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Abstract

Combining multiple datasets enables performance boost
on many computer vision tasks. But similar trend has not
been witnessed in object detection when combining mul-
tiple datasets due to two inconsistencies among detection
datasets: taxonomy difference and domain gap. In this pa-
per, we address these challenges by a new design (named
Detection Hub) that is dataset-aware and category-aligned.
It not only mitigates the dataset inconsistency but also pro-
vides coherent guidance for the detector to learn across
multiple datasets. In particular, the dataset-aware design
is achieved by learning a dataset embedding that is used
to adapt object queries as well as convolutional kernels in
detection heads. The categories across datasets are seman-
tically aligned into a unified space by replacing one-hot cat-
egory representations with word embedding and leveraging
the semantic coherence of language embedding. Detection
Hub fulfills the benefits of large data on object detection.
Experiments demonstrate that joint training on multiple
datasets achieves significant performance gains over train-
ing on each dataset alone. Detection Hub further achieves
SoTA performance on UODB benchmark with wide variety
of datasets.

1. Introduction
Recent computer vision development has demonstrated

significant benefits of leveraging large-scale data for com-
puter vision tasks, such as image retrieval [31], image
recognition [47] and video recognition [39]. However, lim-
ited effort has been explored for the object detection task
due to the lack of a unified large-scale data. A naive attempt
is to combine all annotated data from different sources.
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Figure 1. An illustration of the challenges of combing multiple
datasets. (a) There are significant domain gaps between differ-
ent datasets: the taxonomy are different and the annotations are
inconsistent; (b) Even under a unified language embedding, the
distribution of categories among datasets are significant different
and requires special handling

However, due to the diversity of objects and the cost of an-
notating bounding boxes in images, traditional object detec-
tion datasets are collected in a domain-specific way, where a
limited number of interested categories are regarded as fore-
grounds and the rest of objects as backgrounds. This results
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in a non-trivial domain shift between different datasets and
limits detectors to be trained and tested on a single dataset
in order to achieve the best performance on such dataset.

In this paper, we attempt to answer the question: “How
can we unify multiple object detection datasets training with
a single general object detector?”. Towards this goal, we
observe two challenges: taxonomy difference and annota-
tion inconsistency, both of which introduce the domain gap
issue, shown in Figure 1 (a). More specifically, for the tax-
onomy difference issue, the semantic names of similar con-
cepts in different datasets may be very different. And for the
annotation inconsistency issue, given similar images, fore-
ground objects in one dataset may be labeled as background
in another dataset. The existence of these two challenges
may be the key underlying reason why most current detec-
tors only focus on a specific training set, rather than deriving
a universal object detector for multiple datasets.

Compared to traditional methods that regard semantic
categories as class indices, converting them into language
embedding can naturally unify the taxonomy and eases the
challenge in recent works [19, 31]. However, it won’t solve
the problem, as shown in Figure 1 (b), the distribution of
categories among datasets are significant different, which
contributes most to the domain gap.

Inspired by recent success of visual-language mod-
els [19, 31], we propose a simple yet effective method
“Detection Hub” that can enjoy the synergy of multiple
datasets. It builds upon current end-to-end detectors which
use learnable object queries to produce final detection re-
sults [37]. To overcome the aforementioned problems, we
have two key ideas accordingly: 1) map the semantic cat-
egory names of different datasets into a category-aligned
embedding, and 2) more importantly, use the embedding to
dynamically adapt object queries so that each dataset has its
own specific query set. We further change the one-hot based
classification branch into vision-language alignment, which
can well align categories of different datasets. Accordingly,
we adopt a region-to-word alignment loss instead of classi-
cal cross entropy loss, which makes our “Detection Hub”
not limited by a fixed category vocabulary.

Our method leverages the linguistic property of pre-
trained language encoders (such that categories with sim-
ilar semantic meanings across datasets will be automati-
cally embedded together without using an expert-designed
label mappers). In addition, categories specific to different
datasets will be preserved by dedicated embedding. More-
over, as each dataset has its own adapted object query set
to generate detection results, the detector can learn how
to adapt its behavior to each dataset based on its specific
query set. Therefore, the potential competition or distur-
bance caused by the annotation inconsistency among differ-
ent datasets can be avoided.

To demonstrate the effectiveness of our method, we

train our “Detection Hub” on three standard object de-
tection datasets jointly: COCO [21], Object365 [35] and
Visual-Genome [14]. These large-scale datasets have dif-
ferent properties of taxonomy, vocabulary size and anno-
tation quality. Detecton Hub achieves 45.3, 23.2 and 5.7
AP on each dataset, with significant performance gain of
+2.3, +1.0, +0.9 compared with each independently model.
To further verify the effectiveness on datasets with larger
variance, we conduct experiments on UODB [40], a com-
bination of 11 extremely varied datasets. Detection Hub
achieves an average score of 71 and outperforms the previ-
ous SoTA UniversalDA [40] by a large margin of 6.8 point.

2. Related Work

Object Detection. Object detection [9,10,18,20,34,36,38]
has been studied for a long time and become a predom-
inant direction. Beginning with the initial success of R-
CNN [10], a two-stage paradigm is formulated by combin-
ing a region proposal detector and a region-wise CNN clas-
sifier. Fast R-CNN [9] formalizes the idea of region-wise
feature extraction using ROI pooling to extract fixed-size re-
gion features and then predicts their classes and boxes with
fully connected layers. Faster R-CNN [34] further intro-
duces a Region Proposal Network (RPN) to generate region
proposals and merges the two-stage into a single network by
sharing their convolutional features. Since then, this two-
stage architecture has become a leading object detection
framework. Further works continue to improve this frame-
work by introducing more stages [1, 16]. Recently, Vision
Transformers [5] and end-to-end object detection methods
have attracted such attention. DETR [2] first turns the object
detection problem into a query-based set prediction prob-
lem and formulates object detection as an end-to-end frame-
work. Many follow-ups [17, 24, 25, 51] further developed
these methods into other tasks like acceleration and pseudo
labeling. Beside, multiple recent methods were proposed to
improve the problems in different directions. Deformable
DETR [51] first introduces multi-scale deformable atten-
tion to replace transformers in DETR and reduces the key
sampling points around the reference point to significantly
accelerate the training speed. Dynamic DETR [3] further
models dynamic attention among multiple dimensions with
both a convolution-based encoder and a decoder to further
reduce learning difficulty and improves the performance.
Sparse R-CNN [37] proposes a sparse set of learnable pro-
posal boxes and a dynamic head to perform end-to-end de-
tection upon the R-CNN framework. Our proposed method
is also a query-based object detector. Unlike those DETR
query designs, our linguistic adapted query is irrelevant to
position and plays a role like a semantic-guided filter.

Multiple Datasets Training. There are a few early attempts
on training with multiple datasets to recognize a wide vari-
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ety of objects. YOLO9000 [33] first proposed a method
to jointly train on object detection and image classification,
which expanded the detection vocabulary via classification
labels. Later, [45] expanded such an approach to two large
scale datasets, ImageNet and OpenImages with only a small
fraction of fully annotated classes. [40] attempted to build a
universal object detection system that is capable of working
on various image domains, from diverse datasets by intro-
ducing a series of adaptation layers based on the principles
of squeeze and excitation. [48] further proposed to improve
loss functions that integrated partial but correct annotations
with complementary but noisy pseudo labels among differ-
ent datasets. Most recently, [50] proposed to train a shared
detector with dataset-specific heads and then learned to pro-
jected the outputs into a unified label space. Thanks to the
advantages of leveraging language embedding, our method
does not need to learn a joint label space to merge different
datasets. This naturally addresses the scaling up of cate-
gories and joint of different datasets.

Language Embedding. Generative and efficient language
representation is an attractive topic in the past few decades.
As an integral role in the modern NLP system, word embed-
ding can encode rich semantic in a structured way. Most
widely used word embeddings methods, Word2Vec [26],
GloVe [28], leverage the co-occurrence statistics in a large
corpus. As a result, words with similar meanings are close
in the embedding space, which can encode rich semantic
information. Furthermore, many follow-ups [4, 29, 32] ex-
tract context-sensitive features rather than static features.
They perform sequence modeling with RNNs or Transform-
ers on the top of traditional static word embeddings. Most
recently, learning visual representation with language em-
bedding from language supervision is a promising trend due
to rich semantic information and flexible transferable abil-
ity of natural language. As a milestone, CLIP [31] de-
signs an image-text alignment pre-train task and performs
contrastive learning on a large amount of image-text pairs.
Motivated by CLIP, many following works [11,19,49] try to
improve the training strategy. GLIP [19] reformulate the ob-
ject detection as phrase grounding, which makes detection
benefit from large grounding datasets. RegionCLIP [49]
and ViLD [11] leverage the semantics space of CLIP for
open-vocabulary object detection. Unlike previous meth-
ods attempting to learn a language embedding specifically,
we freeze a pre-trained language embedding and design an
adaption mechanism to dynamically adapt queries on cate-
gories based on the different distributions of datasets.

3. Our Method
3.1. Revisiting End-to-end Object Detection

End-to-end detectors [2, 3, 37] utilize object queries to
encode the content and position statistics over the train-

ing dataset and drive the detector to predict desired objects
localization without non-differential components (such as
pre-defined anchors and non-maximum suppression).

Given a set of N learnable queries v ∈ RN×d, an end-
to-end detector utilizes a transformer T to generate N cor-
responding predictions. Then the optimization process can
be abstracted as solving a matching problem Lmatch among
images in the training dataset D:

σ = argmin
σ∈QN

D∑
i

Lmatch(yi, T (QN , i)) (1)

Ideally, these N learnable queries QN can cover an arbi-
trary number of boxes in each image. However, considering
QN was optimized on the whole dataset, it will cause each
object query to be in charge of multiple boxes and cate-
gories, meanwhile competing with each other to overfit to
the training data [24, 41]. This limitation will be further
amplified when learning across multiple datasets.

In this paper, we build upon Sparse-RCNN [37] as our
default instantiation due to its intuitive explanation and
training efficiency. Although achieving great performance
on object detection, Sparse-RCNN has limitations on multi-
dataset training: the learnable queries and features are
dataset-dependant, which suffer from inconsistencies when
the object statistics of datasets vary. Moreover, the clas-
sification branch is dataset-specific and hard to be jointly
learned across different datasets. To enjoy the synergy and
avoid such limitations, we propose category-aligned em-
bedding and use it to adapt the object queries for each
dataset to effectively formulate dataset-aware queries. In
this way, our “Detection Hub” can learn how to adapt its
behavior for each dataset based on its own query set.

3.2. Category-aligned Embedding

Given two datasets D1, D2 with n1, n2 categories re-
spectfully, we desire to have a embedding function E that
can map them together in a common space. Traditional
one-hot embedding cannot serve this purpose as it treats cat-
egory solely as an index. Later works tried to manually or
automatically learn a mapping function across datasets with
limited success [15].

It is natural to think about using category names directly,
e.g., [31, 48] use language models to generate unified em-
bedding. In our method, we further leverage the semantic
properties of the category set, through using a pretrained
language model to encode the language embedding. Specif-
ically, we concatenate the category names from a dataset C
together and then use a language model to obtain the lan-
guage embedding E of the dataset:

CategorySet = “c1, c2, c3, ..., c
′′
n

E = Embed(Tokenizer(CategorySet))
(2)
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Figure 2. An illustration of our Detection Hub design. Based on a category-aligned embedding, our dataset-aware queries are learned to
dynamically adapt on category based on the different distributions of datasets.

Consider that there are Nd datasets Dmulti =
{D1, D2, ..., DNd

}, and thus we can obtain a set of dataset-
specific language embedding Emulti = {E1, E2, ..., ENd

}
accordingly. Emulti can be considered as an automatic “la-
bel mapper” by its very nature: all semantic category names
of different datasets are mapped into a unified language
space, where categories of similar meaning will be close
while categories specific to each dataset will be represented
by dedicated embeddings.

With this great property, we further convert the original
index-based classification branch (dataset-specific) used in
SparseRCNN into vision-language alignment based classi-
fication branch (shared). Accordingly, we adopt a region-
word alignment loss rather than the traditional cross-
entropy loss for optimization.In particular, we first use a
BERT model to take dataset embedding E, and estimate
the inner relationships among different categories in each of
the dataset-specific language embedding and obtain an en-
hanced embedding E′. Then we project E′ and object fea-
tures xbox∗ into a same vision-language space via two MLP
branches FCE and FCV respectively. Following [19, 31],
the alignment scores S can be calculated by the dot prod-
uct between E′ and xobj to reflects the similarities between
visual objects and semantic categories:

E′ = BERT(E) (3)

S = Sigmoid(FCE(E
′) · FCV (x

obj∗)) (4)

Since we treat the classification as vision-language align-
ment, the classification target is converted into sub-word

grounding [19] instead of one-hot label [34, 37]. For each
prediction and ground-truth pair, we mark the sub-word
belonging to the target category as a positive pair, i.e.,
T̂i,j = 1, otherwise T̂i,j = 0. Finally, the alignment scores
can be optimized with the vision-language alignment loss
S, same as the binary cross-entropy loss in traditional de-
tector:

Lalign(S, T̂ ) =
1

N

N∑
i=1

L∑
j=1

Si,j · T̂i,j + (1− Si,j) · (1− T̂i,j)

(5)

T̂i,j =

{
1, if tokeni,j belongs to Ti,

0, otherwise
(6)

where N is the number of queries, and L is the length of the
dataset embedding E.

3.3. Dataset-aware Query

As described above, to fully unleash the power of large
amount of data in different datasets, our method proposes
to use the dataset-specific language embedding to adapt the
object queries so that the model can learn to adapt its be-
havior for each dataset. In detail, given a dataset D and
its language embedding E, we can achieve the query adap-
tation by simply performing a cross-attention between the
learnable queries Q and E. Then the following multi-head-
self-attention is used to enhance the adapted queries.

QD = Cross-Attn(Q,E), QD
∗ = MHSA(Q) (7)
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where QD is the adapted query for dataset D, and QD
∗ is

the enhanced query. Conceptually, through cross-attention,
we encode the dataset-specific language embedding into the
adapted queries QD, which is used as object query as Fig 2
and makes our detector dataset-aware.

Following [37], enhanced queries QD
∗ and object fea-

tures xobj are interacted using dynamic convolutions. In
contrast to [37], we use enhanced queries to generate ker-
nels for dynamic convolutions with a few linear layers in
the dynamic instance interactive head.

xobj∗ = DyConv(xobj , QD
∗)

= Conv(K2(QD
∗),Conv(K1(QD

∗), xobj)),

Ki(QD
∗) = Lineari(QD

∗), i ∈ {1, 2}
(8)

where xobj∗ is the interacted object feature between en-
hanced adapted query and object feature; Ki(Q

∗) ∈
Rk×k×cin×cout is the dynamic kernel generated by the en-
hanced adapted query QD

∗.
To further address the challenge of position variance,

besides the head, we also use a lightweight query-based
RPN with one layer of convolution and the adapted queries
to generate the dataset-specific convolution kernels for the
RPN dynamically. Then we use the proposals of the high-
est N scores generated by the query-based RPN as initial
proposals boxes for the dynamic instance interactive head.
The query-based RPN and decoder in our detector are both
optimized in an end-to-end manner similar to [3, 37, 51].

4. Experiment
4.1. Implementation Detail

We mainly evaluate our model on three popular ob-
ject detection benchmarks: COCO [21], Object365 [35]
and Visual-Genome [14] following the common practice.
COCO dataset contains 118,000 images collected from web
images on 80 common classes. Object365 dataset con-
tains around 740,000 images with 365 classes. Each im-
age is densely annotated by human labelers to ensure qual-
ity. Visual-Genome dataset contains around 108,077 im-
ages with about 1600 classes. The images are very diverse
and often contain complex categories with a long tail dis-
tribution. Since boxes are generated by algorithms, they
are more noise compared to COCO and Object365. Due to
different category numbers, image diversity, and annotation
density, these three datasets provide a good test bed on the
performance of joint training.

We implement our method in PyTorch and train our mod-
els using V100 GPUs. We use AdamW [23] optimizer and
step down the learning rate by a rate of 0.1 at 78% and 93%
of epochs. For ablation studies, we use standard ImageNet-
1k pre-trained ResNet-50 [12] as the backbone with 5e−5

learning rate and 1e−4 weight decay and train it with stan-

dard 1× schedule. We demonstrate the effectiveness of each
component and also compare it with other methods under
this standard setup. For multi-dataset joint training, our de-
tector can treat any datasets in a unified way. We only need
to sample a batch from all datasets, and sample their cor-
responding categories to build the dataset specific language
embedding. We apply dataset re-sampling to make sure that
each dataset was trained at only 1× schedule. We also ap-
ply category re-balancing to handle the long-tailed distribu-
tions of Object365. Besides, we also evaluate our method
on a variety of backbones to demonstrate robustness. For
experiments comparing with state-of-the-art methods, we
train our method with Swin Large [22] backbone at the 2x
schedule with multi-scale training. We set the learning rate
and weight decay the same as ResNet-50. During evalua-
tion, we evaluate our best model with multi-scale testing to
compare with state-of-the-art methods reported without us-
ing test time augmentation. There is no other augmentation
or optimization tricks used during training.

4.2. Effectiveness of Multi-dataset Training

For the baseline, we build a Sparse R-CNN model with
a ResNet-50 and train on three single-dataset separately. As
for baseline for multi-dataset joint training, we follow [40],
which simply concatenates all datasets and maps their tax-
onomy together. Then we can train it with a bigger la-
bel mapping layer with a common loss. For our proposed
method, we evaluate both joint and separate training ways.

As shown in Table 1, under standard 1× schedule, the
jointly trained baseline model is observed a clear perfor-
mance drop on COCO and VG compared to models trained
separately. It demonstrated that simply mapping different
labels together doesn’t work well due to the domain gaps
and taxonomy differences between the datasets. On the con-
trary, our query-adapted joint training obtains higher perfor-
mance on each dataset, especially offering a significant gain
at 2.3, 1.0, and 0.9 mAP gain on COCO, Object365, and
Visual-Genome, respectively. The experiment well demon-
strated that our single detector can leverage benefits from
multiple datasets training simultaneously.

We also train our method with multiple backbones, such
as ResNet-50, ResNext-101, Swin-Tiny, Swin-Large to ver-
ify its robustness. As shown in Table 2, it is clear to see
that our method obtains significant performance gains on all
datasets when jointly trained compared to separate trained.

Furthermore, we also evaluate our method’s multi-
dataset training stability under different training lengths. As
shown in Fig 3, the performance gain preserves even when
prolonging the training beyond full convergence. These ex-
periments well demonstrate the effectiveness and robust-
ness of our method under multiple datasets joint training.
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Separate Training Joint Training
COCO O365 VG COCO O365 VG

Sparse-RCNN [37] 40.6 16.1 4.9 – – –
Sparse-RCNN [37] + Simple merge [15] 40.6 16.1 4.9 40.4↓0.2 17.4↑1.3 4.3↓0.6
Ours 43.0 22.2 4.8 45.3↑2.3 23.2↑1.0 5.7↑0.9

Table 1. Compared with baseline methods under single and multiple dataset training.

1x 2x 3x

AP

Figure 3. Comparison with different training length under single and multiple dataset training.

Separate Training Joint Training
COCO O365 VG COCO O365 VG

R-50 [12] 43.0 22.2 4.8 45.3↑2.3 23.2↑1.0 5.7↑0.9
Swin-T [22] 46.3 25.1 5.6 49.2↑2.9 27.2↑2.1 6.4↑0.8
RX-101-DCN [43] 49.2 28.3 6.1 52.0↑2.8 29.9↑1.6 7.4↑1.3
Swin-L [22] 52.5 35.1 8.0 55.4↑2.9 36.1↑1.0 8.9↑0.9

Table 2. Comparison with different backbones under separate
and joint training.

Method Separate Training Joint Training
COCO O365 VG COCO O365 VG

Instance Sampling 15.5 2.3 0.1 14.5 2.2 0.1
Global Sampling 34.5 19.2 4.8 39.8 20.2 5.0
Dataset-aware Sampling 43.0 22.2 4.8 45.3 23.2 5.7

Table 3. Effectiveness of query adaption under separate and
joint training. All models are trained with the R-50 backbone.

Query num Separate Training Joint Training
COCO Object365 VG COCO Object365 VG

100 41.5 20.2 3.8 42.3 20.3 5.0
300 43.0 22.2 4.8 45.3 23.2 5.7

Table 4. Ablation study on the number of adapted query under
separate and joint training. All models are trained with the R-50
backbone under 1× schedule.

4.3. Effectiveness of Query Adaptation

We then evaluate the effectiveness of our proposed query
adaption method. To compare, we design two baselines:
“Instance Sampling” means only considering categories be-
longing to each training image. This limits the usage
of category embedding to image level, where categories
from different images are not interacted with each other;

Training set COCO VOC Kitti Clipart WaterColor

O365 34.6 45.3 10.2 15.7 16.9
VG 22.6 32.0 12.9 12.7 17.1
O365 + VG 36.9 49.4 16.0 18.5 17.7

Table 5. Generalization capability of cross dataset evaluation.
We perform OOD evaluation to verify the generalization capabil-
ity. The jointly trained model are marked in the gray rows.

method Separate Joint

COCO COCO O365 VG

Sparse-RCNN [37] + Merge [15] 40.6 40.4 17.4 4.3

+ Cat-aligned Embed 40.1↓0.5 43.1↑2.7 21.3↑3.9 5.2↑0.9
+ D-Q-adapt Decoder 41.1↑1.0 44.0↑0.9 21.9↑0.6 5.4↑0.2
+ D-Q-adapt RPN 43.0↑1.9 45.6↑1.6 23.5↑1.6 5.7↑0.3

Table 6. Baseline evolution under separate and joint training.

“Global Sampling” means we consider the categories from
all datasets. This allows all categories in different datasets
to interact with each other. As shown in Table 3, query
adaption is the key to effective multi-dataset training. With
“Global Sampling”, separate and joint training drops sig-
nificantly due to the negative interfering between differ-
ent datasets. Finally, our dataset-aware query can sup-
port “Dataset-aware Sampling”, which samples category
names according to the source dataset of each training im-
age specifically to improve performance.

In addition, we also conduct an ablation on utilizing dif-
ferent numbers of adapted queries. As shown in Table 4,
it is obvious that more adapted queries further enlarge the
performance gains from joint training compared to separate
training. To further verify the generalization capability of
our adapted queries, we conduct the cross dataset evalua-
tion by evaluating on five datasets out of the training set as
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Method Backbone AP AP50 AP75 APS APM APL

Deformable-DETR [30] R-50 37.2 55.5 40.5 21.1 40.7 50.5
Dynamic-DETR [3] R-50 42.9 61.0 46.3 24.6 44.9 54.4
Sparse-RCNN [37] R-50 39.5 57.7 42.8 21.8 42.3 54.4

Ours (separate training) R-50 43.0 60.8 47.1 27.5 45.4 55.6
Ours (joint training) R-50 45.3 63.5 49.7 30.1 48.3 57.3

Table 7. Comparison with SoTA query-based models under standard 1× setup using the ResNet-50 backbone on COCO val.

Method Clipart COCO Comic Deeplesion Dota Kitchen KITTI LISA VOC WaterColor Widerface Avg

Single [40] 32.1 47.3 45.8 51.3 57.5 87.7 64.3 88.3 78.5 52.4 48.9 59.4
UniDA [40] 55.8 47.0 53.4 53.4 56.3 90.0 68.0 87.6 82.4 60.6 51.3 64.2

Ours 63.5 56.8 49.7 62.5 65.2 94.6 89.3 97.0 81.3 57.1 63.7 71.0

Table 8. Ablation on UODB, where Avg means the average score of 11 datasets. Single means the baseline trianed on each single dataset;
we report the UniDA [40] of best Avg score in the original paper. Ours means our method jointly trained on UODB. All models take
ResNet-50 as backbone.

shown in Table 5. Our models, especially the joint-training
model, obtain non-trivial performance. Overall, above abla-
tion studies well justify the effectiveness of our query adap-
tation.

4.4. Effectiveness of Detector

We also evaluate our query adapted detector separately to
compare it with popular detectors. To conduct a fair com-
parison and ensure reproduction, we first train our method
with a ResNet-50 on COCO data only using a standard 1×
schedule without augmentation and multi-dataset training.
We compare our result with state-of-the-art query-based
methods reported in a similar setting, such as [3, 37, 51].
Shown in Table 7, our method achieves state-of-the-art per-
formance at 43.0 AP. In addition, our method really shines
when trained under multi-dataset joint training and outper-
forms previous methods by clear margins.

4.5. Effectiveness of Each Component

To further clarify the baseline evolution from Sparse-
RCNN to our model, we study the effectiveness of each
component under separate and joint training. The two
main differences can be summarized as follows: 1)
Category-aligned Embedding replaces the traditional clas-
sifier through visual-word alignment and 2) Dataset-aware
Query is incorporated for both the decoder and the extra
RPN. As shown in Tab 6 Such a combination offers a 2.4
AP improvement on COCO under separate training and best
boost the detector under joint training.

4.6. Effectiveness on Extreme Varied Datasets

We further evaluate on UODB [40], a combination
of COCO [21], KITTI [7], WiderFace [46], VOC [6],

LISA [27], DOTA [42], Watercolor [13], Clipart [13],
Comic [13], Kitchen [8], and DeepLesion [44]. These
datasets cover wide variations in category, camera view, im-
age style, etc. Following UODB [40], we train our model
with ResNet-50 as backbone and report the AP50 for each
dataset separately. As shown in Table 8, our Detection Hub
can outperform UDA [40] by a large margin on avg score. It
provides a convincing results, highlighting the effectiveness
on the combinations of extremely varied datasets.

4.7. Comparison with SoTA

Finally, we compare our method with state-of-the-art ob-
ject detectors using a large backbone. We report our best
performance with Swin Large jointly trained on COCO,
Object365, and Visual-Genome datasets. Unlike previ-
ous methods that require separate pre-training and fine-
tuning steps, our method directly reports the performance
after joint training without domain-specific fine-tuning. As
shown in Table 9, we compare with recent methods that
leverage multiple datasets. Compared to previous best
results, our method archives new state-of-the-art results
on both Object365 and Visual-Genome. On COCO, our
method is competitive with recent work HTC++ [22]. How-
ever, HTC++ is first pre-trained on Object365 and COCO,
then finetuned on COCO for a better result. Besides, un-
like HTC++ combining the segmentation task and detec-
tion task, our method achieves this performance without
the help of instance segmentation information. Meanwhile,
our method demonstrates significant improvements on both
COCO and Object365 over concurrent work [50]. In con-
clusion, thanks to our effective query adaption under multi-
dataset joint training, our method can take advantage of dif-
ferent data to further advance the state-of-the-art results.
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Method Training Data Data Size
COCO O365 VG

AP AP AP AP50

HTC++ [22] COCO+O365 0.7M 57.7 – – –
VinVL [47] COCO+O365+VG+OID 2.6M – – – 13.7
UniDet [50] COCO+O365+OID+Mapillary 2.5M 52.9 33.7 – –

Ours COCO+O365+VG 0.8M 57.0 37.2 8.9 14.4

Table 9. Compared to SoTA on all three datasets. “-” indicates the numbers are not available for us.

Figure 4. Visualization of different predictions results from our method. The first odd rows show the predicted category names. The even
rows show which dataset contributes to our final prediction.

4.8. Visualization

Finally, we visualize the predictions in Fig 4, where the
odd rows show the predicted category names and the even
show which dataset contributes to the prediction. Our pre-
dictions effectively combine the taxonomies from multiple
datasets and yield better predictions. This well justifies our
motivation for proposing a universal object detector.

5. Conclusion
Unifying multiple object detection datasets with a sin-

gle object detector is a non-trivial problem. We propose

“Detection Hub” to address the inherent taxonomy differ-
ences and annotation inconsistency challenges. It can en-
joy the synergy of multiple datasets and achieve substan-
tial improvements over the independently trained detector
baseline. Meanwhile, we also find that the performance on
the dataset with a large vocabulary may be constrained by
the maximum length of language embedding. In the future,
we will try to expand our work to open-world object detec-
tion by combining more datasets from different domains to
cover a wide variety of concepts.
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