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Abstract

While recent methods for motion and stereo estimation
recover an unprecedented amount of details, such highly
detailed structures are neither adequately reflected in the
data of existing benchmarks nor their evaluation methodol-
ogy. Hence, we introduce Spring – a large, high-resolution,
high-detail, computer-generated benchmark for scene flow,
optical flow, and stereo. Based on rendered scenes from
the open-source Blender movie “Spring”, it provides photo-
realistic HD datasets with state-of-the-art visual effects and
ground truth training data. Furthermore, we provide a web-
site to upload, analyze and compare results. Using a novel
evaluation methodology based on a super-resolved UHD
ground truth, our Spring benchmark can assess the quality
of fine structures and provides further detailed performance
statistics on different image regions. Regarding the num-
ber of ground truth frames, Spring is 60× larger than the
only scene flow benchmark, KITTI 2015, and 15× larger
than the well-established MPI Sintel optical flow bench-
mark. Initial results for recent methods on our benchmark
show that estimating fine details is indeed challenging, as
their accuracy leaves significant room for improvement.
The Spring benchmark and the corresponding datasets are
available at http://spring-benchmark.org.

1. Introduction

The estimation of dense correspondences in terms of
scene flow, optical flow and disparity is the basis for nu-
merous tasks in computer vision. Amongst others, such
tasks include action recognition, driver assistance, robot
navigation, visual odometry, medical image registration,
video processing, stereo reconstruction and structure-from-
motion. Given this multitude of applications and their fun-
damental importance, datasets and benchmarks that allow
quantitative evaluations have ever since driven the improve-
ment of dense matching methods. The introduction of suit-
able datasets and benchmarks did not only enable the com-
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Figure 1. Illustration of the high amount of details in the Spring
dataset. The dataset consists of HD images with super-resolved
UHD ground truth for disparities and optical flow.

parison and analysis of novel methods, but also triggered
the transition from classical discrete [12, 21, 47] and con-
tinuous [3, 4, 13, 15, 31] optimization frameworks to cur-
rent learning based approaches relying on neural networks
[7, 8, 25, 42, 45, 46, 53]. The available benchmarks focus on
distinct aspects like automotive scenarios [10, 22, 30, 34],
differing complexity of motion [1,2,5] or (un)controlled il-
lumination [35, 38]. However, none of these benchmarks
provides a combination of high-quality data and a large
number of frames, to assess a method’s quality in regions
with fine details and to simultaneously satisfy the training
needs of current neural networks. Furthermore, with KITTI
2015 [30], only a single benchmark that goes back to the
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Table 1. Overview over recent datasets and benchmarks (BM). Where applicable, we report available image pairs and ground truth frames
for motion estimation, i.e. scene flow (SF) or optical flow (OF), and for disparity estimation, i.e. stereo (ST), separately.

Venue SF OF ST BM #image pairs #gt frames #pix scenes source ph.realism motion

Spring (ours) CVPR ’23 ✓ ✓ ✓ ✓ 5953 6000 23812 12000 2.1M 47 CGI high realistic
KITTI 2015 [30] CVPR ’15 ✓ ✓ ✓ ✓ 400 400 400 400 0.5M n/a real high automotive
FlyingThings3D [28] CVPR ’16 ✓ ✓ ✓ ✗ 24084‡ 26760‡ 96336 53520 0.5M 2676 CGI low random
VKITTI 2 [6] arXiv ’20 ✓ ✓ ✓ ✗ 21210 21260 84840 42520 0.5M 5 CGI med. automotive
Monkaa [28] CVPR ’16 ✓ ✓ ✓ ✗ 8640‡ 8664‡ 34560 17328 0.5M 8 CGI low random
Driving [28] CVPR ’16 ✓ ✓ ✓ ✗ 4392‡ 4400‡ 17568 8800 0.5M 1 CGI med. automotive

KITTI 2012 [10] CVPR ’12 ✗ ✓ ✓ ✓ 389 389 389 389 0.5M n/a real high automotive
MPI Sintel [5] ECCV ’12 ✗ ✓ (✓)∗ ✓ 1593‡ 1064‡ 1593 1064 0.4M 35 CGI high realistic
HD1K [22] CVPRW ’16 ✗ ✓ ✗ (✓)† 1074 n/a 1074 n/a 2.8M 63 real high automotive
VIPER [34] ICCV ’17 ✗ ✓ ✗ ✓ 186285 n/a 372570 n/a 2.1M 184 CGI high automotive
Middlebury-OF [2] IJCV ’11 ✗ ✓ ✗ ✓ 16 n/a 16 n/a 0.2M 16 HT/CGI med. small
Human OF [33] IJCV ’20 ✗ ✓ ✗ ✗ 238900 n/a 238900 n/a 0.4M 18432 CGI med. rand./human
AutoFlow [41] CVPR ’21 ✗ ✓ ✗ ✗ 40000 n/a 40000 n/a 0.3M n/a CGI low random
FlyingChairs [8] ICCV ’15 ✗ ✓ ✗ ✗ 22872 n/a 22872 n/a 0.2M n/a CGI low random
VKITTI [9] CVPR ’16 ✗ ✓ ✗ ✗ 21210 n/a 21210 n/a 0.5M 5 CGI low automotive
Middlebury-ST [35] GCPR ’14 ✗ ✗ ✓ ✓ n/a 33 n/a 66 5.6M 33 real high n/a
ETH3D [38] CVPR ’17 ✗ ✗ ✓ ✓ n/a 47 n/a 47 0.4M 11 real high n/a

HT: hidden texture, ‡: available in clean and final, ∗: not part of the benchmark, †: offline

pre-deep-learning era is available for image-based scene
flow, which currently prevents the development of well-
generalizing methods due to lacking dataset variability.

Contributions. To tackle these challenges, we propose the
Spring dataset and benchmark, providing a large number of
high-quality and high-resolution frames and ground truths
to enable the development of even more accurate methods
for scene flow, optical flow and stereo estimation. With
Spring, we complement existing benchmarks through a fo-
cus on high-detail data, while we simultaneously broaden
the number of available datasets for the development of
well-generalizing methods across data with varying prop-
erties. The latter aspect is particularly valuable for image-
based scene flow methods. There, we provide the first
benchmark with high-resolution, dense ground truth data in
the literature. In summary, our contributions are fourfold:

(i) New dataset: Based on the open-source Blender
movie “Spring”, we rendered 6000 stereo image pairs
from 47 sequences with state-of-the-art visual effects
in HD resolution (1920×1080px). For those image
pairs, we extracted ground truth from Blender in for-
ward and backward direction, both in space and time,
amounting to 12000 ground truth frames for stereo
and 23812 ground truth frames for motion – 60× more
than KITTI and 15× more than MPI Sintel.

(ii) High-detail evaluation methodology: To adequately
assess small details at a pixel level, we propose a novel
evaluation methodology that relies on an even higher
resolved ground truth. All ground truth frames are
computed in UHD resolution (3840×2160px).

(iii) Benchmark: We set up a public benchmark website
to upload, analyze and compare novel methods. It
provides several widely used error measures and ad-
ditionally analyzes the results in different types of
regions, including high-detail, unmatched, non-rigid,
sky and large-displacement areas.

(iv) Baselines: We evaluated 15 state-of-the-art methods
(8 optical flow, 4 stereo, 3 scene flow) as non-fine-
tuned baselines. Results not only show that small de-
tails still pose a problem to recent methods, but also
hint at significant potential improvements in all tasks.

2. Related work

In the literature there exists a large number of datasets
and benchmarks for dense matching covering scene flow,
optical flow and stereo. An overview over the state of the art
is given in Tab. 1. Datasets and benchmarks can roughly be
divided along two orthogonal axes: The scene axis and the
data axis. On one edge of the scene axis, there are datasets
focusing on automotive scenes such as KITTI [10, 30], Vir-
tual KITTI [6,9], HD1K [22], VIPER [34] and Driving [28].
On the other edge are datasets that target general scenes
such as Middlebury [1, 35], MPI Sintel [5], ETH3D [38],
FlyingThings3D [28], Monkaa [28] and FlyingChairs [8]
with the special case of Human OF [33] that addresses hu-
man body motion. Along the orthogonal data axis, datasets
and benchmarks can be divided into real-world data [10,
22, 30, 35, 38] and synthetic data [5, 8, 9, 28, 33, 34, 41].
In the context of optical flow, Sintel showed that synthetic
benchmarks can validly approximate the statistics of natural
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Figure 2. Ground truth comparison for highly-detailed regions across datasets. From left to right: KITTI 15 [30], MPI Sintel [5], Spring.

images and motion, while avoiding ground truth measure-
ments in the real world. This motivates the use of synthetic
data for general scenes in our Spring dataset.

Resolution. Most of the benchmarks and datasets are lim-
ited to images with QHD resolution (0.5 Mpix) or be-
low [5,8,10,11,28,30,33,38,41]. Only in the case of auto-
motive optical flow, full HD resolution (2-3 Mpix) has been
considered [22, 34]. Moreover, first attempts with image
sizes beyond HD (5.6 Mpix) have been made for real-world
stereo, but only for a small number of images [35]. With
respect to general optical flow and scene flow, Spring is the
first dataset to consider HD resolution and above for input
images and ground truth, respectively.

Dataset size. Considering the number of input and ground
truth images, most popular benchmarks have at most 1600
frames. This is either due to the use of real-world
footage [10, 22, 30, 35, 38] or their creation in the pre-deep-
learning era [5,10,30]. The only exception is the automotive
optical flow benchmark VIPER [34], if we leave aside sev-
eral large training datasets without benchmark functionality
such as FlyingChairs [8], Virtual KITTI [6, 9], FlyingTh-
ings3D with Monkaa and Driving [28], Human OF [33],
AutoFlow [41] and the dataset generator Kubric [11]. With
respect to the number of frames for stereo and scene flow,
however, Spring is the first general-scene benchmark with
several thousand samples for training and testing, closing
a previously existing gap in the available training data for
deep-learning matching methods for those tasks.

Benchmark evaluation. Regarding focused evaluations in
particularly important regions, current benchmarks mainly
focus on occlusions (unmatched regions) [2, 5, 30, 35, 38],
discontinuities [1, 5], large displacements [5] and non-rigid
areas [30]. However, recent stereo [23] and optical flow
methods [18, 19] achieve highly detailed results due to
cascaded recurrent neural networks that process images at
larger resolutions and omit a significant upsampling of the
final results (e.g. in contrast to [20, 24, 45]). This raises
the question how well such high-quality methods can esti-
mate fine-scale details such as grass or hair. In this context,
Spring not only provides high-resolution images that con-

tain small-scale details at pixel level, but also provides a
novel evaluation methodology that allows to measure the
accuracy in the presence of thin structures. Therefore,
the Spring benchmark provides focused evaluations for re-
gions with unmatched, high-detail, non-rigid, sky and large-
displacement pixels.

Scene flow benchmarking. Finally, with only 400 frames,
KITTI 2015 [30] is the only benchmark that, besides opti-
cal flow and stereo, also allows the evaluation of scene flow.
Moreover, while there are a few datasets and challenges
for scene flow from RGB-D [26, 39, 40] and LiDAR [43]
data, KITTI 2015 is the only benchmark for image-based
scene flow, i.e. scene flow only from stereo image pairs.
As a consequence, recent image-based scene flow meth-
ods perform well on KITTI 2015 but are likely not robust
under other types of data. As shown for optical flow and
stereo in context of the Robust Vision Challenge [52], im-
proving the generalization across benchmarks is essential
to increase applicability and robustness [37]. Hence, hav-
ing more specifically tailored benchmarks at hand would
not only be beneficial for optical flow and stereo, but in
particular for image-based scene flow, where they are indis-
pensable to further advance research. While with FlyingTh-
ings3D, Monkaa and Driving [28] as well as VKITTI 2 [6]
there are a few datasets available that could also be used for
benchmarking, these datasets provide the ground truth for
all frames which encourages overfitting. In contrast, Spring
offers the full benchmark functionality, i.e. hidden ground
truth for the test set, an evaluation protocol, cheating pre-
vention and a website to compare results.

3. Spring dataset
The Spring dataset is a novel, large, computer-generated

dataset for training and evaluating scene flow, optical flow
and stereo methods. Our dataset consists of stereoscopic
video sequences and ground truth scene flow in its stan-
dard parametrization with reference frame disparity, target
frame disparity and optical flow [15]. We provide ground
truth data for all available combinations; for the left and
right view as well as motion in temporal forward and back-
ward direction. The Spring dataset is based on the open-

4983



Sky map Detail map

Unmatched regions Non-rigid motion

Figure 3. Examples for evaluation maps. Top row: Sky map, detail
map, bottom row: unmatched regions map, non-rigid motion map.

source movie “Spring”, which we utilize to generate a large
dataset that is suitable for motion and disparity estimation.
In the following, we introduce the underlying movie data,
give details on the dataset creation process and provide a
full overview of our data along with a comparison to other
established datasets.

3.1. Open-source movie data

We retrieve our data from an open movie project gen-
erated in the open-source 3D software Blender. The core
idea of open movies is to make all assets that are required
to render the movie available under an open license, which
enables anybody to build upon the creative work and to uti-
lize it for research [5, 17, 28]. The “Spring” movie is a
recent project showcasing the current progress in Blender
2.80 and the ray tracing engine Cycles and is with its scenes
and assets available under the open CC BY 4.0 license. The
movie scenes depict a large range of shot sizes from extreme
close-ups to very long shots and a large range of motions
from animated creatures, flight sequences, chasing motion,
plant growth, and physically plausible simulations of peb-
bles, grass and hair motion. It shows advanced visual effects
that work towards a realistic appearance of the computer-
generated data, such as 3D motion blur and camera depth
of field with focus pulls (changes of the focal plane). Some
scenes even contain zooms (changes of the focal length,
i.e. frame-dependent camera intrinsics), which makes our
dataset the first scene flow dataset [6,28,30] with this prop-
erty. In general, all movie assets are highly detailed, see e.g.
Figs. 1 and 2 which provides a good basis for our datasets.

3.2. Dataset creation

We consider a set of 47 scenes with 6000 frames cov-
ering large parts of the original movie. In each scene, the
original monoscopic camera is replaced by a stereoscopic
camera with a baseline distance of 6.5 cm. While keep-
ing the original appearance of the scenes, we had to intro-
duce changes to make them suitable for dataset creation:

Where applicable, we removed dense volumetric clouds,
since Blender cannot generate ground truth for them, but
kept ambient haze.

We then generated the data in four steps: First, we ren-
dered the image data in HD resolution with 1920×1080px,
including all visual effects. Second, we generated all data
that is required for the ground truth computation, where we
disabled motion blur and depth of field and set all objects
to solid. Third, we considered sky regions separately, since
Blender is not able to compute ground truth for these re-
gions. Fourth, we computed additional maps for an im-
proved analysis of results in terms of focused evaluations.
For each step, more details are given below.

High-detail structures. Up to now, datasets in the liter-
ature were not able to represent very thin structures such
as hair, grass, or any objects that are smaller than 1px due
to the definition of disparities and optical flow as a single
representation per pixel. To mitigate this, [5, 48] proposed
to change the rendering data such that hair is at least 2px
wide, which significantly changes the visual appearance.
We propose a novel solution to this problem by generating
all ground truth data with twice the spatial resolution, which
yields four ground truth values for each image pixel and a
total resolution of 3840×2160px. This way, even fine de-
tails like hair or grass are represented in the data, see Fig. 2.
We describe how to use this high-resolution data for evalu-
ation in Sec. 4.1.

Ground truth scene flow from Blender. Since it is not
possible to directly export 3D motion or scene flow from
Blender, we first had to adapt the rendering source code.
We modified it such that we were able to output 3D mo-
tion vectors relative to the camera coordinate system. Then,
we extracted forward and backward 3D motion vectors and
depth, for both the left and the right camera. Additionally,
we saved the intrinsic and extrinsic camera data as well
as the focal distance. From depth, 3D motion and cam-
era data, it is straightforward to compute ground truth scene
flow in the standard parametrization with reference dispar-
ity, future/past disparity and optical flow [15]. We make
the code required to generate our dataset with scene flow
ground truth from Blender publicly available.

Sky areas. In several recent datasets, sky areas are not in-
cluded [10, 30, 34], yielding a sparse ground truth for many
sequences. Also, the Blender rendering engine is not capa-
ble of determining the correct motion vectors for infinitely
distant sky points. Thus, one mitigation strategy is to create
a large sphere around the scene [27, 28] to obtain motion
results for every pixel. While this provides a reasonable
approximation, we opted for an actual computation of the
ground truth scene flow in sky regions. For the optical flow,
we utilized the relative camera motion to compute the true
2D displacement vectors for pixels of infinite depth, which
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Figure 4. Example sequences from the Spring dataset. First row: Left and right images of the stereo camera, second row: Corresponding
left and right disparity, third row: Change in disparity for forward left, backward left, forward right and backward right, fourth row: Optical
flow visualization for forward left, backward left, forward right and backward right. Please note that we show the disparity change for
visualization purposes while the dataset contains the target frame disparity.

comes down to considering the rotational part of the rel-
ative camera motion only. For the disparities, the ground
truth values are given as 0. In order to allow for a separate
evaluation, we created binary maps determining sky pixels.

Additional maps. Apart from sky maps, we computed
three additional maps to enable a detailed evaluation with
our benchmark: high-detail, matching, and rigidity maps;
see Fig. 3. In the evaluation, we further distinguished be-
tween areas of different displacement vector sizes. In the
following, we describe their generation.

A core concept in our dataset is to have the ground truth
data available in super-resolution with four ground truth val-
ues per pixel. We use this high-resolution data to compute
detail maps to identify pixels that belong to areas of high
details for all scene flow components, i.e. optical flow and
disparities. To this end, we define a point as high-detail if at

least one of the four ground truth values deviates from the
median of the four ground truth values by more than 1px.

Additionally, we compute matching maps to differenti-
ate pixels that are matched in the corresponding view from
those that are occluded. This idea has been frequently
used [5, 10, 30, 36, 38] and is especially important to dis-
tinguish regions with matching counterparts from regions
where values have to be predicted/extrapolated. We com-
puted matching maps for all scene flow components through
a forward-backward check [44].

Further, we calculate rigidity maps that segment the data
into areas where motion is induced only by the camera and
areas where objects move independent of the camera. In-
stead of computing rigidity maps in 2D [49], we determine
them in 3D by comparing the ground truth 3D motion vec-
tors to 3D motion vectors that are computed from the static
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scene and the camera motion. This 3D strategy prevents
errors which are otherwise introduced by comparing pro-
jected vectors in 2D. We consider points to be rigid if the
3D motion vectors differ by at most 1mm.

Finally, we also distinguish areas of different displace-
ment sizes for all scene flow components. Following [5] we
select regions of small-size displacements with magnitudes
up to 10px (s0-10), regions of medium-size displacements
with magnitudes of 10-40px (s10-40) and regions of even
larger displacements exceeding 40px (s40+).

3.3. Dataset Overview

Our dataset consists of 47 scenes, which we used to ren-
der a total of 6000 stereo frame pairs. For each left and
right frame, we generate disparity ground truth as well as
forward and backward optical flow and scene flow ground
truth. In every sequence, we omit the backward flow at the
first frame and the forward flow at the last frame. Thus, con-
sidering left/right and forward/backward pairs, our dataset
consists of 23812 data samples for scene flow and optical
flow and 12000 data samples for stereo estimation. Fig-
ure 5 compares the distribution of disparity and optical flow
values with the KITTI 15 [30] and MPI Sintel [5] datasets.
Regarding optical flow, Spring employs a wider range of
motion vectors, including very large displacements. In con-
trast, for stereo, Spring not only contains larger disparities
(very close objects), but also a significant amount of small
disparities (far-away objects).

4. Benchmark
We split the 47 sequences of our dataset into 37 train and

10 test sequences, yielding 5000 and 1000 stereo frames,
respectively. We make the full data of the train split avail-
able, but only publish the images for the test split while
withholding the ground truth files, which is a standard prac-
tise [2, 5, 10, 30, 34, 36]. In order to allow for a fair compar-
ison, we create a public benchmark website where authors
can upload their test split results. The results are automat-
ically evaluated, with optional display in a public ranking.
Following other benchmarks [5, 34], we make use of a sub-
sampling strategy to reduce the file size of test split results
prior to uploading to the benchmark. We make the entire
code of our benchmark website publicly available.

4.1. Evaluation metrics

As described in Sec. 3, we generate the ground truth data
in double resolution, resulting in four ground truth values
per pixel. Out of these, the evaluation always selects the
ground truth value closest to the estimated value for calcu-
lating the errors. In the case of of thin hair structures against
a background, this strategy yields a low error for methods
that estimate the hair or the background value, while assign-
ing a larger error when a mixture of both values is predicted.

In the literature, there is a multitude of error measures for
scene flow, optical flow and stereo methods. For scene flow,
the most established ones are the outlier rates by KITTI.
They define pixels as outliers if they deviate by more than
3px and 5% from the ground truth, which is motivated from
the limited precision of their data [30]. Considering our
high-accuracy data, we adapt the evaluation to the 1px out-
lier rate. For reference disparity, target disparity and opti-
cal flow, the 1px outlier rate defines the percentage of pixels
that deviate more than 1px from the ground truth. Follow-
ing [30], we also employ a union 1px error as the main scene
flow measure that defines the percentage of pixels where
any of the estimated reference disparity, target disparity and
optical flow values deviates more than 1px from the ground
truth. Since for scene flow, optical flow and stereo no sin-
gle error measure is fully established in the community, we
also provide multiple error metrics as additional reference.
For stereo, we also show the absolute error and the KITTI-
D1 and D2 error [30]; for optical flow, we show the end
point error, the KITTI-Fl error and the WAUC error [34];
for scene flow, we show all previously mentioned errors as
well as the KITTI-SF error [30]. To enable an in-depth anal-
ysis, we make use of the maps described in Sec. 3.2 and ad-
ditionally report sub-errors for different parts of the scene.

4.2. Rules and cheating prevention

Our cheating prevention strategy is threefold. First, we
require authors to register on our website giving their affil-
iation and a brief justification why they need access to the
benchmark. After verification of the account, which shall
prevent mass-registration, authors are allowed to submit re-
sults under upload limits [5,30]: At most once per hour and
three times per 30 days. This way, we prevent overfitting
on the test data. Second, we added several sequences with
manual adjustment of the camera path [5] in our data gen-
eration process to prevent users from utilizing the publicly
available movie assets. Third, we make our full benchmark
code publicly available, but hide the exact subsampling used
for generating the submission files by only providing com-
piled subsampling executables.

4.3. Initial results

For evaluation on our benchmark, we consider 15 state-
of-the-art methods (8 optical flow, 4 stereo, 3 scene flow)
whose code is publicly available. The results are given
in Tabs. 2 to 4. We selected author-provided checkpoints
trained on Sintel for optical flow, on FlyingThings3D for
stereo, and on both FlyingThings3D and KITTI for scene
flow. We argue that, at the initial stage, an evaluation of
methods that are not finetuned on Spring results in a fairer
comparison than retraining methods of other authors on the
train split of our dataset. Moreover, using non-finetuned
methods also gives interesting insights into the generaliza-
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(a) Reference disparity (b) Target disparity (c) Optical flow u component (d) Optical flow v component

Figure 5. Comparison of ground truth statistics between the datasets Spring (blue) and KITTI 2015 (orange) and Sintel (green).

Table 2. Optical flow results on Spring. We show the 1px outlier rate with sub-rankings for low/high-detail, (un)matched, (non-)rigid and
(not) sky regions. Additionally, we show the average endpoint error (EPE), the Fl error [30] as well as the WAUC metric [34].

1px EPE Fl WAUC
Method total low-det. high-det. matched unmat. rigid non-rig. not sky sky s0-10 s10-40 s40+

MS-RAFT+ [18, 19] 5.72 5.37 61.50 5.04 33.95 3.05 25.97 4.84 19.15 2.06 5.02 38.32 0.643 2.19 92.89
FlowFormer [14] 6.51 6.14 64.22 5.77 37.29 3.53 29.08 5.50 21.86 3.38 5.53 35.34 0.723 2.38 91.68
FlowNet2 [16] 6.71 6.35 64.06 5.69 48.89 3.71 29.40 6.04 16.91 1.86 5.82 49.69 1.040 2.82 90.91
RAFT [45] 6.79 6.43 64.09 6.00 39.48 4.11 27.09 5.25 30.18 3.13 5.30 41.40 1.476 3.20 90.92
GMA [20] 7.07 6.70 66.20 6.28 39.89 4.28 28.25 5.61 29.26 3.65 5.39 40.33 0.914 3.08 90.72
GMFlow [51] 10.36 9.93 76.61 9.06 63.95 6.80 37.26 8.95 31.68 5.41 9.90 52.94 0.945 2.95 82.34
SPyNet [32] 29.96 29.66 77.45 28.78 78.77 26.44 56.60 25.83 92.74 24.80 24.20 88.71 4.162 12.87 67.15
PWCNet [42] 82.27 82.27 81.75 82.07 90.40 82.82 78.09 81.57 92.76 81.40 82.19 89.69 2.288 4.89 45.67

Table 3. Stereo results on Spring. We show the 1px outlier rate with sub-rankings for low/high-detail, (un)matched, and (not) sky regions.
Additionally, we show the absolute error (Abs), and the D1 error [30].

1px Abs D1
Method total low-detail high-detail matched unmatched not sky sky s0-10 s10-40 s40+

ACVNet [50] 14.77 14.43 35.27 12.60 57.89 11.16 69.62 18.39 11.35 18.15 1.52 5.35
RAFT-Stereo [24] 15.27 14.98 32.77 13.39 52.58 9.92 96.57 22.59 10.02 17.09 3.02 8.63
LEAStereo [7] 19.89 19.55 40.40 17.61 65.09 16.73 67.81 19.08 13.86 39.41 3.88 9.19
GANet [53] 23.22 22.91 42.06 20.98 67.88 18.42 96.27 24.29 16.43 41.50 4.59 10.39

Table 4. Scene flow results on Spring. We show the 1px outlier rate with sub-rankings for low/high-detail, (un)matched, (non-)rigid and
(not) sky regions. Additionally, we show the SF error [30] as well as individual 1px outlier rates for reference disparity (1pxD1), target
disparity (1pxD2) and optical flow (1pxFl).

1px SF 1pxD1 1pxD2 1pxFl

Method total low-det. high-det. matched unmat. rigid non-rig. not sky sky s0-10 s10-40 s40+

M-FUSE (F) [29] 34.90 34.30 64.32 32.03 71.94 29.81 73.38 31.36 88.71 29.89 23.91 69.15 16.10 19.89 24.26 20.37
RAFT-3D (K) [46] 37.26 36.80 60.23 34.34 75.02 32.87 70.52 33.23 98.53 43.80 24.55 63.91 17.35 32.31 32.95 13.96
CamLiFlow (F) [25] 50.08 49.64 71.88 47.80 79.64 46.75 75.27 46.85 99.25 31.12 42.70 89.55 34.15 23.22 44.10 24.01
M-FUSE (K) [29] 62.49 62.29 72.31 60.57 87.25 60.39 78.42 60.03 99.85 49.20 75.96 25.23 25.23 52.23 57.03 20.98
RAFT-3D (F) [46] 78.82 78.75 82.20 78.33 85.19 79.62 72.80 77.57 97.84 84.33 81.68 65.48 66.88 23.22 73.43 48.07
CamLiFlow (K) [25] 85.31 85.18 91.67 84.46 96.25 84.18 93.85 84.35 99.96 65.16 87.85 99.86 70.87 32.31 76.32 69.68

tion performance of existing methods to novel benchmarks.
At the same time, it is clear that these results and rankings
can only serve as starting point. Hence, we encourage au-
thors to submit finetuned versions of their methods to our
benchmark. In the following, we give an initial discussion
of our results, which is extended in the supp. material.

Optical flow. For optical flow, we can observe that although
recent methods perform generally well, errors in areas with
high details are still very large – although our novel evalua-
tion method is quite permissive in those areas. Furthermore,
we find that the errors in unmatched, non-rigid, sky and
large-displacement areas are also large with the error in the
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Table 5. Influence of the subsampling on the evaluation. We com-
pare optical flow results evaluated using the subsampling of the
benchmark with the same results evaluated on the full test split.

subsampling results full test split results

1px EPE Fl 1px EPE Fl

MS-RAFT+ [18, 19] 5.72 0.643 2.19 4.99 0.620 1.82
FlowFormer [14] 6.51 0.723 2.38 6.12 0.719 2.18
FlowNet2 [16] 6.71 1.040 2.82 5.91 0.968 2.30
RAFT [45] 6.79 1.476 3.20 6.05 1.265 2.72
GMA [20] 7.07 0.914 3.08 6.30 0.918 2.69
GMFlow [51] 10.36 0.945 2.95 9.38 0.928 2.49
SPyNet [32] 29.96 4.162 12.87 28.72 4.036 11.95
PWCNet [42] 82.27 2.288 4.89 82.17 2.295 4.47

sky being actually the smallest. Among the different meth-
ods, MS-RAFT+ [18], which is specifically tailored for high
resolutions and single-checkpoint cross-benchmark gener-
alization [52], ranks first. Moreover, the classical FlowNet2
[16] performs surprisingly well which can be attributed to
its dedicated module for small displacement estimation (cf .
the s0-10 metric). In contrast, the well-established PWC-
Net [42] ranks last. While it provides reasonable results in
terms of the EPE and Fl error, its accuracy seems to be lim-
ited by its strategy to operate on 1/4 of the input resolution
and subsequently upsample the flow using simple bilinear
interpolation. Overall, these observations demonstrate that
for Spring, the capability of the underlying architecture to
handle high-detail high-resolution input is much more im-
portant than for other benchmarks. This in turn outlines the
value of Spring when it comes to further pushing the limits
of current optical flow methods.

Stereo. For stereo estimation, we can see that results are
generally worse compared to optical flow. While surpris-
ing at first sight, we attribute this to mainly two reasons.
First, most stereo methods consider very clean data, i.e. data
without camera defocus and/or motion blur, which stands
in contrast to our dataset. Second, stereo disparity is often
defined to be strictly positive [10, 28, 30], thus in general
stereo methods are not prepared for regions with zero dis-
parity/infinite depth as for the sky in our dataset – which can
be seen in the corresponding sub-metric, as well as the s0-
10 metric. However, we argue that disparity methods, and
subsequently scene flow methods, should be able to predict
true dense fields, including sky regions. For reference, we
provide a full evaluation solely on non-sky pixels for all
methods including optical flow and scene flow in the supp.
material. As a final note, previous stereo benchmarks of-
ten report results by default in non-occluded (matched) re-
gions only [10,35,36,38], which drives the development of
methods that perform especially well in these areas. All in
all, these results clearly demonstrate the advantage of the
Spring benchmark for the field of stereo estimation.

Scene flow. For scene flow estimation, we evaluated two
trained models for each method, corresponding to a pre-
training on FlyingThings3D (F) and a subsequent finetun-
ing on KITTI 2015 (K). Since the considered scene flow
methods strongly rely on a preceding disparity estimation,
the same observations hold as in case of the stereo results.
Furthermore, the inconsistent results of all three methods
with their two training schedules show that solely focusing
on the KITTI 2015 benchmark produces methods that are
prone to overfitting and lack a good generalization perfor-
mance. Hence, the Spring benchmark is also highly benefi-
cial to advance research in the field of scene flow.

4.4. Influence of subsampling

As previously outlined, our benchmark uses a subsam-
pling strategy that evaluates on a reduced set of ground truth
pixels from the full test set. In a final experiment, we inves-
tigate the influence of this strategy by comparing the sub-
sampling results shown in Tab. 2 to results computed on the
full test split. This is the first time in the dense matching
literature that the influence of the subsampling evaluation is
made transparent. Table 5 shows that evaluating with our
subsampling yields similar results to using all ground truth
pixels with the same or almost the same ranking – indepen-
dent of the error measure.

5. Conclusion
With Spring, we present a large, high-resolution, high-

detail, computer-generated dataset and benchmark for dense
matching. Spring addresses the increasing performance of
recent methods in terms of details, by allowing an adequate
assessment in high-detail regions during evaluation. To
this end, it provides 6000 photo-realistic HD stereo frame
pairs with 23812 and 12000 super-resolved UHD ground
truth frames for motion and stereo, respectively. Unlike
several other benchmarks for matching tasks, Spring not
only covers optical flow or disparity estimation: It is the
first benchmark in the deep learning era that also evaluates
image-based scene flow, which is essential to enable fur-
ther progress in this field. Initial results of 15 non-finetuned
baselines show that Spring is a challenging benchmark for
recent methods – particularly with respect to high-detail,
non-rigid, unmatched and sky regions.
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