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Abstract

Confidence-based pseudo-labeling is among the domi-
nant approaches in semi-supervised learning (SSL). It re-
lies on including high-confidence predictions made on un-
labeled data as additional targets to train the model. We
propose PROTOCON, a novel SSL method aimed at the less-
explored label-scarce SSL where such methods usually un-
derperform. PROTOCON refines the pseudo-labels by lever-
aging their nearest neighbours’ information. The neigh-
bours are identified as the training proceeds using an on-
line clustering approach operating in an embedding space
trained via a prototypical loss to encourage well-formed
clusters. The online nature of PROTOCON allows it to
utilise the label history of the entire dataset in one train-
ing cycle to refine labels in the following cycle without the
need to store image embeddings. Hence, it can seamlessly
scale to larger datasets at a low cost. Finally, PROTOCON
addresses the poor training signal in the initial phase of
training (due to fewer confident predictions) by introduc-
ing an auxiliary self-supervised loss. It delivers significant
gains and faster convergence over state-of-the-art across 5
datasets, including CIFARs, ImageNet and DomainNet.

1. Introduction
Semi-supervised Learning (SSL) [10, 40] leverages un-

labeled data to guide learning from a small amount of la-
beled data; thereby, providing a promising alternative to
costly human annotations. In recent years, SSL frontiers
have seen substantial advances through confidence-based
pseudo-labeling [21, 22, 38, 42, 43]. In these methods,
a model iteratively generates pseudo-labels for unlabeled
samples which are then used as targets to train the model.
To overcome confirmation bias [1, 27] i.e., the model being
biased by training on its own wrong predictions, these meth-
ods only retain samples with high confidence predictions
for pseudo-labeling; thus ensuring that only reliable sam-
ples are used to train the model. While confidence works
well in moderately labeled data regimes, it usually strug-
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Figure 1. PROTOCON refines a pseudo-label of a given sample by
knowledge of its neighbours in a prototypical embedding space.
Neighbours are identified in an online manner using constrained
K-means clustering. Best viewed zoomed in.

gles in label-scarce settings1. This is primarily because the
model becomes over-confident about the more distinguish-
able classes [17, 28] faster than others, leading to a collapse.

In this work, we propose PROTOCON, a novel method
which addresses such a limitation in label-scarce SSL. Its
key idea is to complement confidence with a label refine-
ment strategy to encourage more accurate pseudo-labels.
To that end, we perform the refinement by adopting a co-
training [5] framework: for each image, we obtain two dif-
ferent labels and combine them to obtain our final pseudo-
label. The first is the model’s softmax prediction, whereas
the second is an aggregate pseudo-label describing the im-
age’s neighbourhood based on the pseudo-labels of other
images in its vicinity. However, a key requirement for
the success of co-training is to ensure that the two labels
are obtained using sufficiently different image representa-
tions [40] to allow the model to learn based on their dis-
agreements. As such, we employ a non-linear projection
to map our encoder’s representation into a different embed-

1We denote settings with less than 10 images per class as “label-scarce.”
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ding space. We train this projector jointly with the model
with a prototypical consistency objective to ensure it learns
a different, yet relevant, mapping for our images. Then we
define the neighbourhood pseudo-label based on the vicin-
ity in that embedding space. In essence, we minimise a
sample bias by smoothing its pseudo-label in class space
via knowledge of its neighbours in the prototypical space.

Additionally, we design our method to be fully online,
enabling us to scale to large datasets at a low cost. We
identify neighbours in the embedding space on-the-fly as
the training proceeds by leveraging online K-means clus-
tering. This alleviates the need to store expensive image
embeddings [22], or to utilise offline nearest neighbour re-
trieval [23, 48]. However, applying naive K-means risks
collapsing to only a few imbalanced clusters making it less
useful for our purpose. Hence, we employ a constrained
objective [6] lower bounding each cluster size; thereby, en-
suring that each sample has enough neighbours in its clus-
ter. We show that the online nature of our method allows it
to leverage the entire prediction history in one epoch to re-
fine labels in the subsequent epoch at a fraction of the cost
required by other methods and with a better performance.

PROTOCON’s final ingredient addresses another limita-
tion of confidence-based methods: since the model only re-
tains high confident samples for pseudo-labeling, the initial
phase of the training usually suffers from a weak training
signal due to fewer confident predictions. In effect, this
leads to only learning from the very few labeled samples
which destabilises the training potentially due to overfit-
ting [25]. To boost the initial training signal, we adopt a
self-supervised instance-consistency [9, 15] loss applied on
samples that fall below the threshold. Our choice of loss
is more consistent with the classification task as opposed
to contrastive instance discrimination losses [11, 16] which
treat each image as its own class. This helps our method to
converge faster without loss of accuracy.

We demonstrate PROTOCON’s superior performance
against comparable state-of-the-art methods on 5 datasets
including CIFAR, ImageNet and DomainNet. Notably,
PROTOCON achieves 2.2%, 1% improvement on the SSL
ImageNet protocol with 0.2% and 1% of the labeled data,
respectively. Additionally, we show that our method ex-
hibits faster convergence and more stable initial train-
ing compared to baselines, thanks to our additional self-
supervised loss. In summary, our contributions are:

• We propose a memory-efficient method addressing
confirmation bias in label-scarce SSL via a novel la-
bel refinement strategy based on co-training.

• We improve training dynamics and convergence of
confidence-based methods by adopting self-supervised
losses to the SSL objective.

• We show state-of-the-art results on 5 SSL benchmarks.

2. Background

We begin by reviewing existing SSL approaches with a
special focus on relevant methods in the low-label regime.

Confidence-based pseudo-labeling is an integral compo-
nent in most of recent SSL methods [20, 22, 27, 38, 42].
However, recent research shows that using a fixed thresh-
old underperforms in low-data settings because the model
collapses to the few easy-to-learn classes early in the train-
ing. Some researchers combat this effect by using class-
[47] or instance-based [44] adaptive thresholds, or by align-
ing [3] or debiasing [42] the pseudo-label distribution by
keeping a running average of pseudo-labels to avoid the in-
herent imbalance in pseudo-labels. Another direction fo-
cuses on pseudo-label refinement, whereby the classifier’s
predictions are adjusted by training another projection head
on an auxiliary task such as weak-supervision via language
semantics [27], instance-similarity matching [48], or graph-
based contrastive learning [22]. Our method follows the
refinement approach, where we employ online constrained
clustering to leverage nearest neighbours information for
refinement. Different from previous methods, our method
is fully online and hence allows using the entire prediction
history in one training epoch to refine pseudo-labels in the
subsequent epoch with minimal memory requirements.

Consistency Regularization combined with pseudo-
labeling underpins many recent state-of-the-art SSL meth-
ods [4, 20, 22, 24, 35, 38, 43]; it exploits the smoothness as-
sumption [40] where the model is expected to produce sim-
ilar pseudo-labels for minor input perturbations. The semi-
nal FixMatch [38] and following work [22, 27, 42] leverage
this idea by obtaining pseudo-labels through a weak form
of augmentation and applying the loss against the model’s
prediction for a strong augmentation. Our method utilises
a similar approach, but different from previous work, we
additionally apply an instance-consistency loss in our pro-
jection embedding space.

Semi-supervision via self-supervision is gaining recent
popularity due to the incredible success of self-supervised
learning for model pretraining. Two common approaches
are: 1) performing self-supervised pretraining followed by
supervised fine-tuning on the few labeled samples [9, 11,
12, 15, 26], and 2) including a self-supervised loss to the
semi-supervised objective to enhance training [22, 25, 41,
46, 48]. However, the choice of the task is crucial: tasks
such as instance discrimination [11, 16], which treats each
image as its own class, can hurt semi-supervised image clas-
sification as it partially conflicts with it. Instead, we use an
instance-consistency loss akin to that of [9] to boost the ini-
tial training signal by leveraging samples which are not re-
tained for pseudo-labeling in the early phase of the training.
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Figure 2. Method overview. A soft pseudo-label pw is first obtained based on the weak view. Then it is refined using the sample’s cluster
pseudo-label za before using it as target in Lu. Clustering assignments a are calculated online using the projections of the weak samples qw

in the embedding space h which is trained via a prototypical loss Lp. Prototype targets are updated once after each epoch by averaging the
accumulated projections of reliable samples for each class throughout the epoch. Cluster pseudo-labels are updated after each epoch using
the cluster assignments/scores of all the samples and their respective hard pseudo-labels ŷ. Finally, the self-supervised loss Lc ensures
consistency between projections qs and qw.

3. PROTOCON

Preliminaries. We consider a semi-supervised image clas-
sification problem, where we train a model using M labeled
samples and N unlabeled samples, where N >> M . We
use mini-batches of labeled instances, X = {(xj ,yj)}Bj=1

and unlabeled instances, U = {ui}µ·Bi=1 , where the scalar µ
denotes the ratio between the number of unlabeled and la-
beled examples in a given batch, and y is the one-hot vector
of the class label c ∈ {1, . . . , C}. We employ an encoder
network f to get latent representations f(.). We attach a
softmax classifier g(·), which produces a distribution over
classes p = g ◦ f . Moreover, we attach a projector h(·),
an MLP followed by an ℓ2 norm layer, to get a normalised
embedding q ∈ Rd = h◦f . Following [38], we apply weak
augmentations Aw(·) on all images and an additional strong
augmentation [13] As(·) only on unlabeled ones.

Motivation. Our aim is to refine pseudo-labels before using
them to train our model in order to minimise confirmation
bias in label-scarce SSL. We achieve this via a co-training
approach (see Fig. 2). For each image, we obtain two
pseudo-labels and combine them to obtain our final pseudo-
label p̂w. The first is the classifier softmax prediction pw

based on a weakly augmented image, whereas the second
is an aggregate pseudo-label za describing the sample’s
neighbourhood. To ensure the two labels are based on suffi-
ciently different representations, we define an image neigh-
bourhood2 via online clustering in an embedding space ob-
tained via projector h and trained for prototypical consis-

2We use “neighbourhood” and “cluster” interchangeably.

tency instead of class prediction. Projector h and classifier g
are jointly trained with the encoder f , while interacting over
pseudo-labels. The classifier is trained with pseudo-labels
which are refined based on their nearest neighbours in the
embedding space, whereas the projector h is trained using
prototypes obtained based on the refined pseudo-labels to
impose structure on the embedding space.

Prototypical Space. Here, we discuss our procedure to
learn our embedding space defined by h. Inspired by pro-
totypical learning [37], we would like to encourage well-
clustered image projections in our space by attracting sam-
ples to their class prototypes and away from others. Hence,
we employ a contrastive objective using the class prototypes
as targets rather than the class labels. We calculate class
prototypes at the end of a given epoch by knowledge of
the “reliable” samples in the previous epoch. Specifically,
by employing a memory bank of O(2N), we keep track of
samples hard pseudo-labels {ŷi = argmax(p̂w

i )∀ui ∈ U}
in a given epoch; as well as a reliability indicator for each
sample ηi = 1(max(p̂w

i ) ≥ τ) denoting if its max predic-
tion exceeds the confidence threshold τ . Subsequently, we
update the prototypes P ∈ RC×d as the average projections
(accumulated over the epoch) of labeled images and reliable
unlabeled images. Formally, let Ix

c = {i|∀xi ∈ X , yi = c}
be the indices of labelled instances with true class c, and
Iw
c = {i|∀ui ∈ U , ηi = 1, ŷi = c} be the indices of the

reliable unlabelled samples with hard pseudo-label c. The
normalised prototype for class c can then be obtained as per:

P̄c =

∑
i∈Ix

c ∪Iw
c
qi

|Ix
c |+ |Iw

c |
, Pc =

P̄c

||P̄c||2
(1)
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Algorithm 1 Pseudo-code of one epoch of PROTOCON

# f, g, h: encoder, classifier, and projector
# b_x: labeled batch
# b_w, b_s: weak, strong unlabeled batches
# u_id: unique index of unlabeled samples
# N, C: num unlabeled samples, num classes
# CA: cluster assignment bank (N x 2)
# CPL: clusters pseudo-label bank (N x C)
# PH: samples pseudo-label bank (N x 1)
# Q: cluster centers
# P: class prototypes
# P_acc: prototypes accumulator
# alpha: pseudo-label refinement ratio

for b_x, b_w, b_s, u_id in loader:
# forward images and obtain p and q
p_x, p_w, p_s = f(g(b_x, b_w, b_s))
q_x, q_w, q_s = f(h(b_x, b_w, b_s))
# calculate and save cluster assignment
CA[u_id] = calc_clust_assignmnt(q_w, Q) # Eqn.5
# update centers and dual variables
Q = update_cluster_centers(q_w) # Eqn. 6 & 7
#retrieve cluster pseudo-labels from previous epoch
z = CPL[CA[u_id]]
# refine p_w
p_w_hat = alpha*p_w + (1 - alpha)*z # Eqn. 9
# save hard pseudo-labels
PH[u_id] = argmax(p_w_hat)
# accumulate prototypes (of reliable samples only)
P_acc = accum_prototypes(q_x, q_w, PH[u_id])
# apply losses (except in first epoch)
Lx, Lp, Lu, Lc = backward_losses() # Eqn. 2, 10-12

# after each epoch
P = update_prototypes(P_acc) # Eqn. 1
CPL = calc_cluster_pseudo_labels(CA, PH) # Eqn. 8

Subsequently, in the following epoch, we minimize the fol-
lowing contrastive prototypical consistency loss on unla-
beled samples:

Lp = − 1

µB

µB∑
i=1

log
exp(qs

i · Pŷi/T )∑C
c=1 exp(q

s
i · Pc/T ))

, (2)

where T is a temperature parameter. Note that the loss is
applied against the projection of the strong augmentations
to achieve consistency regularisation as in [38].
Online Constrained K-means Here, the goal is to clus-
ter instances in the prototypical space as a training epoch
proceeds, so the cluster assignments (capturing the neigh-
bourhood of each sample) are used to refine their pseudo-
labels in the following epoch. We employ a mini-batch
version of K-means [36]. To avoid collapsing to one (or a
few) imbalanced clusters, we ensure that each cluster has
sufficient samples by enforcing a constraint on the low-
est acceptable cluster size. Given our N unlabeled projec-
tions, we cluster them into K clusters defined by centroids
Q = [c1, · · · , cK ] ∈ Rd×K . We use the constrained K-
means objective proposed by [6]:

min
Q,µ∈∆

i=N,k=K∑
i=1,k=1

µi,k∥qi − ck∥22 s.t. ∀k
N∑
i=1

µi,k ≥ γ (3)

where γ is the lower-bound of cluster size, µi,k is the
assignment of the i-th unlabeled sample to the k-th cluster,
and ∆ = {µ|∀i,

∑
k µi,k = 1,∀i, k, µi,k ∈ [0, 1]} is the

domain of µ. Subsequently, to solve Eqn. 3 in an online
mini-batch manner, we adopt the alternate solver proposed
in [32]. For a fixed Q, the problem for updating µ can be

simplified as an assignment problem. By introducing dual
variables ρk for each constraint

∑
i µi,k ≥ γ, the assign-

ment can be obtained by solving the problem:

max
µi∈∆

∑
k

si,kµi,k +
∑
k

ρt−1
k µi,k (4)

where si,k = q⊤
i ck is the similarity between the projection

of unlabeled sample ui and the k-th cluster centroid, and t is
the mini-batch iteration counter. Eqn. 4 can then be solved
with the closed-form solution:

µi,k =

{
1 k = argmaxk si,k + ρt−1

k

0 o.w.
(5)

After assignment, dual variables are updated as3 :

ρtk = max{0, ρt−1
k − λ

1

B

B∑
i=1

(µt
i,k − γ

N
)} (6)

where λ is the dual learning rate. Finally, we update the
cluster centroids after each mini-batch4 as:

c̄k
t =

∑m
i µt

i,kq
t
i∑m

i µt
i,k

, ctk =
c̄k

t

||c̄kt||2
(7)

where m denotes the total number of received instances un-
til the t-th mini-batch. Accordingly, we maintain another
memory bank (O(2N)) to store two values for each unla-
beled instance: its cluster assignment in the current epoch
a(i) = {k|µi,k = 1} and the similarity score si,a(i) (i.e. the
distance to its cluster centroid).
Cluster Pseudo-labels are computed at end of each epoch
by querying the memory banks. The purpose is to obtain
a distribution over classes C for each of our clusters based
on its members. For a given cluster k, we obtain its label
zk = [zk1 , · · · , zkC ] as the average of the pseudo-labels of its
cluster members weighted by their similarity to its centroid.
Concretely, let Ik

c = {i|∀ui ∈ U , a(i) = k, ŷi = c} be the
indices of unlabeled samples which belong to cluster k and
have a hard pseudo-label c. The probability of cluster k’s
members belonging to class c is given as:

zkc =

∑
i∈Ik

c
si,a(i)∑C

b=1

∑
j∈Ik

b
sj,a(j)

(8)

Refining Pseudo-labels. At any given epoch, we now have
two pseudo-labels for an image ui: the unrefined pseudo-
label pw

i as well as a cluster pseudo-label za(i) summarising
its prototypical neighbourhood in the previous epoch. Ac-
cordingly, we apply our refinement procedure as follows:

3Refer to [32] and supplements for proofs of optimality and more details.
4See supplements for a discussion about updating the centers every mini-batch

opposed to every epoch.
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first, as recommended by [3, 22], we perform distribution
alignment (DA(·)) to encourage the marginal distribution
of pseudo-labels to be close to the marginal of ground-truth
labels5, then we refine the aligned pseudo-label as per:

p̂w
i = α ·DA(pw

i ) + (1− α) · za(i) (9)

Here, the second term acts as a regulariser to encourage p̂w

to be similar to its cluster members’ and α is a trade-off
scalar parameter. Importantly, the refinement here lever-
ages information based on the entire training set last-epoch
information. This is in contrast to previous work [22, 48]
which only stores a limited history of soft pseudo-labels for
refinement, due to more memory requirement (O(N ×C)).

Classification Loss. With the refined pseudo-label, we ap-
ply the unlabeled loss against the model prediction for the
strong augmentation as per:

Lu =
1

µB

µB∑
i=1

ηi · CE(p̂w
i ,p

s
i ), (10)

where CE denotes cross-entropy. However, unlike [4, 38],
we do not use hard pseudo-labels or sharpening, but instead
use the soft pseudo-label directly. Also, we apply a super-
vised classification loss over the labeled data as per:

Lx =
1

B

B∑
i=1

CE(yi,p
x
i )), (11)

Self-supervised Loss. Since we use confidence as a mea-
sure of reliability (see Eqn. 10), early epochs of training
suffer from limited supervisory signal when the model is
not yet confident about unlabeled samples, leading to slow
convergence and unstable training. Our final ingredient ad-
dresses this by introducing a consistency loss in the proto-
typical space on samples which fall below the confidence
threshold τ . We draw inspiration from instance-consistency
self-supervised methods such as BYOL [15] and DINO [9].
In contrast to contrastive instance discrimination [11, 16],
the former imposes consistency between two (or more)
views of an image without using negative samples. Thereby,
we found it to be more aligned with classification tasks than
the latter. Formally, we treat the projection q as soft classes
score over d dimensions, and obtain a distribution over these
classes via a sharpened softmax (SM(·)). We then enforce
consistency between the weak and strong views as per:

Lc =
1

µB

µB∑
i=1

(1− ηi) · CE(SM(qw
i /5T ), SM(qs

i /T )) (12)

Note that, as in DINO [9], we sharpen the target distribu-
tion more than the source’s to encourage entropy minimiza-
tion [14]. Unlike DINO, we do not use a separate EMA

5DA(pw) = pw/p̄w , where p̄w is a running average of pw during training.

model to produce the target, we just use the output of the
model for the weak augmentation. Note that this does not
lead to representation collapse [15] because the network is
also trained with additional semi-supervised losses.

Final Objective. We train our model using a linear combi-
nation of all four losses L = Lx + λuLu + λpLp + λcLc.
Empirically, we find that fixing ∀λ = 1, the coefficients
to modulate each loss, works well across different datasets.
Algorithm 1 describes one epoch of PROTOCON training.

3.1. Design Considerations

Number of Clusters is a crucial parameter in our ap-
proach. In essence, we refine a sample prediction obtained
by the classifier by aggregating information from its n near-
est neighbours. However, naively doing nearest-neighbour
retrieval has two limitations: 1) it requires storing image
features throughout an epoch which is memory expensive;
and 2) it requires a separate offline nearest-neighbour re-
trieval step. Instead, we leverage online clustering to iden-
tify nearest-neighbours on-the-fly. To avoid tuning K for
each dataset, we tuned n once instead, then K can be simply
calculated as K = N/n. Additionally, we fix γ = 0.9n to
ensure that each cluster contains sufficient samples to guar-
antee the quality of the cluster pseudo-label while relaxing
clusters to not necessarily be equi-partitioned. Empirically,
we found that using n = 250 works reasonably well across
datasets. To put it in context, this corresponds to K = 4800
for ImageNet, and K = 200 for CIFAR datasets.

Multi-head Clustering is another way to ensure robust-
ness of our cluster pseudo-labels. To account for K-means
stochastic nature, we can employ multi-head clustering to
get different cluster assignments based on each head, at
negligible cost. Subsequently, we can average the cluster
pseudo-labels across the different heads. In practice, we
find that for large datasets e.g. ImageNet, cluster assign-
ments slightly vary between heads so it is useful to use dual
heads, while for smaller datasets, a single head is sufficient.

Memory Analysis. PROTOCON is particulary useful due
to its ability to leverage the entire prediction history in an
epoch to approximate class density over neighbourhoods
(represented by cluster pseudo-labels) with low memory
cost. Particularly, it requires an overall of O(4N +K×C):
4N to store hard pseudo-labels, reliability, cluster assign-
ments, and similarity scores; and K ×C to store the cluster
pseudo-labels. In contrast, if we were to employ a naive
offline refinement approach, this would require O(N × d)
to store the image embeddings for an epoch. For ImageNet
dataset this translates to 9.6M memory units for PROTO-
CON opposed to 153.6M for the naive approach6 which is
a 16× reduction in memory; beside, eliminating the addi-
tional time needed to perform nearest neighbour retrieval.

6considering d = 128
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Table 1. CIFAR and Mini-ImageNet accuracy for different amounts of labeled samples averaged over 5 different splits. All results are
produced using the same codebase and same splits.

CIFAR-10 CIFAR-100 Mini-ImageNet
Total labeled samples 20 40 80 200 400 800 400 1000

FixMatch [38] 82.32±9.77 86.29±4.50 92.06±0.88 35.37±5.68 51.15±1.75 61.32±0.92 17.18±6.22 39.03±3.99
FixMatch + DA [3, 38] 83.84±8.35 86.98±3.40 92.29±0.86 41.28±6.03 52.65±2.32 62.12±0.79 19.40±5.87 40.92±4.71
CoMatch [22] 87.37±8.47 93.09±1.39 93.97±0.62 47.92±4.83 58.17±3.52 66.15±0.71 21.29±6.19 40.98±3.52
SimMatch [48] 89.31±7.73 94.51±2.56 94.89±1.32 46.01±6.12 57.95±2.37 65.50±0.93 25.75±5.90 39.76±3.77
FixMatch + DB [42] 89.02±6.37 94.60 ±1.31 95.60 ±0.12 46.36±5.05 57.88±3.34 64.84±0.85 27.37±7.01 41.05±3.34

PROTOCON 90.51±4.02 95.20±1.8 96.11±0.20 48.25±4.87 59.53±2.94 65.91±0.57 29.15±6.98 45.83±4.15
delta against best baseline +1.20 +0.60 +0.51 +0.33 +1.36 -0.24 +1.78 +4.78

Table 2. DomainNet accuracy for 2, 4, and 8 labels per class.

Clipart Sketch
Total labeled samples 690 1380 2760 690 1380 2760

FixMatch [38] 30.21 41.21 51.29 12.73 21.65 33.07
CoMatch [22] 35.49 48.62 54.98 24.30 33.71 41.02
FixMatch + DB [42] 38.97 51.44 58.31 25.34 35.58 43.98

PROTOCON 43.72 55.66 61.32 33.94 43.51 50.88
delta +4.75 +4.22 +3.01 +8.60 +7.93 +6.90

4. Experiments
We begin by validating PROTOCON’s performance on

multiple SSL benchmarks against state-of-the-art methods.
Then, we analyse the main components of PROTOCON to
verify their contribution towards the overall performance,
and we perform ablations on important hyperparameters.

4.1. Experimental Settings

Datasets. We evaluate PROTOCON on five SSL bench-
marks. Following [1, 38, 43], we evaluate on CIFAR-
10(100) [19] datasets, which comprises 50,000 images of
32x32 resolution of 10(100) classes; as well as the more
challenging Mini-ImageNet dataset proposed in [33], hav-
ing 100 classes with 600 images per class (84x84 each). We
use the same train/test split as in [18] and create splits for
4 and 10 labeled images per class to test PROTOCON in the
low-label regime. We also test PROTOCON’s performance
on the DomainNet [30] dataset, which has 345 classes from
six visual domains: Clipart, Infograph, Painting, Quick-
draw, Real, and Sketch. We evaluate on the Clipart and
Sketch domains to verify our method’s efficacy in differ-
ent visual domains and on imbalanced datasets. Finally, we
evaluate on ImageNet [34] SSL protocol as in [2, 8, 9, 11].
In all our experiments, we focus on the low-label regime.

Implementation Details. For CIFAR-10(100), we follow
previous work and use WideResent-28-2(28-8) [45] as our
encoder. We use a 2-layer projection MLP with an embed-
ding dimension d = 64. The models are trained using SGD
with a momentum of 0.9 and weight decay of 0.0005(0.001)
using a batch size of 64 and µ = 7. We set the thresh-
old τ = 0.95 and train our models for 1024 epochs for a

fair comparison with the baselines. However, we note that
our model needs substantially fewer epochs to converge (see
Fig. 3-b and c). We use a learning rate of 0.03 with a cosine
decay schedule. We use random horizontal flips for weak
augmentations and RandAugment [13] for strong ones. For
the larger datasets: ImageNet and DomainNet, we use a
Resnet-50 encoder and d = 128, µ = 5 and τ = 0.7 and
follow the same hyperparameters as in [38] except that we
use SimCLR [11] augmentations for the strong view. For
PROTOCON-specific hyperparameters, we consistently use
the same parameters across all experiments: we set n to 250
(corresponding to K=200 for CIFARs, and Mini-ImageNet,
and 4800 for ImageNet), and dual learning rate λ = 20,
mixing ratio α = 0.8, and temperature T = 0.1.
Baselines. Since our method bears the most resemblance
with CoMatch [22], we compare against it in all our exper-
iments. CoMatch uses graph contrastive learning to refine
pseudo-labels but uses a memory bank to store the last n-
samples embeddings to build the graph. Additionally, we
compare with state-of-the-art SSL method (DebiasPL) [42],
which proposes a pseudo-labeling debiasing plug-in to work
with various SSL methods in addition to an adaptive margin
loss to account for inter-class confounding. Finally, we also
compare with the seminal method FixMatch and its vari-
ant with Distribution alignment (DA). We follow Oliver et
al. [29] recommendations to ensure a fair comparison with
the baselines, where we implement/adapt all the baselines
using the same codebase to ensure using the same settings
across all experiments. As for ImageNet experiments, we
also compare with representation learning baselines such
as SwAV [8], DINO [9], and SimCLR [11], where we re-
port the results directly from the respective papers. We also
include results for PROTOCON and DebiasPL with addi-
tional pretraining (using MOCO [16]) and the Exponential
Moving Average Normalisation method proposed by [7] to
match the settings used in [7, 42].

4.2. Results and Analysis

Results. Similar to prior work, we report the results on the
test sets of respective datasets by averaging the results of the
last 10 epochs of training. For CIFAR and Mini-ImageNet,
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Table 3. SSL results on ImageNet with different percentage of
labels. † denotes results produced by our codebase. Other results
are reported as appearing in the cited work.

Method Pre. Epochs 0.2% 1% 10%

Supervised ✗ 300 – 25.4 56.4

Representation learning methods:

SwAV [8] ✓ 800 – 53.9 70.2
SimCLRv2++ [12] ✓ 1200 – 60.0 70.5
DINO [9] ✓ 300 – 55.1 67.8
PAWS++ [2] ✓ 300 – 66.5 75.5

PL & consistency methods:

MPL [31] ✗ 800 – 65.3† 73.9
CoMatch [22] ✗ 400 44.3† 66.0 73.6
FixMatch [38] ✗ 300 – 51.2 71.5
FMatch + DA [3, 38] ✗ 300 41.1† 53.4 71.5†

FMatch + EMAN [7] ✓ 850 43.6 60.9 72.6
FMatch + DB [42] ✗ 300 45.8† 63.0† 71.7†

FMatch + DB + EMAN [42] ✓ 850 47.9 63.1 72.8†

PROTOCON ✗ 300 47.8 65.6 73.1
PROTOCON + EMAN [7] ✓ 850 50.1 67.2 73.5
delta against best baseline +2.2 +0.7 -2.0

we report the average and standard deviation over 5 dif-
ferent labeled splits, whereas we report for only 1 split on
larger datasets (ImageNet and DomainNet). Different from
most previous work, we only focus on the very low-label
regime (2, 4, and 8 samples per class, and 0.2% for Ima-
geNet). As shown in Tab. 1 - 3, we observe that PROTO-
CON outperforms baselines in almost all the cases showing
a clear advantage in the low-label regime. It also exhibits
less variance across the different splits (and the different
runs within each split). These results suggest that besides
achieving high accuracy, PROTOCON shows robustness and
consistency across splits in low-data regime.

Notably, our method performs particularly well on Do-
mainNet. Unlike ImageNet and CIFARs, DomainNet is an
imbalanced dataset, and prior work [39] shows that it suffers
from high level of label noise. This shows that our method
is also more robust to noisy labels. This can be explained
in context of our co-training approach: using the prototyp-
ical neighbourhood label to smooth the softmax label is an
effective way to minimise the effect of label noise. In line
with previous findings [23], since in prototypical learning,
all the instances of a given class are used to calculate a class
prototype which is then used as a prediction target, it results
in representations which are more robust to noisy labels.

Finally, on ImageNet (Tab. 3), we improve upon the clos-
est baseline with gains of 2.2% in the challenging 0.2%
setting; whereas we slightly fall behind PAWS [2] in the
10% regime, again confirming our method’s usefulness in
the label-scarce scenario.
How does refinement help? First, we would like to inves-
tigate the role of pseudo-labeling refinement in improving

SSL performance. Intuitively, since we perform refinement
by combining pseudo-labels from two different sources (the
classifier predictions in probability space and the cluster la-
bels in the prototypical space), we expect that there will be
disagreements between the two and hence considering both
the views is the key towards the improved performance. To
validate such intuition, we capture a fine-grained view of
the training dynamics throughout the first 300 epochs of
CIFAR-10 with 40 labeled instances scenario, including:
samples’ pseudo-labels before and after refinement as well
as their cluster pseudo-labels in each epoch. This enables
us to capture disagreements between the two pseudo-label
sources up to the individual sample level. In Fig. 3-a, we
display the average disagreement between the two sources
over the initial phase of the training overlaid with the classi-
fier, cluster and refined pseudo-label accuracy. We observe
that initially, the disagreement (dashed black line) is high
which corresponds to a larger gap between the accuracies
of both heads. As the training proceeds, we observe that
disagreement decreases leading to a respective decrease in
the gap. Additionally, we witness that the refined accuracy
curve (green) is almost always above the individual accura-
cies (orange and blue) which proves that, indeed, the syn-
ergy between the two sources improves the performance.

On the other hand, to get a qualitative understanding of
where each of the pseudo-labeling sources helps, we dig
deeper to classes and individual samples level where we
investigate which classes/samples are the most disagreed-
upon (on average) throughout the training. In Fig. 4, we dis-
play the most prototypical examples of a given class (mid-
dle) as identified by the prototypical scores obtained in the
embedding space. We also display the examples which on
average are always correctly classified in the prototypical
space (right) opposed to those in the classifier space (left).
As expected, we find that samples which look more proto-
typical, albeit with less distinctive features (e.g. blurry), are
the ones almost always correctly classified with the proto-
typical head; whereas, samples which have more distinctive
features but are less prototypical are those correctly classi-
fied by the discriminative classifier head. This again con-
firms our intuitions about how co-training based on both
sources helps to refine the pseudo-label.

Finally, we ask: is it beneficial to use the entire dataset
pseudo-label history to perform refinement or is it suffi-
cient to just use a few samples? To answer this question,
we use only a subset of the samples in each cluster (sam-
pled uniformly at random) to calculate cluster pseudo-labels
in Eqn. 8. For CIFAR-10 with 20 and 40 labels, we find
that this leads to about 1-2% (4-5%) average drop in per-
formance, if we use half (quarter) of the samples in each
cluster. This reiterates the usefulness of our approach to
leverage the history of all samples (at a lower cost) opposed
to a limited history of samples.

11647



(a) (b) (c) (d)

Figure 3. Analysis Plots. (a): Average disagreement between cluster and classifier pseudo-labels versus ground truth accuracy of the
different pseudo-labels. The accuracy gap between refined pseudo-labels (green) and the cluster’s and classifier’s (blue and orange) de-
creases with disagreement rate (dashed black) showing that refinement indeed helps. (b), (c): Convergence plots on CIFAR10/100 show
that PROTOCON converges faster due to the additional self-supervised training signal. (d): PROTOCON w and w/out consistency loss.

Dog

Truck

Bird

Prototypical ImagesClassifier PL Correct Cluster PL Correct

Figure 4. The middle panel shows the most prototypical images of
CIFAR-10 classes as identified by our model. Left (resp. right)
panels show images which have more accurate classifier (resp.
cluster) pseudo-labels. Cluster labels are more accurate for pro-
totypical images while classifier labels are more accurate for im-
ages with distinctive features (e.g. truck wheels) even if not so
prototypical. Such diversity of views is key to the success of our
co-training method.

Role of self-supervised loss. Here, we are interested to tear
apart our choice of self-supervised loss and its role towards
the performance. To recap, our intuition behind using that
loss is to boost the learning signal in the initial phase of
the training when the model is still not confident enough to
retain samples for pseudo-labeling. As we see in Fig. 3-b
and c. there is a significant speed up of our model’s con-
vergence compared to baseline methods with a clear boost
in the initial epochs. Additionally, to isolate the potentially
confounding effect of our other ingredients, we display in
Fig. 3-d the performance of our method with and without
the self-supervised loss which leads to a similar conclusion.
Finally, to validate our hypothesis that instance-consistency
loss is more useful than instance-discrimination, we run a
version of PROTOCON with an instance-discrimination loss
akin to that of SimCLR. This version completely collapsed
and did not converge at all. We attribute this to: 1) as
verified by SimCLR authors, such methods work best with
large batch sizes to ensure enough negative examples are
accounted for; and 2) these methods treat each image as
its own class and contrast it against every other image and
hence are in direct contradiction with the image classifica-
tion task; whereas instance-consistency losses only ensure
that the representations learnt are invariant to common fac-
tors of variations such as: color distortions, orientation, etc.

Table 4. Ablation results. -L∗ denotes that the respective loss is
not applied, and green marks the best option. Results are average
accuracy over 5 runs for CIFAR-10 (80).

Losses -Lc -Lp -(Lc ,Lp ) All
95.3 94.8 92.3 96.1

Cluster size (n) 50 250 500 1000
95.7 96.1 94.3 92.1

Refinement Ratio (α) 0.5 0.7 0.8 0.9
86.7 94.5 96.1 95.2

and are hence more suitable for semi-supervised image clas-
sification tasks.
Ablations. Finally, we present an ablation study about
the important hyperparametes of PROTOCON. Specifically,
we find that n (minimum samples in each cluster) and α
(mixing ratio between classifier pseudo-label and cluster
pseudo-label) are particularly important. Additionally, we
find that the projection dimension needs to be sufficiently
large for larger datasets (we use d = 64 for CIFARs and
128 for all others). In Tab. 4, we present ablation results on
CIFAR-10 with 80 labeled instances.

5. Conclusion
We introduced PROTOCON, a novel SSL learning ap-

proach targeted at the low-label regime. Our approach com-
bines co-training, clustering and prototypical learning to
improve pseudo-labels accuracy. We demonstrate that our
method leads to significant gains on multiple SSL bench-
marks and better convergence properties. We hope that our
work helps to commodify deep learning in domains where
human annotations are expensive to obtain.
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