
Leverage Interactive Affinity for Affordance Learning

Hongchen Luo1‡ Wei Zhai1‡ Jing Zhang2 Yang Cao1,4* Dacheng Tao3,2

1 University of Science and Technology of China
2 The University of Sydney 3 JD Explore Academy

4 Institute of Artificial Intelligence, Hefei Comprehensive National Science Center
lhc12@mail.ustc.edu.cn, jing.zhang1@sydney.edu.au,

{wzhai056,forrest}@ustc.edu.cn, dacheng.tao@gmail.com

Abstract

Perceiving potential “action possibilities” (i.e., affor-
dance) regions of images and learning interactive func-
tionalities of objects from human demonstration is a chal-
lenging task due to the diversity of human-object inter-
actions. Prevailing affordance learning algorithms often
adopt the label assignment paradigm and presume that
there is a unique relationship between functional region and
affordance label, yielding poor performance when adapt-
ing to unseen environments with large appearance varia-
tions. In this paper, we propose to leverage interactive affin-
ity for affordance learning, i.e.extracting interactive affinity
from human-object interaction and transferring it to non-
interactive objects. Interactive affinity, which represents the
contacts between different parts of the human body and lo-
cal regions of the target object, can provide inherent cues of
interconnectivity between humans and objects, thereby re-
ducing the ambiguity of the perceived action possibilities.
Specifically, we propose a pose-aided interactive affinity
learning framework that exploits human pose to guide the
network to learn the interactive affinity from human-object
interactions. Particularly, a keypoint heuristic perception
(KHP) scheme is devised to exploit the keypoint association
of human pose to alleviate the uncertainties due to interac-
tion diversities and contact occlusions. Besides, a contact-
driven affordance learning (CAL) dataset is constructed by
collecting and labeling over 5, 000 images. Experimental
results demonstrate that our method outperforms the rep-
resentative models regarding objective metrics and visual
quality. Code and dataset: github.com/lhc1224/PIAL-Net.

1. Introduction
The objective of affordance learning is to locate the “ac-

tion possibilities” regions of an object [15, 18]. For an in-
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Figure 1. (a) Interaction affinity refers to the contact between dif-
ferent parts of the human body and the local regions of a target
object. (b) The interactive affinity provides rich cues to guide the
model to acquire invariant features of the object’s local regions in-
teracting with the body part, thus counteracting the multiple pos-
sibilities caused by diverse interactions.

telligent agent, it is vital to perceive not only the object se-
mantics but also how to interact with various objects’ local
regions. Perceiving and reasoning about the object’s inter-
actable regions is a critical capability for embodied intelli-
gent systems to interact with the environment actively, dis-
tinct from passive perception systems [3, 38, 39, 44]. More-
over, affordance learning has a wide range of applications
in fields such as action recognition [13, 24, 43], scene un-
derstanding [9, 69], human-robot interaction [51, 63], au-
tonomous driving [7] and VR/AR [50, 53].

Affordance is a dynamic property closely related to hu-
mans and the environment [18]. Previous works [11,37,40,
46] focus on establishing mapping relationships between
appearances and labels for affordance learning. However,
they neglect the multiple possibilities of affordance brought
about by changes in the environment and actors, leading
to an incorrect perception. Recent studies [39, 48] uti-
lize reinforcement learning to allow intelligent agents to
perceive the environment through numerous interactions in
simulated/actual scenarios. Such approaches are mainly
limited by their high cost and struggle to generalize to
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Figure 2. Motivation. (a) This paper explores the associations of interactable regions between diverse images by considering the context
of contact regions with different body parts. (b) This paper considers leveraging the connection of human pose keypoints to alleviate the
uncertainties due to interaction diversities and contact occlusions.

unseen scenarios [58]. To this end, researchers consider
learning from human demonstration in an action-free man-
ner [14, 29, 30, 38]. Nonetheless, they only roughly seg-
ment the whole object/interaction regions in a general way,
which is still challenging to understand how the object is
used. The multiple possibilities due to different local re-
gions interacting with humans in various ways are not fully
resolved. In this paper, we propose to leverage interac-
tive affinity for affordance learning, i.e.extracting interac-
tive affinity from human-object interaction and transferring
it to non-interactive objects. The interactive affinity (Fig.
1 (a)) denotes the contacts between different human body
parts and objects’ local regions, which can provide inher-
ent cues of interconnectivity between humans and objects,
thereby reducing the ambiguity of the perceived action pos-
sibilities (Fig. 1 (b)).

However, it faces the challenges of interaction diversi-
ties and contact occlusions, leading to difficulties in acquir-
ing a good interactive affinity representation. The human
pose is independent of background, and the same interac-
tion corresponds to approximately similar poses. Thus, it
makes sense to use the association between pose keypoints
to overcome the difficulty of obtaining interactive affinity
representations. Moreover, it is challenging to transfer the
interactive affinity to non-interactive object images due to
variations in views, scales, and appearances. The context
between the different body part contact regions (Fig. 2 (a))
provides the model with the possibility to explore the as-
sociations between the interactable regions of the various
images to counteract transfer difficulties.

In this paper, we present a pose-aided interactive affin-
ity learning framework. First, an Interactive Feature
Enhancement (IFE) module is introduced to explore the
connections between different interactable regions of the
images. Then, a Keypoint Heuristic Perception (KHP)
scheme is devised to mine the interactive affinity repre-
sentation from interaction and transfer it to non-interactive

objects. Specifically, the IFE module leverages the trans-
former to fully extract global contextual cues by exploiting
the common relationships between their local interactable
regions (Fig. 2 (a)). Then, they are used to establish asso-
ciations between the object interactable regions in different
images. Subsequently, the KHP scheme exploits the corre-
lation between the human body keypoints and the contact
region to guide the network to mine the object’s local in-
variant features interacting with the body parts (Fig. 2 (b)).

Although the numerous related datasets [9, 10, 19, 30,
36, 57, 67] that emerged during the development of affor-
dance learning, there is still a lack of relevant datasets suited
for leveraging interactive affinity. To carry out a thorough
study, this paper constructs an Contact-driven Affordance
Learning (CAL) dataset, consisting of 5, 258 images from
23 affordance and 47 object categories. We conduct con-
trastive studies on the CAL dataset against six representa-
tive models in several related fields. Experimental results
validate the effectiveness of our method in solving the mul-
tiple possibilities of affordance.

Contributions: 1) We propose leveraging interactive
affinity for affordance learning and establishing a CAL
benchmark to facilitate the study of obtaining interactive
affinity to counteract the multiple possibilities of affor-
dance. 2) We propose a pose-aided interactive affinity learn-
ing framework that exploits pose data to guide the network
to mine the interactive affinity of body parts and object re-
gions from human-object interaction. 3) Experiments on
the CAL dataset demonstrate that our model outperforms
state-of-the-art methods and can serve as a strong baseline
for future affordance learning research.

2. Related Work
2.1. Affordance Learning

Affordance learning has attracted extensive attention
in recent years due to its immense value in many fields
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such as robotics, autonomous driving, embodied AI, etc
[18,20,32,63]. Early works [10,11,34,35,37,40,46,47,55]
mainly adopt the label assignment paradigm and presume
that there is a unique relationship between functional region
and affordance label. Nevertheless, it is hard to deal with
the issue of the multiple possibilities due to environmental
and operator changes. Recent studies consider using rein-
forcement learning by setting different reward functions to
empower the agent to actively interact with the environment
to acquire the ability to perceive affordance [26, 39, 48].
These methods involve extensive interactions and are costly
in real scenarios, while there is still a large domain gap be-
tween the simulation and the real scenario. They also have
the limitation of being poorly adaptive to unseen scenar-
ios. Some other works consider learning the object’s af-
fordance from the human demonstration in an action-free
manner [14, 29, 30, 38, 67], extracting interactions from the
images/videos and transferring the human action intentions
implied within them to the new unseen object, thus achiev-
ing perception and generalization. However, they only de-
tect/segment the object as a whole or the interactable re-
gions in a general way. They do not perceive how the ob-
ject’s local regions are used and have not fully resolved the
multiple possibilities issue. In contrast to the above works,
this paper considers using the inherent cues of interconnec-
tivity between humans and objects to reduce the ambiguity
of the perceived action possibilities.

2.2. Body Part Contact Learning

The contact between the body part and the object is
an important clue for 3D reconstruction and human mo-
tion forecasting [2, 17, 31, 45, 49, 60, 65]. Independent es-
timation of human pose and object during 3D scene recon-
struction can lead to incorrect body-scene interpolation and
body floating. Human-scene contacts can provide reliable
boundary conditions for improved 3D pose estimation and
localization. Shimada et al. [49] use body-scene contacts
to guide 3D human capture. Bhatnagar et al. [2] propose
to jointly track humans, objects, and contacts along with
collecting a large-scale BEHAVE dataset containing human
models, objects, and contact annotations. Mao et al. [31]
introduce distance-based contact maps as an explicit con-
straint for human motion forecasting. Yang et al. [65] pro-
pose to model hand-object interaction by explicitly repre-
senting the contact using the Contact Potential Field (CPF).
In contrast to [65], this paper utilizes the interactive affinity
to mine the interconnectivity between humans and objects,
helping reduce the ambiguity in affordance learning.

3. Method
Given a human-object interaction image Iin with a corre-

sponding human pose P , and a non-interactive image Inon,
we aim to extract the affordance affinity representation be-

tween the human body part and the object local region from
Iin and transfer it to Inon to predict the corresponding in-
teractable region. The pose-aided interactive affinity learn-
ing framework is shown in Fig. 3. It first extracts fea-
tures through a transformer [59] backbone to obtain Xin =
{Xini , i ∈ [1, 4]} and Xnon = {Xnoni , i ∈ [1, 4]}, respec-
tively (i indexes the block of the backbone). Then, an inter-
active feature enhancement (IFE) module (Sec. 3.1) is in-
troduced to establish a correlation between the interactable
features from diverse images. Finally, a keypoint heuristic
perception (KHP) scheme (Sec. 3.2) uses the association of
human pose to mine the interactive affinity representation
and then transfers it to the non-interactive image to predict
the corresponding interactive region.

3.1. Interactive Feature Enhancement Module

The IFE module is shown in Fig. 3. Due to vari-
ous views, scales, and appearances existing in the Iin and
Inon, it is difficult to transfer the interactive affinity to the
non-interactive branch. Therefore, we consider narrowing
the discrepancy between the two branches by establishing
the connection between the interactable regions before ex-
tracting the interactive affinity representation from human-
object interaction. Inspired by the advantages of the trans-
former in modeling long-range global contextual informa-
tion and its scalability of dealing with varied-length se-
quence [12, 22, 62], the IFE module adopts the transformer
to associate cross-branch interactable regions. The cross
transformer (Zi+1

1 = CT(Zi
1,Z

i
2)) is computed as:

Y i
1 = MCA(LN(Zi

1),LN(Zi
2)) +Zi

1, (1)

Zi+1
1 = MLP(LN(Y i

1 )) + Y i
1 , (2)

where MCA() denotes the dot-production attention [56],
where query, key, and value go through different linear lay-
ers: MCA(X,Y ) = Attention(WQX,WKY ,W V Y ).
The IFE module initializes a series of cross-branch tokens,
which aim to aggregate the two branches’ global contextual
cues. Specifically, the cross-branch token X0

c ∈ Rl×c (l
and c denote the number of tokens and channels, respec-
tively) first extracts the contextual information of the two
branches separately. It then extracts the contextual informa-
tion common to Xin and Xnon by mining the co-contextual
features of their interactable regions. Xi

c is updated as:

Xi
c = CT(Xi

c, [X
i
in,X

i
c]),X

i
c = CT(Xi

c, [X
i
non,X

i
c]), (3)

Xi+1
c = CT(Xi

c, [X
i
in,X

i
non,X

i
c]), (4)

where [·, ·] represents the operation of concatenating two
tensors. Xi

in and Xi
non (i > 0) are the two branches fea-

ture sequences of the i-th IFE block, respectively. Xin4

and Xnon4
are reshaped to Rwh×c (w and h are the width

and height of the feature map, respectively) to obtain X0
in

and X0
non, respectively. After updating the cross-branch
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Figure 3. Overview of the proposed pose-aided interactive affinity learning framework. Our model mainly consists of an interactive
feature enhancement (IFE) module and a keypoint heuristic perception (KHP) scheme.

tokens, the IFE module then uses Xi+i
c to update the inter-

active and non-interactive features, respectively, enabling
the two branches to effectively strengthen the interaction-
related features from a different branch and reduce the vari-
ation. The update procedure is as follows:

Xi+1
in = CT(Xi

in, [X
i
in,X

i+1
c ]), (5)

Xi+1
non = CT(Xi

non, [X
i
non,X

i+1
c ]). (6)

After passing through m IFE blocks, we obtain the output
features Xm

in and Xm
non, respectively, which integrate cross-

branch interactable regions information.

3.2. Keypoint Heuristic Perception Scheme

The KHP scheme is shown in Fig. 3. First, the IFE mod-
ule’s outputs (Xm

in / Xm
non) are sent to a multi-scale feature

fusion layer to fuse with the shallow features extracted from
the backbone, to obtain the higher resolution features [59]:

Fini = Upsample(Linear(c, c
′
)(Xm

in)), i = 4, (7)

Fini = Upsample(Linear(ci, c
′
)(Xini)), i ∈ [1, 3], (8)

F̂in = Linear(4c
′
, c

′
)(Concat(Fini)), i ∈ [1, 4], (9)

where Linear(ci, co) denotes a linear layer with inputs Ci

and outputs co, respectively. F̂non is calculated similar
to F̂in. The F̂in is reshaped to 2D feature map and sent
to a decoder Decoder(·) to obtain the contact prediction:
Din = Decoder(F̂in). Din contains Ncls (Ncls is the num-
ber of body parts) channels, and the feature map at each
channel represents the regions where different body parts
interact with the object. The diversity of human body styles,
clothing, interaction postures, and contact occlusion make it
difficult to obtain an accurate interactive affinity represen-
tation of body parts and object regions. The KHP scheme

considers using the human pose to assist the network in sup-
pressing irrelevant background regions and establishing a
connection between body parts and contact regions. We
first use a graph convolutional network (GCN) [1, 23, 64]
to extract the features of pose P :

XP = Λ− 1
2 (A⊗M + I)Λ− 1

2PWgcn, (10)

where P indicates the coordinates of the keypoints’ loca-
tions, A is the adjacency matrix and I is the identity ma-
trix, Λii =

∑
i(Aij + Iij), Wgcn is the weight matrix. M

is a learnable parameter matrix measuring the importance
between edges, which has the same dimension as A and
is initialized to all 1 [64]. Subsequently, we use the pose
keypoint features corresponding to the body parts to guide
the model to extract the corresponding interactive affinity
representation from the contact region:

Hj = F̂in ⊗ Pinj , H̄j = CT(Hj ,XPj ) (11)

where XPj
denotes the feature of the pose keypoint corre-

sponding to the j-th (j ∈ [1, Ncls]) body part. Following
this, we transfer the interactive affinity representation to the
non-interactive object. We feed the interactive affinity fea-
tures H̄j into the global average pooling layer (GAP) to
obtain the feature representation fj :fj = GAP(H̄j). Sub-
sequently, fj is expanded to the size of F̂non, concatenated
with F̂non and fed into a convolution layer to obtain the
transferred features Kj :

Kj = Conv(Concat(F̂non,Expand(fj))). (12)

Finally, Kj is concatenated together and fed into a de-
coder to obtain the prediction of the non-interactive branch:
Dnon = Decoder(Concat(Kj)), j ∈ [1, Ncls]. During
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Figure 4. Some examples and properties of Contact-driven Affordance Learning (CAL) dataset. (a) Statistics on the quantity of
interactive and non-interactive images in each affordance category. (b) Confusion matrix for each affordance category interacting with
body parts. (c) Some examples of interactive and non-interactive images and annotations in the dataset.

training, the total loss is defined as: Ltotal = λ1Lin +
λ2Lnon, where Lin and Lnon are the binary cross-entropy
losses for the two branches, respectively. λ1 and λ2 are the
loss weight parameters and are both set to 1.

4. Experiment

4.1. Dataset

Dataset collection. To fill the gap of lacking a suit-
able dataset, we select 5, 265 images from the PAD/PADv2
[29, 67] and AGD20K [30] to compose the Contact-driven
Affordance Learning (CAL) dataset. Some examples are
shown in Fig. 4 (c). We refer to [6,27] and choose the com-
monly used 23 affordance and 47 object categories. We re-
trieve images according to affordance categories, then man-
ually filter and classify them. Finally, the dataset contains
2, 689 interactive images and 2, 569 non-interactive images.

Dataset annotation. We consider the interaction of six
different body parts: “Hands”, “Feet”, “Mouth”, “Hips”,
“Back” and “Outside’ (the “Outside” represents the region
where the object contacts the outside world during the in-
teraction, e.g., the wheel-ground contact region during rid-
ing). These categories cover almost all regions where hu-
mans interact with objects daily and thoroughly describe
how various object regions are used. Since affordance
learning recognizes “action possibilities” regions of the ob-
ject, the heatmap is appropriate for describing the possi-
bility of interactions. We refer to the previous annotation
works [4, 5, 14, 21] and choose to annotate local regions
of the image with different densities of points. Each point
is first Gaussian blurred and normalized during generating
the soft mask to obtain the final interaction correspondence
map. Some annotated examples are shown in Fig. 4 (c).

Statistical analysis. We conduct some statistical analy-
sis to get a deeper insight into the dataset. Fig. 4 (a) shows
the number of interactive and non-interactive images for
each affordance category. The number of interactive and
non-interactive images is comparable, but data imbalance

still exists between different categories. Fig. 4 (b) shows
the confusion matrix for the affordance class with body part
contact, where multiple contact regions exist for each cate-
gory, implying the challenge of affordance learning.

4.2. Benchmark Settings

To provide a comprehensive evaluation, three commonly
used metrics Kullback-Leibler Divergence (KLD) [5],
SIMilarity (SIM) [54], and Normalized Scanpath Saliency
(NSS) [42] are chosen, see supplementary material for more
details. Our model is implemented in PyTorch and trained
with the AdamW [28] optimizer. The input images are
cropped to 224 × 224. We train the model for 60, 000 it-
erations on a single NVIDIA 3090ti GPU with an initial
learning rate of 6e-5 and a batch size of 16. The hyper-
parameters l and m in the IFE module are set to 16 and
2, respectively. Furthermore, we provide two different set-
tings to evaluate model learning and generalization capa-
bilities: 1) Seen, i.e., the training set and the test set con-
tain the same affordance/object categories, and 2) Unseen,
i.e., the affordance/object categories in the training set and
the test set do not overlap. The test set in Seen setting
contains 4, 484 interactive and non-interactive pairs, while
the Unseen setting contains 3, 297 pairs. The seman-
tic segmentation method is chosen to compare the advan-
tages of the methods in overcoming the multiple possibil-
ities. We also choose the human pose estimation methods
for comparing the interactive affinity for affordance learn-
ing approach. Besides, the few-shot segmentation model
is also chosen for a fair comparison. In summary, we se-
lect 3 segmentation (DeepLabV3+ [8], PSPNet [68], Seg-
former [59]), 3 pose estimation (HRNet [52], ViTPose [61],
HRFormer [66]), and one few-shot segmentation (HSNet
[33]) methods from the relevant fields for comparison.

4.3. Quantitative and Qualitative Comparisons

The experimental results of different methods on the
CAL dataset are shown in Table 1. Our method outper-
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Table 1. The results of different methods on the CAL dataset. The best results are in bold. Seen means that the training and test sets
contain the same affordance/object categories, and Unseen means that the affordance/objects in the training and test sets do not overlap.
“♢” , “♣”, and “♠” represent segmentation, human pose estimation, and few-shot segmentation models, respectively. The ⋄ defines the
relative improvement of our method over other methods.

Method Seen Unseen params
KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑ (M)

PSPNet [68]
♢

1.738 ⋄44.5% 0.332 ⋄127.7% 1.431 ⋄160.2% 9.491 ⋄70.3% 0.224 ⋄92.0% 0.960 ⋄139.9% 53.31
DLabV3+ [8] 1.347 ⋄28.4% 0.683 ⋄10.7% 3.256 ⋄14.3% 5.632 ⋄49.9% 0.374 ⋄15.0% 1.993 ⋄15.6% 40.35

SegFormer [59] 1.198 ⋄19.4% 0.741 ⋄2.0% 3.543 ⋄5.1% 5.957 ⋄52.4% 0.401 ⋄3.6% 2.167 ⋄0.2% 27.25

HRNet [52]
♣

14.897 ⋄93.5% 0.196 ⋄285.7% 1.859 ⋄100.3% 17.984 ⋄84.3% 0.045 ⋄855.6% 0.525 ⋄338.7% 28.54
ViTPose [61] 4.303 ⋄77.6% 0.376 ⋄101.1% 1.456 ⋄156.3% 5.545 ⋄49.1% 0.246 ⋄74.8% 0.805 ⋄186.1% 89.99

HRFormer [66] 1.259 ⋄23.4% 0.729 ⋄3.7% 3.479 ⋄7.0% 5.855 ⋄51.8% 0.393 ⋄9.4% 2.109 ⋄9.2% 10.10

HSNet [33] ♠ 2.014 ⋄52.1% 0.431 ⋄75.4% 1.922 ⋄93.7% 3.016 ⋄6.4% 0.234 ⋄83.8% 1.007 ⋄128.7% 26.13

Ours 0.965 0.756 3.732 2.823 0.430 2.303 36.32
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Figure 5. Visualization of prediction results. We show the visualization results of our model, few-shot segmentation (HSNet [33]), the
best human pose estimation model (HRFormer [66]) and the segmentation model (SegFormer [59]).

forms the segmentation, human pose estimation, and few-
shot segmentation models in all metrics at both the Seen
and Unseen settings. Taking KLD as the metric, our
method exceeds the best segmentation method by 19.4%,
surpasses the best human pose estimation model by 23.4%,
and outperforms the few-shot model by 52.1% at the Seen
setting. At the Unseen setting, our approach outperforms
the best semantic segmentation method by 52.4%, the best
human pose estimation model by 51.8%, and the few-shot
segmentation model by 6.4%. Moreover, our method sig-
nificantly exceeds HSNet [33] in both SIM and NSS met-
rics. The performance advantage of our model is even more
pronounced at the Unseen setting. It validates that exploit-
ing the intrinsic connection between the body part and the

object’s local interactions using interactive affinity helps our
model better generalize to unseen interactions and objects.

Fig. 5 shows the visualization of affordance maps. Our
method outperforms representative models at both Seen
and Unseen settings. For the rugby ball and the punch-
ing bag, it is difficult to identify the corresponding interac-
tions using the segmentation methods due to the multiple
possibilities of affordance. It suggests that the interactive
affinity can provide valuable hints about the interconnected-
ness of the human body part with the local region of the ob-
ject, thereby helping reduce the ambiguity of the perceived
action possibilities. For knives to be used for both “Cut”
and “Stick”, our model still recognizes the difference be-
tween interactions (“Outside”). It suggests that using pose
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Figure 6. Different interactive images w.r.t Same non-
interactive images. We show the results for predicting the back
contact region under the interaction of “Sit on” and “Lie on”.

Figure 7. Different interactive images w.r.t Same non-
interactive images. We present the prediction results of the model
for different non-interactive images of the same interactive image.

data as guidance can assist the network in identifying the re-
gion where the object is in contact with the outside world to
complete the interaction. Fig. 6 shows the results of differ-
ent interaction images for the same non-interactive image.
Since “Sit on” and “Lie on” correspond to different con-
tact regions on the back, we only visualize this part. Our
model can perceive the variations between interactions and
accurately transfer the interaction-related invariant features
to the corresponding regions. Fig. 7 shows the predic-
tion for the same interactive image corresponding to differ-
ent non-interactive images. Although different object cat-
egories, various scales, and different views, our model can
transfer the interactive affinity correctly for each part, which
indicates that the IFE module can effectively establish the
connection between the interactable regions from different
branches and facilitate the transfer of interactive affinity.

4.4. Ablation Study

The ablation study results are shown in Table 2. Our
framework shows a more pronounced improvement at the
Unseen setting, suggesting that our method can general-
ize and transfer even for unseen interactions and objects
with only a few interactive images. In particular, the KHP
scheme shows a more evident improvement in the model’s

Table 2. Ablation study. We investigate the influence of the IFE
module and KHP scheme on model performance.

IFE KHP Seen Unseen
KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑
1.208 0.728 3.491 5.593 0.396 2.170

✓ 1.126 0.733 3.625 4.558 0.404 2.143
✓ 1.164 0.746 3.667 3.576 0.424 2.257

✓ ✓ 0.965 0.756 3.732 2.823 0.430 2.303

Table 3. Ablation study of the pose guidance. We investigate
the impact of different pose feature fusion methods in the KHP
scheme. “GAP” means global average pooled pose node features.
“Conv” means concatenation with the contact feature and then be-
ing fused by a convolutional layer.

Mode
Seen Unseen

KLD ↓ SIM ↑ NSS ↑ KLD ↓ SIM ↑ NSS ↑
GAP+Conv 1.317 0.715 3.517 4.053 0.383 1.962
Part+Conv 1.169 0.733 3.612 3.933 0.403 2.215
GAP+CT 1.253 0.710 3.578 4.223 0.386 1.937
Part+CT 0.965 0.756 3.732 2.823 0.430 2.303

performance. It indicates that obtaining interactive affinity
from human-object interaction can better exploit the con-
nections between the body part and the local region of the
object, thus suppressing the multiple possibilities of inter-
action diversity. Besides, we investigate the effect of the
pose guidance on the results. As shown in Table 3, “GAP”
loses the association between different part keypoints and
performs worse than using the keypoints corresponding to
different parts separately. “Conv” fusion is worse than the
cross transformer, possibly due to the fact that the trans-
former explicitly computes the correlation between the con-
tact region and the body keypoints, thus enabling better
mine the interactive affinity representation.

4.5. Performance Analysis

Different Classes. Fig. 8 shows the results of different
models on each affordance category. Although our model
does not outperform HSNet in some categories [33] at the
Unseen setting (the scores are comparable), it still outper-
forms other methods, which indicates that our method has a
good generalization ability when facing unseen objects. For
the overlap of objects in “Cut”, “Stick” and “Lift”, a finer-
grained interactive affinity representation can suppress the
effects of multiple possibilities and achieve better results.

Different body parts. Table 4 shows the results regard-
ing different body parts. Our model achieves almost the
best results at the Seen setting. At the Unseen setting,
it also achieves excellent transfer performance in most in-
teraction regions corresponding to the body parts. As most
of the interaction is done through hand-object contact, the
results of our model at the Unseen setting are much better
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Figure 8. Different classes. We measure the KLD metric for each affordance category, with darker colors representing higher performance.
The left and right represent the results at the Seen and Unseen settings, respectively.
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Figure 9. Different Hyper-parameters. We investigate the im-
pact of the number of layers m and tokens l in the interactive en-
hancement module on the experimental results.

than all the other methods. It demonstrates that our method
uses interactive affinity to explore the interconnections be-
tween body parts and local regions of objects, thus reducing
the ambiguity in perceiving action possibilities and enabling
accurate affordance knowledge transfer.

Different hyper-parameters. Fig. 9 shows the impact
of the hyper-parameters l and m in the IFE module on the
model’s performance. The influence at the Unseen setting
is slightly more apparent, indicating that these parameters
are more sensitive to the generalization and transfer of un-
seen objects. The number of cross-branch tokens greatly
affects the model performance. Too small l may lead to dif-
ficulties in fully expressing the contextual cues of the dif-
ferent branch interactable features, with the best results ob-
tained at l = 16. The model gives the best results with
the number of layers m = 2. The smaller m makes it dif-
ficult to fully aggregate the contextual cues and establish
associations in the interactable regions. As m increases, it
increases the parameters of the model and the complexity
of the optimization, leading to negative results.

Limitations. As shown in Table 4, our method still has
a large gap between “Back” and the other body parts. It
is mainly due to the sample imbalance as fewer examples
contain “Back”. Besides, the sitting posture occludes most

Table 4. Different parts. We evaluate the predictions for each
body part and object contact region. The Bold and Underline
represent the best and sub-optimal results, respectively.

Method Hand Feet Mouth Hips Back Outside

S
e
e
n

PSPNet 1.471 1.284 1.860 1.483 7.818 1.337
DLabV3+ 0.775 1.195 3.069 0.576 7.165 0.945
SegFormer 0.547 1.293 2.142 0.606 7.587 0.847

HRNet 14.583 17.202 17.095 14.197 24.823 13.208
HFormer 0.634 1.741 2.573 0.430 7.152 0.844
HSNet 1.640 1.518 4.561 1.283 9.141 1.218
Ours 0.687 1.151 0.816 0.311 6.975 0.570

U
n
s
e
e
n

PSPNet 6.040 - 15.187 11.321 19.479 8.043
DLabV3+ 4.393 - 11.308 1.366 11.397 4.137
SegFormer 3.989 - 13.015 1.310 11.184 4.673

HRNet 17.761 - 19.257 17.221 25.737 17.830
HFormer 4.477 - 11.551 1.439 12.196 4.393
HSNet 2.100 - 5.259 1.099 7.984 2.356
Ours 1.612 - 6.084 0.803 8.737 1.855

of the region where the object interacts with the back, re-
sulting in an incomplete back contact region feature extrac-
tion. In future work, we will consider addressing the data
imbalance [16, 25, 41] issue and exploiting the co-relation
relationship between body parts.

5. Conclusion

This paper proposes to leverage interactive affinity for
effective affordance learning by counteracting the influence
of multiple possibilities. To this end, a pose-aided inter-
active affinity learning framework is introduced, which is
able to exploit pose data to guide the network to mine the
interactive affinity representation of body parts and object
local contact from human-object interaction. Furthermore,
we constructed a contact-driven affordance learning (CAL)
dataset by collecting and labeling over 5, 000 images from
23 affordance categories. Our model outperforms six rep-
resentative models in three related fields and can serve as a
strong baseline for future affordance learning research.
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