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Abstract

Federated Learning (FL) is a distributed learning
paradigm that collaboratively learns a global model by
multiple clients with data privacy-preserving. Although
many FL algorithms have been proposed for classification
tasks, few works focus on more challenging semantic seg-
mentation tasks, especially in the class-heterogeneous FL
situation. Compared with classification, the issues from het-
erogeneous FL for semantic segmentation are more severe:
(1) Due to the non-IID distribution, different clients may
contain inconsistent foreground-background classes, result-
ing in divergent local updates. (2) Class-heterogeneity for
complex dense prediction tasks makes the local optimum
of clients farther from the global optimum. In this work,
we propose FedSeg, a basic federated learning approach
for class-heterogeneous semantic segmentation. We first
propose a simple but strong modified cross-entropy loss to
correct the local optimization and address the foreground-
background inconsistency problem. Based on it, we intro-
duce pixel-level contrastive learning to enforce local pixel
embeddings belonging to the global semantic space. Ex-
tensive experiments on four semantic segmentation bench-
marks (Cityscapes, CamVID, PascalVOC and ADE20k)
demonstrate the effectiveness of our FedSeg. We hope this
work will attract more attention from the FL community to
the challenging semantic segmentation federated learning.

1. Introduction

Semantic segmentation is the task of assigning a unique
semantic label to every pixel in a given image, which is
a fundamental research topic in computer vision and has
many potential applications, such as autonomous driving,
image editing and robotics [30]. Training a semantic seg-
mentation model usually needs vast of data with pixel-level
annotations, which is extremely hard to acquire. Collabo-
rative training on multiple clients is a feasible way to solve
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Figure 1. (a) The foreground-background inconsistency for class-
heterogeneous semantic segmentation. (b) Local optimization di-
vergence problem for the heterogeneous dense prediction task.

the problem. However, collaborative training has the risk
of leaking sensitive information. For example, for the au-
tonomous driving task, the training images may include pri-
vate information such as where the user arrived, where the
user lives and what the user’s house looks like. Thus, a
privacy-preserving collaborative training method is requi-
site for semantic segmentation.

Federated Learning (FL) [31] is an emerging distributed
machine learning paradigm that jointly trains a shared
global model by multiple clients without exchanging their
raw data. FedAvg [31] is a basic FL algorithm that learns
local models with raw data on clients separately while ag-
gregating weights to a global model on a server. One key
problem of FL is the statistical heterogeneity of data dis-
tribution among different clients. Many recent FL algo-
rithms [1, 21, 22, 26, 32] are proposed to tackle the prob-
lem. However, most of them evaluate their methods on
classification, while few works focus on more challeng-
ing semantic segmentation. Although some federated learn-
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ing approaches [17, 29, 46, 52] for medical image segmen-
tation have been proposed, they mainly address the sim-
ple foreground-background segmentation and cannot solve
the class-heterogeneous problem for semantic segmentation
with a variety of object classes. A recent FL approach, Fed-
Drive [14], evaluates FL methods on an autonomous driv-
ing semantic segmentation dataset, Cityscapes [9]. How-
ever, FedDrive [14] focuses on domain heterogeneity (im-
ages from different cities) while ignoring the more challeng-
ing class-heterogeneous problem.

In this paper, we focus on class-heterogeneous feder-
ated learning for semantic segmentation, which has spe-
cific and more severe issues compared with classifica-
tion. First, images for semantic segmentation are more
complex, and pixel-level annotation is extremely time-
consuming. Clients usually annotate the objects of fre-
quent classes and ignore the rare ones. Due to the non-
IID (non-Independent Identically Distribution) data distri-
bution of different clients, classes ignored by one client
may be foreground classes in another client. For exam-
ple, in Fig. 1 (a), the ignored class “person” in Client 1 is
annotated in Client 2. The foreground-background incon-
sistency across clients leads to divisive optimization direc-
tions and degrades the capability of the aggregated global
model. Second, as shown in Fig. 1 (b), even if there is
no foreground-background inconsistency, for non-IID dis-
tribution, complex dense prediction makes the local opti-
mization direction diverging farther to the global optimum
compared with classification tasks, resulting in poor conver-
gence. From the perspective of the pixel embedding space,
the local update in each client cannot learn the relative posi-
tions of different semantic classes in the pixel embedding
space, leading to the confounded embedding space after
global aggregation.

In this paper, we propose a new federated learning
method for semantic segmentation, FedSeg, to address the
above issues. A standard objective function for semantic
segmentation is the cross-entropy (CE) loss which takes
effect on foreground pixels and ignores the background
pixels. For FL with non-IID data distribution, it makes
the learned local optimum away from the global optimum.
Thus, we propose a simple but strong baseline, a modified
cross-entropy loss, by aggregating the probabilities of back-
ground classes. The modified loss corrects “client drift” in
local updates and alleviates the foreground-background in-
consistency problem. Then we further introduce a local-
to-global pixel-level contrastive learning loss to enforce the
local pixel embedding space close to the global semantic
space, improving the convergence of the global model.

Extensive experiments on four semantic segmentation
datasets (Cityscapes [9], CamVID [3], PascalVOC [13] and
ADE20k [63]) are conducted to evaluate the effectiveness
of our FedSeg. Experimental results show that the sim-

ple modified cross-entropy loss significantly improves the
segmentation quality. Based on it, our proposed local-to-
global pixel contrastive learning consistently improves the
segmentation performance compared with previous FL al-
gorithms [1, 22, 26, 31].

To summarize, the contributions of this paper are as fol-
lows:

• We systematically investigate federated learning for
the semantic segmentation task with a variety of classes,
particularly the class-heterogeneous problem.

• We propose a strong baseline with a simple modified
CE loss and a local-to-global metrics learning method to
alleviate the class distribution drift problem across clients.

• We provide benchmarks on four semantic segmenta-
tion datasets to evaluate our FedSeg for the semantic seg-
mentation FL problem. We hope this work will motivate
the FL community to further study the federated learning
problem for challenging semantic segmentation tasks.

2. Related Work

2.1. Federated Learning

Federated Learning (FL) has attracted more and more at-
tention in recent years, which provides a decentralized ma-
chine learning paradigm with data privacy-preserving [1,10,
11, 15, 18, 19, 21, 26, 31, 32, 36, 38, 44, 60, 61]. FedAvg [31]
is the earliest federated learning approach, which optimizes
the local model with its individual data and simply conducts
weighted averaging to aggregate weights in the server. Re-
cent works [21,26] show that the client drifts during clients’
updates caused by non-IID data damage convergence in het-
erogeneous settings. To solve the statistic heterogeneity
problem, FedProx [22] proposes to add a proximal regu-
larization term on the local model, which restricts the up-
dated local parameter close to the global model and pre-
vents gradient divergence. Scaffold [21] introduces a vari-
ance reduction strategy to correct the drifted local update.
FedDyn [1] proposes a dynamic regularizer for each device
to align global and local objectives. MOON [26] utilizes a
local model contrastive loss to push the current local repre-
sentation closer to the global representation while pushing
the current local representation away from the local repre-
sentation of the previous round. However, all these meth-
ods [1, 21, 22, 26] evaluate their models only on the classi-
fication task while ignoring the more challenging semantic
segmentation task. FedProx [22] and MOON [26] restrict
the local model close to the global model from the entire
model perspective, which cannot address the dense predic-
tion problem. In this paper, we propose FedSeg to regular-
ize the local update in a more fine-grained way.

Recently, some FL algorithms for the medical image seg-
mentation task are proposed [6, 12, 17, 20, 22, 27, 29, 37, 39,
41, 46, 48, 49, 52, 57, 65]. For instance, FedDG [29] pro-
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Figure 2. A standard federated learning framework includes four processes per round, i.e., (1) Global Model Download, (2) Local Model
Update, (3) Local Model Upload and (4) Global Aggregation. We modify the Local Model Update process by proposing two objective
functions, Lbackce and Lcon, without extra information exchanging.

poses to exchange amplitude spectrum after Fourier trans-
form across clients for domain generalization. FedSM [52]
adopts a model selector to decide the closest model/data dis-
tribution for any test data. However, the medical image seg-
mentation task is usually foreground-background segmenta-
tion without a large variety of semantics. This paper focuses
on more generic semantic segmentation tasks. Some recent
FL approaches for semantic segmentation [4, 14, 16, 40, 56]
evaluate FL methods on semantic segmentation datasets [9,
13], e.g., FedDrive [14]. However, they [4, 14, 16, 40, 56]
focus on domain heterogeneity while ignoring more chal-
lenging class heterogeneity for semantic segmentation.

2.2. Semantic Segmentation

Starting from the fully convolutional networks [30],
many subsequent FCN-based models have greatly advanced
semantic segmentation [7, 23–25, 28, 33–35, 53–55, 62, 64],
mainly including Deeplab [7], PSPNet [62], HRNet [43],
OCRNet [59], etc. Recently, Transformer-based ap-
proaches [8,50] are proposed for the semantic segmentation
task. A basic objective function for FCN-based semantic
segmentation models is the pixel-wise cross-entropy loss.
There are some other objective functions for semantic seg-
mentation, e.g., DiceLoss [42], IoULoss [2], BCELoss [51]
etc. All these losses are proposed for a centralized training
paradigm, and in this paper, we propose a simple modified
cross-entropy loss to tackle the class-heterogeneity under
the decentralized training process. Although a similar ob-
jective function has been proposed in [5], the perspectives
are totally different. [5] focuses on the incremental learning
problem and tackles the issue that the background may con-
tain the old classes under the centralized training paradigm.
Differently, our FedSeg modifies the cross-entropy loss to

correct the local update direction for the decentralized train-
ing.

Another relative method explores cross-image pixel con-
trast for semantic segmentation [47]. The purpose of [47]
is to learn a robust pixel embedding space by contrastive
learning. Differently, our FedSeg proposes local-to-global
contrastive learning, which aims to enforce the local pixel
embedding space close to the global embedding space.

3. Method
In this section, we first present the preliminary and prob-

lem formulation. Then we introduce a simple but strong
baseline, which modifies the cross-entropy loss to correct
the local optimization. Finally, we illustrate the details of
our local-to-global pixel contrastive learning. The pipeline
of FedSeg is shown in Fig. 2.

3.1. Preliminary

Suppose there are N clients and each client has a lo-
cal semantic segmentation dataset Di. For the class-
heterogeneous situation, Pc∼Di

̸∼ Pc∼Dj
(i ̸= j) where c

denotes class. Our goal is to train a semantic segmentation
model w over the dataset D := ∪i∈[N ]Di without exchang-
ing the raw data of clients. The objective is as follows:

argmin
w

L(w) =
N∑
i=1

|Di|
D

Li(w), (1)

where Li(w) = E(x,y)∈Di [li(x,y;w)] represents the lo-
cal objective in Client i.

We use FedAvg [31] as the base learning framework. For
each training round, all clients optimize their local models
on the local datasets. Then the server takes the expectation
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of the local model parameters to update the global model as
follows:

w =

N∑
i=1

|Di|
D

wi, (2)

where wi is the local parameters of Client i. Our FedSeg
modifies the local optimization process by redesigning ob-
jectives, without extra information exchanging.

3.2. Optimization Correction via Background
Classes Aggregation

For the semantic segmentation task under the central-
ized learning paradigm, a standard objective function is the
cross-entropy (CE) loss

Lce(x, y) = − 1

|P|
∑
j∈P

log qx(j, yj), (3)

where yj is the ground truth label of pixel j and P is the
set of annotated pixels. qx(j, yj) is the predicted probabil-
ity of pixel j. The background pixels without annotation
are ignored. However, for the decentralized FL, the local
client with only part of the semantic classes makes the lo-
cal optimization diverge across clients, resulting in the poor
convergence of the global model. For example, the opti-
mization of a local client with only the “cat” annotation
is highly different from another client with only the “per-
son” annotation, because the gradient direction of the local
model is towards the local optimum to recognize the “cat”
while ignoring the direction to other classes. Thus, we pro-
pose to modify the CE loss by aggregating the probabilities
of other classes (classes not in this client), which corrects
the local optimization by providing the gradient direction to
other classes.

Formally, the modified cross-entropy loss for the seman-
tic segmentation is

Li
backce(x, y) = − 1

|P|
∑
j∈P

log q̂x(j, yj), (4)

where P is the set of all pixels, yj is the ground truth
label of pixel j and

q̂x(j, c) =

{
qx(j, c) if c ∈ Ci∑K

k∈C\Ci
qx(j, k) if c ̸∈ Ci.

(5)

The qx(j, c) denotes the predicted probability of the class c
for the pixel j. C is the set of overall semantic classes and
Ci is the set of annotated classes in Client i. K := |C| is the
total number of classes. Note that there are some other usu-
ally used objective functions, e.g., BCELoss, DiceLoss [58]
and LovászLoss [2] for the semantic segmentation. We will
compare Lbackce with them in Experiments (Sec.4.3).

Discussion. From the optimization perspective, the purpose
of the proposed Lbackce is correcting the optimization to
make it similar to centralized learning. Suppose the pre-
dicted logit of class c for pixel j is zjc , the gradient of Lce

with respect to zjc is

∂Lce

∂zjc
=

{
pjc − 1 < 0 if yj = c

pjc > 0 if yj ̸= c,
(6)

where pjc = ezc∑K
k=1 ezk

is the predicted probability of class c
for pixel j. To simplify the notations of the formula, we use
zc instead of zjc . For the centralized semantic segmentation,
since all classes are in the dataset, the optimization with re-
spect to zc contains both the negative and positive direction
considering the pixel label is c or not.

However, for the decentralized FL, suppose the anno-
tated data of Client i only contains class l. For class c ̸∈ Ci,
the optimization with respect to zc of standard CE is only
the positive direction, i.e., ∂Lce

∂zc
= pc > 0, which is differ-

ent from the centralized learning and away from the global
optimum. Thus, we correct the optimization direction by
Lbackce. For the background pixels where yj ̸= l, the gra-
dient of Lbackce with respect to zc is

∂Lbackce

∂zc
= − ezc∑K

k=1 e
zk

· ezl∑K
k ̸=l e

zk

= −pc ·
ezl∑K
k ̸=l e

zk
≈ −pc · pl,

(7)

where pc and pl denote the predicted probabilities of class c
and l, respectively. More details are shown in Appendix.

Equation 7 shows that for the background pixels where
yj ̸= l in local Client i, Lbackce provides a negative direc-
tion of optimization for the logit zc of class c, which is re-
lated to two terms, pc and pl. Since the local model is started
from the aggregated global model, which contains informa-
tion of all classes, the predicted probabilities can provide
pseudo-label information. If pc is larger, i.e., the predicted
probability of the pixel label yj to be c is high, the gradient
∂Lbackce

∂zc
is larger towards class c. If pl is larger, since the

label is not l, the gradient provides a larger number to make
the direction towards class c and away from class l.

From the embedding space perspective, the local model
cannot learn the relative position of different classes in the
pixel embedding space, if it never accessed the data of other
classes. Thus the global model cannot distinguish different
semantics, as shown in Fig. 1 (b). Lbackce learns a relative
position between the local classes and other classes. Then
the aggregated model obtains a discriminative embedding
space by the background alignment, as shown in Fig. 3.

Although [5] proposed a similar objective function, the
perspectives are totally different: [5] addresses incremental
learning under the centralized learning paradigm, and aims
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Figure 3. A pixel embedding perspective to understand Lbackce.

to solve the problem that the background may contain old
classes. We proposed Lbackce to correct the optimization
under the decentralized learning paradigm, which aims to
solve the optimization divergence problem across clients.
Experiments on PascalVOC [13] (Sec. 4.2) show that al-
though the background does not contain any other classes,
our Lbackce still improves the segmentation performance
significantly under the decentralized FL setting.

3.3. Local-to-Global Pixel Contrastive Learning

Previous FL methods (e.g., FedProx [22], MOON [26])
usually correct the local training by a coarse constraint be-
tween the entire local and global model to tackle the non-
IID issue. For example, FedProx [22] proposed a proximal
term to constrain the local and global weight. MOON [26]
constrains the local and global model representations. How-
ever, for the dense prediction task of semantic segmenta-
tion, a fine-grained method is needed to precisely restrict
the local model similar to the global model. Thus, our
FedSeg proposes a local-to-global pixel contrastive learn-
ing method. Particularly, during the local update process,
we extract the pixel representations of the local model and
the global model. Then a local pixel representation is pulled
close to the global representation of the same semantic class
while pushed away from the global representation of differ-
ent semantic classes, as shown in Fig. 2. FedSeg aims to
enforce the learned local pixel embedding space close to
the global embedding space in a fine-grained way.

Formally, for a pixel representation vl extracted by the
local model with its semantic label c, the positive samples
are pixel representations v+

g extracted by the global model
belonging to the same label c, while the negatives are the
pixel representations v−

g extracted by the global model be-
longing to the other classes C \ c. The local-to-global pixel
contrastive loss is as follows:

Lj
con =

1

|Pj |
∑

v
+
g ∈Pj

− log
exp(vl · v+

g /τ)

exp(vl · v+
g /τ) +

∑
v
−
g ∈Nj

exp(vl · v−
g /τ)

,

(8)

where τ is a temperature hyper-parameter. Pj and Nj de-
note the sets of the positive and negative global pixel repre-
sentations, respectively, for pixel j.

For the class-heterogeneous problem in FL training, a lo-
cal client contains partial semantic labels and the negative
samples are insufficient. The background pixels may con-
tain other semantic classes. Thus, we propose to employ the
global model to provide pseudo labels for the background
pixels, because the aggregated global model is capable of
predicting all semantic classes. We set a threshold θ and the
predicted probability of a pixel greater than θ is annotated
as the pseudo label of the corresponding class.
Pixel-to-Region Contrast. In practice, the above pixel-to-
pixel contrastive learning is computationally inefficient be-
cause there are vast numbers of pixel samples in the dense
prediction setting. Most of them are redundant especially
pixels from the same objects. Therefore, we choose to
maintain the representation for each class per image, since
pixels belonging to the same class in one image contain sim-
ilar information. We adopt the averaging operation to ag-
gregate the global pixel representations of the same class to
a region representation. Specifically, for a local dataset of
Client i with N images, we extract region representations
Vr

g ∈ RN×K×D by the global model, where K denotes
the total semantic classes, and D denotes the dimension of
pixel embeddings. The positive and negative samples are
provided by Vr

g . The pixel-to-region contrastive learning
significantly increases the efficiency.

The overall local objective function is

L = Lbackce + λLcon (9)

where λ is a hyper-parameter to control the weight of the
pixel contrastive loss.

4. Experiments

4.1. Data Settings

We conduct experiments on four semantic segmentation
datasets, i.e., Cityscapes [9], CamVID [3], PascalVOC [13]
and ADE20k [63]:
Cityscapes [9] and CamVID [3] are two semantic seg-
mentation datasets of street view with 19 and 11 seman-
tic classes, respectively. Unlike classification, an im-
age from semantic segmentation datasets contains objects
of many classes that are hard to split. To generate the
class-heterogeneous data partition among clients, we split
Cityscapes and CamVID into K subsets. Each subset main-
tains one or two semantic classes and sets other classes
as background. K is set to 19 and 11 for Cityscapes
and CamVID, respectively. In this setting, there exists an
inconsistent foreground-background problem for different
clients.
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Table 1. Main results and comparison of FedSeg. Non-IID1 and non-IID2 denote a subset with one and two classes, respectively.

(a) Results of FedSeg(%) to show the effectiveness of Lbackce and Lcon.

Method
Cityscapes CamVID

VOC ADE20k
non-IID1 non-IID2 non-IID1 non-IID2

mIoU Acc mIoU Acc mIoU Acc mIoU Acc mIoU Acc mIoU Acc
FedAvg [31] 10.40 31.90 28.60 73.76 19.06 51.71 32.12 69.55 8.56 34.44 6.91 59.25
FedAvg+Lbackce 45.08 87.98 47.67 89.48 58.38 88.51 62.13 90.00 32.28 54.83 8.31 61.60
FedAvg+Lbackce+Lcon 50.24 90.06 52.18 91.38 63.50 90.68 64.67 91.25 32.20 54.50 8.64 62.10

(b) Comparison with other FL methods(%). *All of them use Lbackce as baseline.

mIoU Acc mIoU Acc mIoU Acc mIoU Acc mIoU Acc mIoU Acc
FedAvg∗ [31] 45.08 87.98 47.67 89.48 58.38 88.51 62.13 90.00 32.28 54.83 8.31 61.60
FedProx∗ [22] 44.85 87.50 47.17 89.81 58.29 87.28 62.04 90.61 32.17 55.19 8.25 61.01
FedDyn∗ [1] 45.19 88.26 47.69 90.38 59.44 89.32 62.18 90.20 32.20 54.59 - -
MOON∗ [26] 45.84 88.58 47.87 89.59 58.90 87.96 62.77 90.98 30.92 53.91 - -
FedSeg 50.24 90.06 52.18 91.38 63.50 90.68 64.67 91.25 32.20 54.50 8.64 62.10

PascalVOC [13] is an image semantic segmentation dataset
with 2, 913 images, 20 foreground classes and the back-
ground class. Images from PascalVOC are simpler, and
most of them contain one or two foreground classes. We
split it into 20 subsets corresponding to 20 foreground
classes to generate the non-IID data partitions. The back-
ground of a subset does not contain other semantic classes.
ADE20k [63] is a large-scale semantic segmentation
dataset with 20, 210 images and 150 semantic classes. The
distribution of semantic classes is long-tailed. To generate
the non-IID data partitions, we gradually split the tail class
into a subset and finally generate 150 subsets. The subset of
a more frequent class does not contain the tail classes. The
background of a subset does not contain other classes.

We adopt two commonly used metrics for semantic seg-
mentation: mIoU indicates the intersection-over-union be-
tween the predicted and ground truth pixels, averaged over
all the classes. Pixel Accuracy indicates the proportion of
correctly classified pixels. Please refer to Appendix for the
implement details.

4.2. Main Results

Results of FedSeg. Table 1 (a) shows the main results
of our FedSeg, i.e., the effectiveness of Lbackce and Lcon.
We use FedAvg [31] as the base FL framework. FedAvg
in Table 1 (a) means the FedAvg method with the stan-
dard cross-entropy loss. FedAvg+Lbackce denotes we use
our modified CE loss instead of standard CE loss while
FedAvg+Lbackce+Lcon means both Lbackce and Lcon are
used. We try three times and report the average number.

Effectiveness of Lbackce. Table 1 (a) shows that the
background aggregation CE loss significantly improves the
segmentation performance compared with the standard CE
loss, illustrating that the optimization correction by back-
ground aggregation is critical to class-heterogeneous FL for
semantic segmentation. For Cityscapes, CamVID and Pas-
calVOC, Lbackce improves more than +20% for mIoU. For

the difficult large-scale ADE20k, Lbackce also has +1.4%
mIoU improvement.

The comparison between non-IID1 and non-IID2 of
Cityscapes and CamVID shows that higher heterogeneous
distribution (a client only contains one class) significantly
reduces the segmentation performance for the standard
CE loss. For instance, the mIoU score of non-IID2 for
Cityscapes is +18.2% larger than non-IID1. Thus the im-
provement of Lbackce is larger when heterogeneity is higher.

Note that for PascalVOC, although the background of
a client does not contain other classes from other clients,
Lbackce still improves mIoU by +23%, illustrating the gain
of Lbackce is from the optimization correction under the de-
centralized learning instead of only learning the background
classes. This is different from a similar method [5].

Effectiveness of Lcon. Table 1 (a) shows that adding
Lcon improves mIoU by +2.5% ∼ 5.2% on Cityscapes
and CamVID, demonstrates the effectiveness of Lcon. For
PascalVOC, the effectiveness of Lcon is limited. This is
because contrastive loss needs enough negative samples
for good performance. However, PascalVOC is a simple
dataset that each client contains one or two classes, i.e., neg-
ative classes are quite limited and Lcon doesn’t take effects.
For the difficult large-scale ADE20k, the mIoU is slightly
improved by +0.3%.

Comparison with FL Methods. We compare Fed-
Seg with other FL methods including FedAvg [31], Fed-
Prox [22], FedDyn [1] and MOON [26] in Table 1 (b). All
of them use Lbackce during the local update for fair com-
parison since Lbackce can be seen as a strong baseline. Ta-
ble 1 (b) shows that previous FL methods (FedProx [22],
FedDyn [1], MOON [26]) for non-IID problem achieve
similar or even lower segmentation performance than Fe-
dAvg [31]. This indicates that a coarse regularization of en-
tire model weights or representations cannot perform well
for the dense prediction task. Our FedSeg employs fine-
grained pixel-wise contrastive learning and improves mIoU
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Table 2. Results of FedSeg(%) on IID setting.

Method
Cityscapes CamVID

mIoU Acc mIoU Acc

FedAvg [31] 54.12 92.82 64.54 91.35
FedAvg+Lbackce 53.62 92.60 65.66 91.70
FedAvg+Lbackce+Lcon 59.08 93.12 71.05 92.77

Table 3. Comparison with other semantic segmentation loss.

Method Cityscapes CamVID VOC
mIoU Acc mIoU Acc mIoU Acc

CELoss 10.40 31.90 19.06 51.71 8.56 34.44
BCELoss 32.53 78.81 40.48 73.82 27.19 51.68
LovászLoss [2] 24.25 64.26 39.29 71.05 25.78 51.27
DiceLoss [58] 29.34 69.44 42.06 74.9 32.20 54.80
BackCELoss 45.08 87.98 58.38 88.51 32.28 54.83

score effectively.
Evaluation on IID Setting. We report the performances

of FedSeg on the IID distribution setting, which randomly
splits images into different clients in Table 2. Results show
that using Lbackce achieves similar performance to the stan-
dard CE loss. This is because Lbackce is designed to correct
the optimization and tackles non-IID problem. Since every
client contains all classes for IID, the gradient updating is
similar between Lbackce and Lce. Adding Lcon achieves
better performance because it learns a better pixel embed-
ding space.

4.3. Empirical Analysis

Comparison with other Semantic Segmentation Loss.
We further compare Lbackce with commonly used seman-
tic segmentation losses, including BCELoss, DiceLoss [58]
and LovászLoss [2]. These semantic segmentation losses
conduct gradients only on the logits of foreground classes,
which alleviates the optimization divergence problem for
the FL segmentation. As shown in Table 3, the segmenta-
tion performances of these structure-aware optimization cri-
teria surpass the standard CE Loss. Our proposed Lbackce

further improves the segmentation performance compared
with these losses, illustrating that Lbackce corrects the op-
timization direction more similar to the centralized train-
ing. Specifically, Lbackce surpasses the best competition
DiceLoss [58] by +15.7% and +16.3% on Cityscapes (non-
IID1) and CamVID (non-IID1), respectively. On Pas-
calVOC, the improvement of Lbackce is not as signifi-
cant as other datasets. This is because Lbackce addresses
background inconsistency problem and is more suitable
to tackle the scenario that a client’s background contains
other clients’ classes. However, for PascalVOC, each client
doesn’t contain others’ classes.

Comparison between Local-to-Global and Local-to-
Local Contrastive Loss. We propose the local-to-global

Table 4. Comparison between local-to-global and local-to-local
contrastive loss on mIoU score.

Method Cityscapes CamVID
non-IID1 non-IID2 non-IID1 non-IID2

Local2Local [47] 47.91% 50.10% 62.00% 63.05%
Local2Global 50.24% 52.18% 63.50% 64.67%

Table 5. Comparison between pixel-to-pixel and pixel-to-region
contrastive loss on mIoU score.

Method Cityscapes CamVID
non-IID1 non-IID2 non-IID1 non-IID2

Pixel2Pixel 49.95% 51.79% 63.30% 63.95%
Pixel2Region 50.24% 52.18% 63.50% 64.67%

pixel contrastive loss Lcon to enforce the pixel embedding
space of the local model close to the global model. A recent
work [47] shows that pixel contrastive learning itself can
improve the segmentation performance by learning a better
embedding space. Thus, we compare our proposed local-to-
global pixel contrastive loss with the pixel contrastive loss
only on the local model. Table 4 illustrates that the local-to-
global pixel contrastive loss outperforms the local-to-local
contrastive loss, indicating that the reason of performance
gain is correcting the optimization for decentralized learn-
ing instead of only the contrastive learning itself.

Communication Efficiency. Fig. 4 shows the mIoU
score in each round during training. FedAvg∗ [31],
FedProx∗ [22], FedDyn∗ [1] and MOON∗ [26] use Lbackce

as the objective function of local update for a fair compar-
ison. The speed of mIoU improvement of these compara-
ble FL methods is similar. Our FedSeg adds the local-to-
global contrastive loss for fine-grained local updates correc-
tion, which consistently increases the segmentation perfor-
mance and communication efficiency. As shown in Fig. 4,
the speed of mIoU improvement for FedSeg is signifi-
cantly faster than FedAvg∗ [31] at the beginning on both
Cityscapes (non-IID1 and non-IID2) and CamVID (non-
IID1 and non-IID2) datasets.

Visualization. We use t-SNE [45] to visualize the pixel
embeddings of semantic classes from the Cityscapes val-
idation dataset, as shown in Fig. 5. We compare Fe-
dAvg [31] (with standard CE loss), FedAvg+Lbackce and
FedAvg+Lbackce+Lcon. Fig. 5 shows that the model trained
with the standard CE loss learns poor embeddings and pixel
embeddings of different semantic classes are even mixed.
Using the background aggregation CE loss learns better
pixel embeddings. Adding the pixel contrastive learning
further improves the divergence of different classes in the
embedding space.

Comparison between Pixel-to-Pixel (P2P) and Pixel-
to-Region (P2R) Contrastive Loss. We compare the seg-
mentation performance of Lcon between different sampling
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Figure 4. Comparison of communication efficiency on Cityscapes and CamVID.
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Figure 5. Visualization of the pixel embeddings for differenct se-
mantic classes.

strategies in Table 5. P2P and P2R mean sampling the posi-
tive and negative embeddings at pixel level and region level,
respectively. Results show that the two sampling strategies
achieve similar mIoU score. Then we compare the training
efficiency between the two strategies using Cityscapes on
the same device (V100 GPU), and the training speeds are
36 v.s. 27 steps (P2R vs. P2P). Formally, give the image
feature size (H ×W ), the class number (C), the complex-
ity is O(HWC) v.s. O((HW )2) (P2R v.s. P2P). Since
C ≪ HW , P2R is faster than P2P. Thus, we choose pixel-
to-region for Lcon.

Number of Participant Clients in Each Round. We
evaluate our FedSeg on different numbers of participant
clients. Specifically, we randomly select 5, 10, 15, 20
clients to participate in federated learning in each round.
As shown in Fig. 6, with the number of clients growing, the
mIoU performance of FedAvg [31] with the standard CE
loss improves significantly since more participant clients
per round provide more data to alleviate the client shift
problem. The performance of FedSeg slightly improves
with the number of clients growing in Fig. 6.

Number of Local Epochs. We study the effect of the
number of local epochs on non-IID1 setting of Cityscapes
and CamVID. The total epoch number = G × L where G
and L denotes the number of global and local epochs, re-
spectively. By keeping the total epoch number unchanged,
the segmentation performances are shown in Fig. 7 with the
number of local epochs growing. We found that a larger

Client Number

Cityscapes CamVID

Client Number

Figure 6. Effect of the participant client number per round. Non-
IID1 setting is used.

Cityscapes CamVID

Figure 7. Effect of the local epoch number per round. Non-IID1

setting is used.

number of local epochs makes the segmentation perfor-
mance degrade, since more local epochs tend to the local
optimum under the non-IID setting. We choose the best
number of local epochs in the paper.

5. Conclusion

We investigate class-heterogeneous federated learning
for semantic segmentation. To address the foreground-
background inconsistency and the client drifts during lo-
cal updates, we propose a baseline method FedSeg with
a modified CE loss and a local-to-global pixel contrastive
loss. Extensive experiments are conducted on four seman-
tic segmentation datasets to show the effectiveness of Fed-
Seg. We hope the baseline and benchmarks can help class-
heterogeneous FL for semantic segmentation be extensively
studied in the future.
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