(a) · fa + k(0)(b) · fb + k(0)(c) · fc,
f
(1)
O = k(1)(a) · fa + k(1)(b) · fb + k(1)(c) · fc.

(7)

f
(0)
O and f

(1)
O are reusable between A and B since they are

computed based on the fixed global locations. To obtain
the final aggregations of the overlapped area for the center
voxel a, we leverage the auxiliary aggregations in the fol-
lowing manner:

fO→a =f
(0)
O · k(0)(a) + f

(1)
O · k(1)(a)

=
∑
p∈O

k(0)(p− a) · fa+(p−a).
(8)

Combined Formula 7 with Formula 6, the fO→a models the
local offsets. And the Formula 8 is an instantiation of the
convolutional operator in Formula 1. We call this process
Linear Kernel Generator to emphasize the linear
mapping in the core part.

3.2.2 Block Based Aggregation

The above linear kernel enables reusing the overlapped area.
Then a new question emerges: how to set up the overlap
area? Motivated by ViT [2], we partition the entire input
space into several non-overlapped blocks. Specifically, for
the input scene P ∈ ZN×3, we quantize each voxel p’s co-
ordinate with a block size s and compute the corresponding
hash code l as follows:

l = Hash(⌊p(0)
s

⌋, ⌊p(1)
s

⌋, ⌊p(2)
s

⌋). (9)
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Figure 4. (a) Architecture of the LinK-based backbone; (b) the constructed network for 3D semantic segmentation; (c) the constructed
network for 3D object detection.

Voxels owning the same hash code will be grouped into
the same block. The block collection is denoted as B =
{B0, B1, ..., Bm}. Based on Formula 7, we conduct block-
wise proxy aggregation for reusing as follows:{

f
(0)
Bi

=
∑

x∈Bi
k(0)(x) · fx,

f
(1)
Bi

=
∑

x∈Bi
k(1)(x) · fx.

(10)

The f
(0)
Bi

and f
(1)
Bi

carry information with a receptive field
of s3.

To expand the receptive field, we query the neighbor-
ing blocks’ aggregation results for each block with a query
range of r3. For block Bi, denoting its neighboring block
set as Bi, then we compute the expanded block aggregation
as {

f
(0)
Bi

=
∑

j∈Bi
f
(0)
Bj

,

f
(1)
Bi

=
∑

j∈Bi
f
(1)
Bj

.
(11)

The g(0)Bi
and g

(1)
Bi

carry information with a receptive field of
(r × s)3. For voxel x within the block Bi, its final feature
is updated by

gx =
1

NBi

[g
(0)
Bi

· k(0)(x) + g
(1)
Bi

· k(1)(x)] (12)

NBi
is the count of non-empty voxels. The voxel x aggre-

gates the information within a (r×s)3 area in a convolution-
like manner.

3.2.3 Enhancements to the Kernel Generation

To enhance the representation, two simple strategies from
different views are proposed to improve kernel generation.
Learnable Frequency for the Activation For enhancing
the model capability, we introduce two improvements to the
cos-based and sin-based activation: channel-wise learnable
parameters α to adjust the frequency, and an identity term
+x to preserve spatial information. The augmented activa-
tion function Ψ′(∗) is as follows:

LK

Conv 3x3x3

LayerNorm LayerNorm

+

ReLU

Conv 1x1x1
Large
Kernel
Branch

Small 
Kernel
Bypass

Figure 5. Structures of LinK Module. The LK branch is responsi-
ble for a large kernel size while the Conv3× 3× 3 bypass makes
up for the delicate local structures.

Ψ′(x) = Ψ(α · x) + x (13)

Group Sharing Weight The effective receptive field is sig-
nificantly enlarged by block-based aggregation. Since each
voxel only contributes once to the kernel generation, a large
kernel range makes learning the kernel of each offset dif-
ficult. To facilitate the optimization, we adopt a group-
sharing policy. Specifically, for the Cin input channels,
we only generate kernels of Cin

#groups channels and let ev-
ery #groups channels share the same weight. Thus every
weight would have more chances to be updated. We use
#groups = 2 in practice.

3.3. Network Structure

3.3.1 LinK Module

Since LinK aggregates spatial information in a depth-wise
manner, we apply a 13 convolution to the input feature be-
fore sending it to the LinK operator to introduce channel
mixing [53, 54]. Meanwhile, following the previous prac-
tice [1, 6], we append a parallel 33 convolutional branch to
preserve detailed structures. This operation also stabilizes
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Table 1. Results on the test phase of nuScenes Detection. Bold: best results. * denotes using TTA.
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PointPillars [31] CVPR19 45.3 30.5 68.4 23.0 28.2 23.4 4.1 59.7 27.4 1.1 30.8 38.9
3DSSD [47] CVPR20 56.4 42.6 81.2 47.2 61.4 30.5 12.6 70.2 36.0 8.6 31.1 47.9

CenterPoint [36] CVPR21 65.5 58.0 84.6 51.0 60.2 53.2 17.5 83.4 53.7 28.7 76.7 70.9
HotSpotNet [48] ECCV20 66.0 59.3 83.1 50.9 56.4 53.3 23.0 81.3 63.5 36.6 73.0 71.6

TransFusion-L [39] CVPR22 70.2 65.5 86.2 56.7 66.3 58.8 28.2 86.1 68.3 44.2 82.0 78.2
Focals Conv [49] CVPR22 70.0 63.8 86.7 56.3 67.7 59.5 23.8 87.5 64.5 36.3 81.4 74.1
LargeKernel [1] arXiv22 70.5 65.3 85.9 55.3 66.2 60.2 26.8 85.6 72.5 46.6 80.0 74.3

LinK Ours 71.0 66.3 86.1 55.7 65.7 62.1 30.9 85.8 73.5 47.5 80.4 75.5

VISTA* [50] CVPR22 70.4 63.7 84.7 54.2 64.0 55.0 29.1 83.6 71.0 45.2 78.6 71.8
UVTR-LiDAR* [51] NeurIPS22 69.7 63.9 86.3 52.2 62.8 59.7 33.7 84.5 68.8 41.1 74.7 74.9

MDRNet* [52] arXiv22 72.8 68.4 87.9 58.5 67.3 64.1 30.2 89.0 77.0 50.7 85.0 74.7
LargeKernel3D* [1] arXiv22 72.8 68.8 87.3 59.1 68.5 65.6 30.2 88.3 77.8 53.5 82.4 75.0

LinK* Ours 73.4 69.8 87.3 60.2 69.8 65.9 34.0 88.2 78.8 54.3 83.0 76.8

the optimization process. The resulting architecture is illus-
trated in Fig 5. Unlike the choices in LargeKernel3D [1],
we do not adopt a dilation > 1 for the 33 branch. And we
replace the BatchNormalization [55] with LayerNormaliza-
tion [56] to reinforce those informative channels.

3.3.2 Applications in Perception Tasks

LinK is incorporated into two essential perception tasks: 3D
object detection and 3D semantic segmentation. We choose
two representative architectures for the two tasks and di-
rectly replace their SparseConv-based backbone with the
LinK-based backbone and keep the original design of their
segmentation head and detector. Detailed architectures are
shown in Fig 4.

4. Experiments
To verify the effectiveness of our method and explore

its characteristics, we conduct extensive experiments in this
section. The whole project is implemented upon three soft-
ware architectures: PyTorch [57], TorchSparse [58], and
SpConv [59]. All experiments are conducted on a server
with 4 RTX 3090 GPUs. We present two most representa-
tive datasets in this section. Results on more datasets can be
found in the supplementary material.

4.1. 3D Object Detection

4.1.1 Dataset

We evaluate the 3D detection performance on the widely
used benchmark, nuScenes [8], a public dataset for au-
tonomous driving. It is collected from challenging urban
scenes, consisting of 1000 annotated sequences. Among
them, 700 sequences are used as the training phase, 150 as
validation, and the remaining 150 as the test phase for on-
line evaluation. The bounding boxes are labeled with not

Figure 6. The effective receptive field (ERF) of the detection. The
brightness indicates the degree of activation. LinK enjoys a wider-
range perception.

only categories but also some attributes like the velocity,
scale, orientation and translation. Besides the point cloud
data from LiDAR, it also provides the 360◦ image modal-
ity from cameras and signal from the Radar sensor. In this
paper, we only utilize the point cloud from LiDAR. The
evaluation metrics include the mAP and a dataset-related
NDS, i.e., nuScenes Detection Score. The NDS measures
the comprehensive performance by combining the mAP and
other attributes in a weighted manner.

4.1.2 Implementation Details

The kernel configuration for the detection is {r = 3, s =
7}. We implement the detection codebase by replacing the
original backbone of CenterPoint [36] with a LinK-based
backbone. For a fair comparison, we keep all the original
hyperparameters in CenterPoint [36] to train our network.
Following the common practice, the training phase is aug-
mented with the CBGS [65] and gt-sampling [30] strategy
to balance the long-tail issues. During test and validation,
we follow LargeKernel3D [1] to report the plain inference
result and the test-time augmented (TTA, including flip and
rotation) inference results.
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Table 2. SemanticKITTI test results. Red: surpassing the baseline; bold: best results; ’P’: point cloud; ’R’: range map; ’V’: voxel.
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RandLA-Net [41] P 53.9 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7
RangeNet++ [60] R 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9

SqueezeSegV3 [61] R 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
SalsaNext [62] R 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1
SPVNAS [42] P+V 67.0 97.2 50.6 50.4 56.6 58.0 67.4 67.1 50.3 90.2 67.6 75.4 21.8 91.6 66.9 86.1 73.4 71.0 64.3 67.3

Cylinder3D [43] V 67.8 97.1 67.6 64.0 59.0 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6
(AF)2-S3Net [63] V 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0

DRINet [64] P+V 67.5 96.9 57.0 56.0 43.3 54.5 69.4 75.1 58.9 90.7 65.0 75.2 26.2 91.5 67.3 85.2 72.6 68.8 63.5 66.0
RPVNet [44] R+P+V 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 73.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4

Mink(baseline) [15] V 68.0 97.1 51.8 56.4 43.3 56.8 70.2 75.7 51.8 89.9 67.8 74.8 32.9 91.5 66.5 86.2 74.6 71.0 63.5 70.0
LinK(Ours) V 70.7 97.4 58.4 56.6 52.9 64.2 72.3 77.0 69.1 90.6 68.2 76.2 34.5 92.0 68.8 85.7 74.3 70.5 64.8 69.5

Table 3. Val@nuScenes Det.
Methods NDS mAP

CBGS [65] 62.6 51.4
CenterPoint [36] 66.4 59.0
HotSpotNet [48] 66.0 59.5

TransFusion-L [39] 66.8 60.0
Focals Conv [49] 68.1 61.2

LargeKernel3D [1] 69.1 63.3
LinK 69.5 63.6

Table 4. Val@SemKITTI Seg.
Methods mIoU

RandLA-Net [41] 57.1
RangeNet++ [60] 57.3

SPVNAS [42] 64.7
Cylinder3D [43] 63.8

RPVNet [44] 65.5
Mink [15] 66.1

LinK 67.5

4.1.3 Results
We compare the detection results with many representative
methods. All the test results in Table 1 are obtained through
public sources, like published papers or competition web-
sites. Until the time of paper submission, our method ranks
1st on the public LiDAR detection leaderboard. Especially
for the NDS metric, which has been stuck in 72.7%∼ 72.8%
for more than one year, we are the first method to obtain a
result higher than 73% on the LiDAR track, which confirms
the superiority of our large kernel method. Table 3 shows
the comparisons on the validation phase. We achieve con-
sistent improvement in both settings. The effective recep-
tive field is shown in Fig 6, and our approach enjoys a larger
ERF than the baseline method. More qualitative results are
available in the supplementary material.

4.2. 3D Semantic Segmentation

4.2.1 Dataset

We evaluate the semantic segmentation performance on the
SemanticKITTI [9]. It is a large-scale (including more than
43000 scans, and each scan has more than 100k points)
autonomous dataset constructed by labeling the odometry
dataset KITTI [66] with 20 categories of semantic masks.
The dataset contains 22 sequences and has been officially
partitioned into three phases: sequences [00-07, 09, 10] as
the training phase, sequence 08 as the validation phase, and
the rest sequences [11-21] as the online testing benchmark.
The evaluation metric is the mean Intersection over Union.

4.2.2 Implementation Details

The kernel configuration for the segmentation is {r =
2, s = 3}. We train the network for 25 epochs in total.
Following SPVNAS [42], we adopt an initial learning rate
of 2.4e-1 and adjust it using the cosine scheduler. The op-
timizer for updating learnable parameters is SGD. All ex-
periments are run with 4 GPUs in parallel, and the batch
size in each GPU is 2. To deal with different object scales,
we follow previous works [43, 44] to introduce the Lovasz
loss [67] to cooperate with the original cross-entropy loss.
The size for voxelization is 0.05m. We preserve 80,000
points for each scan to train the network. During the valida-
tion and test processes, we report the result of direct infer-
ence and the TTA results. Due to the severe long-tail prob-
lem, this dataset is very sensitive to some small categories,
like the bicycle, person, and motorcyclist. Some model-
ensemble techniques and instance-level augmentations (like
conducting the Copy-Paste and Cut-Mix on some small cat-
egories) contribute significantly to the final results. Because
there are no comprehensive works to conclude these tricks
in a unified manner, we do not adopt these augmentations
to prevent from shadowing the essence of model design.

4.2.3 Results

The LinK for segmentation is implemented by only replac-
ing the Mink’s [15] encoder with a LinK-based encoder. So,
the Mink serves as a direct baseline. Table 2 shows the test
results on SemanticKITTI [9]. Most baseline results are ob-
tained from the public sources. For Mink [15], we repro-
duce it with the same configurations as ours and surpris-
ingly find that this basic architecture hits performance on
par with other complex architectures. When combined with
the LinK module to enlarge the receptive field, we achieve
an improvement of 2.7% in mIoU. Table 4 shows the results
of the validation phase. Visulaizations are provided in the
supplementary material.
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Table 5. Performance on different scale objects.

Category Size(m3) Detection Segmentation
Center
Point +LinK Mink +LinK

Truck 6× 2× 2 51.0 (+4.7)55.7 43.3 (+9.6)52.9
Person 0.4× 0.4× 2 83.4 (+2.4)85.8 70.2 (+2.1)72.3

Table 6. Time and parameters analysis for semantic segmentation.
Methods Parameters Runtime(ms) mIoU(%)

Mink 8.5M 69 66.1
Conv7× 7× 7 21.75M 139 66.8

LinK 10.75M 87 67.5

Table 7. Time and parameters analysis for 3D object detection.
Methods Parameters Runtime(ms) mAP NDS

CenterPoint 8.6M 73 59.0 66.4
LinK 10.3M 109 60.3 67.7

4.3. Overhead Analysis

We measure the number of parameters and the inference
speed to evaluate LinK’s practicability in Table 6 and Ta-
ble 7. As shown in Table 6, we achieve a better mIoU
by consuming fewer computation resources than the naive
Conv7× 7× 7 operator in the segmentation task. We mea-
sure the performance on a single 3090 GPU with bs=1.

4.4. Ablation Studies

How large kernel play a role in 3D perception? We in-
vestigate this question through two ways. First, according
to Fig 6, LinK-based backbone produces a wider range of
ERF. Second, as shown in Table 5, big objects benefit more
from the large kernel. In conclusion, we think the large ker-
nel enhances the network’s ability to model different scales
objects more effectively with fewer layers.
The branch combinations in LinK module. We ablate
the construction of the LinK-based architecture from two
aspects: (1). does the large kernel really contribute posi-
tively? (2). its comparisons with the standard large kernel
(Conv7 × 7 × 7). According to Table 8, both the standard
kernel of 7× 7× 7 and the LinK improve the baseline with
the aid of a 3× 3× 3 bypass branch, which verifies the ef-
fectiveness of a large kernel. Meanwhile, the LinK outper-
forms the standard large kernel with a non-trivial margin.
When removing the ResBlock branch, i.e., the backbone
only consists of large kernels, the network still hits a high
mAcc. This implies the large kernel’s ability in modeling
large-scale objects.
The kernel size. We explore the influence of LinK’s kernel
size in the detection task. As shown in Fig 7, the perfor-
mances increase along with the kernel size within a range
and saturate when the kernel size is larger than (3× 7)3.
The two strategies to augment kernel. We validate the ef-
fectiveness of the two augmentations to the kernel genera-
tion. Table 9 shows that introducing the learnable frequency
works well with a relatively small kernel, and the grouping

Figure 7. Detection performance with different kernel sizes.

Table 8. Ablations on the backbone structures. ’RB’: ResBlock,
’LKB’: large kernel branch, ’LK’: how to implement large kernel.

RB LKB mIoU(%)↑ mAcc(%)↑Bypass LK

✓

66.1 72.4
✓ 66.4 72.9
✓ Conv7× 7× 7 66.8 72.3

Conv7× 7× 7 66.1 72.3
LinK 65.6 72.3

✓ LinK 67.5 74.7
✓ LinK 65.7 73.6

Table 9. Ablations on the two augmentations of kernel.

r × s
Learnable
Frequency

Group
Sharing mIoU(%)

2× 3
67.3

✓ 67.5
✓ 67.1

3× 5
66.2

✓ 66.8
✓ 67.5

sharing weight performs better with a larger kernel.

5. Conclusion

A large receptive field is essential in computer vision
tasks. In this paper, we have posed a linear kernel genera-
tor, LinK, to enlarge the effective receptive field for 3D per-
ception tasks at the cost of moderate computations. Exten-
sive experimental results on the detection and segmentation
demonstrate the effectiveness of the proposed LinK, and we
achieve consistent improvements over baselines. In the fu-
ture, we will work on generalizing this method to more ba-
sic models like the Transformer and dynamic convolution.
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