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Abstract

Unsupervised Domain Adaptation Regression (DAR)
aims to bridge the domain gap between a labeled source
dataset and an unlabelled target dataset for regression
problems. Recent works mostly focus on learning a deep
feature encoder by minimizing the discrepancy between
source and target features. In this work, we present a dif-
ferent perspective for the DAR problem by analyzing the
closed-form ordinary least square (OLS) solution to the
linear regressor in the deep domain adaptation context.
Rather than aligning the original feature embedding space,
we propose to align the inverse Gram matrix of the fea-
tures, which is motivated by its presence in the OLS solu-
tion and the Gram matrix’s ability to capture the feature
correlations. Specifically, we propose a simple yet effec-
tive DAR method which leverages the pseudo-inverse low-
rank property to align the scale and angle in a selected sub-
space generated by the pseudo-inverse Gram matrix of the
two domains. We evaluate our method on three domain
adaptation regression benchmarks. Experimental results
demonstrate that our method achieves state-of-the-art per-
formance. Our code is available at https://github.
com/ismailnejjar/DARE-GRAM .

1. Introduction

Regression problems, in which models learn to pre-
dict continuous variables, are one fundamental paradigm
in machine learning. Regression problems are omnipresent
in many different applications, including computer vision
tasks, such as head-pose estimation [76], facial landmark
detection [37], human pose estimation [80], depth estima-
tion [20] and eye-tracking problems [58], and also widely
in industrial applications, such as product quality prediction
and condition monitoring [69]. Nevertheless, real-world ap-
plications are often subject to the environmental conditions
under which the data are collected and other influencing fac-
tors, hence domain gaps between datasets are inevitable.
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Figure 1. Illustration of the UDA for regression setup and our main
motivation. (a) Deep domain adaptation networks commonly use
a shared deep feature encoder and a shared linear regression layer.
We propose to pay close attention to the linear regressor, where
the ordinary least square (OLS) solution is well-known. (b) Given
a trained source linear regressor βs, the target features Zt may
not be calibrated to βs. (c) Unlike previous adaptation methods
which align in the original feature embedding space, we propose
to align the inverse Gram matrix of the features (ZTZ)−1, which
is motivated by its presence in the OLS solution and the Gram
matrix’s ability to capture the feature correlations.

Unsupervised Domain adaptation (UDA) aims to over-
come the distributional shift between a labeled source do-
main and an unlabelled target domain. Many UDA meth-
ods have been proposed to alleviate the domain shift prob-
lem. One common UDA direction is feature alignment by
adversarial learning [45] or explicit losses such as maxi-
mum mean discrepancy [44] to learn domain-invariant rep-
resentations. Input alignment [77] and self-training us-
ing pseudo-label refinement [41] are also popular UDA di-
rections. While many DA methods have been developed
and evaluated for classification and segmentation prob-
lems, some are not directly transferable to DA regres-
sion [10]. Pioneer works in Domain Adaptation Regres-
sion (DAR) [12, 46] introduced theoretical analysis for the
problem. A few algorithms were proposed to tackle DAR.
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For example, importance weighting [14, 74] and feature
alignment [7, 51] have shown improved results over learn-
ing only from the source. Most recent unsupervised DAR
methods [10,59] use the deep learning framework and focus
on learning a shared deep feature extractor by directly min-
imizing the discrepancy between source and target features.
By doing so, it is implicitly assumed that if the feature dis-
crepancy is small, a shared linear regressor can be easily
learned from the source supervision. This formulation used
by existing works focuses solely on the feature extractor.

In this work, we propose to look at the DAR problem
from a different perspective. In particular, we pay close at-
tention to the linear regressor, which is attached directly af-
ter the feature extractor. Motivated by the closed-form ordi-
nary least squares (OLS) regression solution, we analyze the
potential optimal regressor for each domain. We reveal in
Section 3.2 that even when the discrepancy between source
and target features is small, the learning of a shared linear
regressor could still be difficult because of the inverse Gram
matrix term in the OLS solution.

In light of this, we propose an ordinary least squares
inspired deep domain adaptation method for regression
called Domain Adaptation Regression by aligning the in-
verse GRAM matrices (DARE-GRAM). As shown in Fig-
ure 1, unlike previous methods, which directly align the fea-
tures, we align the inverse Gram matrix of the features. This
is motivated by its presence in the closed-form solution of
the ordinary least squares. More specifically, we leverage
the low-rank property of the pseudo-inverse to align a se-
lected subspace in scale and angle engendered by the Gram
Matrix, which represents the intensity and pairwise inter-
actions between different features for the source and target
domains. The scale and angle alignment based on the Gram
matrix can lead to a better-calibrated regressor with regard
to both source and target data. The contributions of this
work are as follows:

• We offer a new perspective to understand the UDA
for regression problems by leveraging the well-known
closed-form solutions to the linear regression problem.

• Rather than aligning the original feature embedding
space, we propose to align the inverse Gram matrix
of the features.

• Empirical results on three benchmarks validate the su-
periority of the DARE-GRAM over baseline methods.

2. Related Work

Unsupervised Domain Adaptation. The goal of unsu-
pervised domain adaptation (UDA) [53] is to address the
domain-shift problem between a labeled source and an un-
labeled target domain. UDA has been widely studied for

classification and segmentation problems [64, 66] to mit-
igate the gap between features across different domains.
Early works addressed this problem via instance weight-
ing [30, 60], feature transformation [51], and feature space
alignment [16]. More recently, unsupervised domain adap-
tation has shown impressive results [29, 49, 71]. Discrep-
ancy minimization [33, 44] and domain adversarial learn-
ing [17, 28] have been widely used within UDA methods to
mitigate the gap between features across different domains.
Moreover, feature regularization-based approaches [9] and
domain-specific normalization-based methods [8, 40] have
also demonstrated good performance. While most ap-
proaches perform feature alignment in the encoding fea-
ture space, some works proposed to carry out alignment in
the input space [77]. More recently, self-training has also
demonstrated encouraging results by training the network
with gradually improved target pseudo-label [42,68,78,79].
Existing UDA methods mostly focus on classification and
segmentation problems. While some UDA techniques can
directly be applied to regression problems, recent works
have shown that many do not perform well in the regres-
sion setup [3, 10].

Domain Adaptation for Regression. Domain Adaptation
for Regression (DAR) has received relatively little attention
in comparison to classification problems. Early theoretical
properties for DAR were introduced in [12, 46]. Different
algorithms were proposed to tackle DAR [55]. Unfortu-
nately, most algorithms require access to a labeled target do-
main and are unsuitable for UDA regression. For instance,
Boosting strategies have been explored [52, 67] to extend
previous classification domain adaptation methods based on
AdaBoost [47] to regression tasks. Other instance weight-
ing methods in the shallow regime, [14, 74, 75] have been
explored for a different range of applications. Some spe-
cific vision applications have been explored in the context
of UDA [31, 34, 36, 50] , such as monocular depth estima-
tion [1, 5, 43, 63] or gaze estimation [4, 26]. However, these
methods aim at improving upon a specific task and not for
regression tasks in general. Recent works for UDA regres-
sion were proposed [10, 59, 72]. A key finding in RSD [10]
is that in regression problems, deep neural networks are less
robust to feature scaling than classification, and aligning the
distributions of deep representations will alter feature scale
and impede domain adaptation regression. To tackle this
challenge, the authors of [10] proposed to match the orthog-
onal bases of both domains to close domain shifts without
altering their feature scale by introducing a new geometri-
cal distance. While RSD-based methods have shown im-
proved results for DAR, matching only the eigenvectors can
have some disadvantages, such as more loose numerical er-
ror bound [2] and may not satisfy the more strict conditions
for distribution estimation [35]. In contrast to RSD, we pro-
pose using the inverse Gram Matrix, which carries the nec-
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essary information to align the source and target features
while being less sensitive to the batch size.
Gram Matrix and Subspace Alignment. Distribution
alignment approaches have been used for domain adapta-
tion [16, 62, 70]. Subspace-based domain adaptation has
demonstrated good performance in visual domain adapta-
tion [23, 24], modeling distribution change by finding the
best intermediate subspaces. The methods first indepen-
dently compute a domain-specific d-dimensional subspace
for the source and target data. Then project the source
and target data into intermediate ones along the shortest
geodesic path connecting the two d-dimensional subspaces
on the Grassmann manifold. Instead of computing a large
number of intermediate subspaces, the authors of [16] di-
rectly aligns the two subspaces. Furthermore, the authors
in [61] proposed to incorporate distribution alignment into
subspace adaptation to align the source and target fea-
tures. Given their close relation, distribution alignment
approaches have also been used for Neural Style Trans-
fer (NST) [6, 32]. Early works on NST [19] introduced
the Gram Matrix as the statistics of feature maps to extract
style-specific attributes. Although the connection between
aligning distributions and NST may not be straightforward,
it was demonstrated in [39] that the style loss in [19] may
be expressed as an unbiased empirical estimate of the Max-
imum Mean Discrepancy (MMD) [25] with a quadratic ker-
nel. Unlike previous works in neural style transfer which
directly aligns the Gram matrix, we propose to align the in-
verse Gram matrix as it is presented in the OLS solution.
We will show in our method and our ablation study that this
is critical for regression problems.

3. Methods
3.1. Problem Definition

In UDA, we are given labeled samples χ
s =

{(xi
s, y

i
s)}

Ns
i=1 from the source domain and unlabeled sam-

ples χt = {(xi
t)}

Nt
i=1 from the target domain, where Ns and

Nt denote the number of samples in χ
s and χ

t. In con-
trast to the discrete labels Y in classification problems, this
work focuses on the regression problem where Y ⊂ RNr

is multidimensional and continuous, and Nr correspond to
the number of regression tasks. The discrepancy between
P (χs) and P (χt) is one of the main challenges for UDA.
We aim to learn a model F : x 7→ y, which can generalize
well on the target domain. Formally, we want to minimize
the expected error on the target data:

argmin
F

E(xt,yt)∥F (xt), yt∥22, (1)

where yt is not known during the training.
A source-only baseline can be learned by using the su-

pervision from the source data by minimizing the Mean

square error loss (MSE) between the prediction and the
ground truth label on the source samples:

Lsrc =
1

Ns

Ns∑
i=1

∥ỹis − yis∥22, (2)

where ỹns = F (xi
s) is the predicted value for the training

source image xi
s. To overcome the distribution gap between

the source and target, additional constraints should be given.

3.2. Motivation

In deep domain adaptation models, given an input image
x, a feature encoder hθ is used to learn the deep representa-
tion z = hθ(x) of p dimensions. A linear layer gβ is then
applied on z to make the final prediction:

ỹ = F (x) = gβ(hθ(x)) = gβ(z). (3)

During training, the feature matrix is Z = [z1, ..., zb] where
Z ∈ Rb×p for a batch of b images. For many adaptation
methods [10,59], the focus has been on minimizing the dis-
tribution difference between source features Zs and target
features Zt. Given the aligned features, it is often assumed
that they will then lead to a good performance on the tar-
get domain. However, this formulation focuses solely on
the feature extractor hθ and does not take the discrimina-
tion ability of the final linear layer gβ into account. Target
features aligned with the source domain may not be adapted
to the linear layer. This can be especially dangerous for re-
gression problems because it has been demonstrated empir-
ically [10] that in the DA for regression context, the models
can be sensitive to feature scale differences.

In this work, we propose to take the linear prediction
layer gβ into account for the distribution alignment in do-
main adaptation regression problems. The proposed re-
search is motivated by the question How to find a feature
space, on which a shared linear regressor can easily learn?

Fortunately, for the linear regression problem, a closed-
form solution exists and is well-studied. Given the feature
Z and regression ground truth label Y , the problem of esti-
mating the parameter β for a linear layer Y = Zβ has the
ordinary least-squared (OLS) closed-form solution [21]:

β̂ = (ZTZ)−1ZTY (4)

where (ZTZ)−1 ∈ Rp×p is the inverse of the Gram Matrix.
Entries are then the inner products of the basis functions of
the finite-dimensional subspace. ZTY ∈ Rp×Nr projects
features to the label space.

The final linear prediction layer gβ is shared by the
source and target domains. Therefore, the estimated value
from the two domains should be similar β̂s ∼ β̂t where

β̂s = (ZT
s Zs)

−1 ZT
s Ys,

β̂t = (ZT
t Zt)

−1 ZT
t Yt.

(5)
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Figure 2. An overview of the proposed DARE-GRAM approach for domain adaptive regression problems. Rather than aligning the features
Z, we align the inverse Gram matrix, which is motivated by the ordinary least square solution. To achieve this, we compute the pseudo-
inverse Gram Matrices for source and target features and align their angle and scale.

Most of the previous DAR works regularize the neural
network by minimizing the distance between source and
target data in the feature representation subspace of Z, i.e.
aligning Zs and Zt. However, because of the inverse op-
eration in Equation 5, even if the distance between Zs and
Zt is small, the distance in terms of (ZTZ)−1 can be large,
as seen in Figure 3. This can further lead to distinct β̂s and
β̂t and makes it potentially infeasible to learn a common re-
gressor that performs well for both domains. Given this ob-
servation and motivated by the closed-form OLS solution,
we propose to focus on the subspace of inverse Gram matrix
(ZTZ)−1 for the alignment. More specifically, we propose
to align the angle between the source and target pseudo-
inverse Gram Matrix, formed by a subset of the eigenspace.
In addition, we propose to ensure the same scale of Z for
the source and target reflected by the Gram matrix (ZTZ)
by minimizing the distance between selected eigenvalues of
both domains.

3.3. Angle Alignment for Gram Matrix Inverse

The first term in Equation 5 concerns the Gram matrix.
The Gram matrix is sometimes regarded as a style repre-
sentation as it calculates the correlations between the dif-
ferent features. It can also be seen as an unbiased em-
pirical estimate of the MMD with a quadratic kernel [19].
The inverse operation is also essential because it first relates
the variance of the unbiased estimator β to the eigenvalues
of (ZTZ). Particular attention must be paid to the small
eigenvalues, which have a maximum inflationary effect on
the variance of the least squares estimator by significantly
destabilizing the estimator when it approaches zero. Sec-
ondly, the ill-conditioned Gram matrix motivates using a
low-rank inverse approximation [11], which allows obtain-

Source
Target

(a) Two distributions (b) Z (c) (ZTZ)−1

Figure 3. Illustration of the impact the inverse Gram operation
in the OLS solution. (a) Assume that the features of the source
and target follow two Gaussian distributions with slightly differ-
ent mean and variance. (b) Under the representation subspace dis-
tance, the feature subspaces of Zs and Zt are well aligned with a
very small angle difference. (c) However, because of the inverse
Gram operation, the difference in terms of the inverse Gram ma-
trix (ZTZ)−1 can still be large in terms of both angle and scale.

ing regularised basis to be aligned for the source and target
domain.

However, such an alignment is non-trivial because the
Gram matrix can be non-invertible in deep learning models.
During training, the batch size b is generally smaller than
the embedding dimension p. Given a feature matrix Z ∈
Rb×p, with b < p, the Gram Matrix (ZTZ) ∈ Rp×p, has
rank r smaller or equal to b. Hence the Gram Matrix is not
fully ranked and thus not invertible. The Moore-Penrose
pseudo-inverse in this case can generalize the concept of
matrix inverse when the matrix may not be invertible.

We propose to consider only a selected subspace of the
Gram matrix to solve this problem. As not all basis vectors
contribute equally, the basis vectors with the highest eigen-
values are the most influential. Therefore, we only consider
the most dominant basis vectors in the alignment process.
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This step has two main objectives : (i) maximize the mutual
information between the two distributions by considering
only a selected subset, (ii) avoid numerical instability when
not considering degenerate eigenspace.

Concretely, given the singular value decomposition
(SVD) [65] of the feature matrix Z defined by Z = UDV T .
The Gram matrix (ZTZ), can be decomposed using the
SVD of Z as :

(ZTZ) = (UDV T )T (UDV T ) = V ΛV T ,

λk := Λk,k = D2
k,k for k = 1, ..., p.

(6)

where the orthogonal matrix V ∈ Rp×p is identical to the
matrix in the SVD of Z and Λ ∈ Rp×p is the diagonal ma-
trix containing the squared eigenvalues of Z.

Given the ordered eigenvalues of the Matrix (ZTZ)
λ1 ≥ ... ≥ λk ≥ ... ≥ λp ≥ 0, the Moore-Penrose
pseudo-inverse [54] can be derived by discarding the sin-
gular values that are below λk and treating them as zero.
The pseudo-inverse of (ZTZ) can be expressed as:

(ZTZ)+ = V TΛ+V = V T


1
λ1

. . . 0
1
λk

0 0

V

(7)
The operation is equivalent to removing the dimensions

with the largest singular value in the inverse matrix. This
is in line with [9] as it has been shown that penalizing high
eigenvalues is beneficial in domain adaptation.

The selection of k (the number of principal components
used) can be achieved through a threshold on the cumulative
sum of the eigenvalues of (ZTZ). Since the smaller eigen-
values do not contribute significantly to the cumulative sum,
the corresponding principal components may be continued
to be dropped as long as the desired threshold limit is not
exceeded. Given λs and λt respectively the eigenvalues of
the matrix (ZT

s Zs) and (ZT
t Zt), the goal is to find k, s.t.∑k

i=0 λs,i∑p
i=0 λs,i

> T and
∑k

i=0 λt,i∑p
i=0 λt,i

> T, (8)

where T is a threshold controlling the proportion of ex-
plained variance by the first k principal components. In the
following, the pseudo-inverse with respect to k of the Gram
matrix for source and target is denoted as G+

s = (ZT
s Zs)

+

and G+
t = (ZT

t Zt)
+, respectively. Following [10], the co-

sine similarity is used to calculate the angle difference be-
tween source and target. Unlike previous methods, the an-
gle calculation directly uses the column space of G+

s and
G+

t , forming a subspace of Rp spanned by the column vec-
tors of G+

s and G+
t . A direct measurement of the principal

angles is defined as follows:

cos(θS↔T
i ) =

G+
s,i ·G

+
t,i

∥G+
s,i∥·∥G

+
t,i∥

(9)

where i ∈ [1, p], and G+
i represent the ith column of the

inverse Gram matrix G+. The cosine similarity between the
span of the subspace for both the source and target feature
are stored in M = [cos(θS↔T

1 ), . . . , cos(θS↔T
p )]. The loss

to align the selected basis from the pseudo-inverse of the
Gram matrix can be written as:

Lcos(Z
S , ZT ) = ∥I−M∥11 (10)

with I a vector of ones, of shape p. Minimizing the above
term maximizes the cosine similarity between the source
and target representation subspace by reducing the angle be-
tween the basis of both domains.

Discussion The proposed method is also more robust and
stable compared to the direct feature alignment of Z (e.g.
RSD [10]). An important difference between RSD and
DARE-GRAM lies on the choice of subspace for the align-
ment. RSD relies on the U basis derived from the SVD
decomposition of Z. However, the vectors U are first, not
unique for a matrix with repeated singular values and, sec-
ondly, may be numerically unstable since the gradient de-
pends on 1

λi−λj
. Morever, A drawback of RSD is that a

large batch size b ≥ p can result in full space, causing the
principal angles(RSD [10]-Eq.2) between two subspace to
become zero. In this case, no alignment can be performed
by RSD. Our method does not have this drawback.

3.4. Scale Alignment

Preserving the source feature scale is critical in domain
adaptive regression problems [10]. In addition to the angle
alignment presented in the previous section, we propose to
explicitly align the scale of the target subspace to the source.

More specifically, the scale of the matrix Z can be esti-
mated by its trace norm ∥Z∥1= Tr(

√
ZTZ) =

∑N
i=1

√
λi,

where the last term is the sum of the singular values of Z.
The scale of Z is therefore the sum of the diagonal elements
of the Gram-Matrix. The scale distance between source and
target feature is regularized by minimizing the difference
between the k-principal eigenvalues:

Lscale(Z
S , ZT ) = ∥λs,i=1,...,k − λt,i=1,...,k∥2. (11)

Unlike the previous methods [10], which explicitly
avoid aligning the feature scale, the pseudo-inverse Gram
columns that form the basis of our subspace are not nec-
essarily orthonormal. Therefore, matching the source and
target basis scale is also essential to complete the alignment
process. As a note, the eigenvectors from the SVD decom-
position are orthonormal, and the length of the vectors is
fixed and set to one, as shown in Figure 3(b).
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3.5. Overview

Combining our angle alignment for the inverse gram and
scale alignment, the total loss used for the end-to-end train-
ing can be written as:

Ltotal(Z
S , ZT ) =Lsrc + αcosLcos(Z

S , ZT )+

γscaleLscale(Z
S , ZT ),

(12)

where αcos, γscale are hyper-parameters controlling the ef-
fect of the angle and scale alignment. An overall of our
method is presented in Figure 2.

4. Experiments
4.1. Experimental setup

We evaluate our proposed method on three domain adap-
tations for regression benchmark datasets: dSprites [48],
MPI3D [22] and Biwi Kinect [15].
dSprites [48] is a synthetic 2D dataset generated from five
ground truth independent latent factors. Following com-
mon practice [10], we treat the three variants of the datasets
as three different domains. They are generated by adding
Color (C) or background noise such as Scream (S) and
Noise (N), shown in Figure 4. These three domains com-
prise 737,280 images each. Dsprites can be used as a bench-
mark for regression domain adaptation, especially if we
consider scale, position X, and Y. Similarly to the setup
in [10], the orientation factor is excluded from considera-
tion. We evaluate all methods on the three sub-regression
tasks on six adaptation directions: C → N, C → S, N → C,
N → S, S → C, and S → N.

(a) Noise (b) Color (c) Scream
Figure 4. Sample example of different domains in dSprites.

MPI3D [22] is a benchmark dataset that consists of
1,036,800 examples of 3D objects from three different do-
main : Toy (T), RealistiC (RC) and ReaL (RL), as shown in
Figure 5. This real-world robotics dataset allows the inves-
tigation of the domain gap between real data and simulated
ones. This dataset was recorded in a controlled environ-
ment, defined by seven factors of variation such as object
color, shape, size and position, camera height, background
color, and two degrees of freedom of motion of a robotic
arm The task is to predict these intrinsic factors from the
input image. For this paper, we evaluate our method on six
transfer tasks: RL → RC, RL → T, RC → T,RC → RL,
T → RL and T → RC. We only considered the two regres-
sion tasks, rotation about a vertical and horizontal axis.
Biwi kinect [15] is a real-word dataset containing over 15K
images of 20 people, 6 Females (F) with 5874 images and

(a) Toy (b) Realistic (c) Real
Figure 5. Sample example of different domains in MPI3D.

14 Males (M) with 9804 images, recorded with a Microsoft
Kinect sensor while turning their heads around freely. The
example images are shown in Figure 6. The three factors of
variations used to evaluate our method are yaw, pitch, and
roll angles. We evaluate our method on two transfer tasks:
M → F and F → M.

(a) Male (b) Female
Figure 6. Sample example of different domains in Biwi kinect

Evaluation metrics. Following previous works [10, 38],
Mean Absolute Error (MAE) is used as our evaluation met-
ric across all the regression tasks. Each experiment is re-
peated three times, and the average results are reported.

Implementation Details. A pre-trained ResNet-18 [27] on
ImageNet is used as the backbone for all methods. For all
the experiments, the different tasks share the same encoder
but a separated single linear regressor with a Sigmoid ac-
tivation function. The source and target labels were scaled
in the range [0, 1] to eliminate the effects of diverse scales
in regression values. We use the SGD [56] optimizer with
a momentum of 0.9. The weight decay is set to 1e−3 for
the loss optimization. The newly added layers are trained
with a learning rate ten times that of the pre-trained layers,
which is initialized to η0 = 1e−2. We further adopt the
same learning rate scheduler η = η0 · (1 + 0.0001 · p)−0.75

as [17, 45], where p is the number of iterations changing
from 0 to the maximum number of iterations. The images
are resized to 224 × 224 and concatenated into batches of
size b = 36. The number of iterations was set as in [10] to
20,000, 10,000, and 1,500 iterations for dSprites, MPI3D,
and Biwi Kinect, respectively. These setup choices are iden-
tical to RSD [10]. An NVIDIA RTX 3090 GPU was used
for all the experiments.

Compared Methods We compare our method with a range
of adaptation methods: (i) Domain Adaptation via Trans-
fer Component Analysis (TCA) [51] (ii) Maximum Clas-
sifier Discrepancy (MCD) [57] (iii) Joint Distribution Op-
timal Transportation for Domain Adaptation (JDOT) [13]
(iv) Adaptive Feature Norm (AFN) [73] (v) Deep Adap-
tation Network (DAN) [44] (vi) Deep Adaptation Neural
Network (DANN) [18] and (vii) Representation Subspace
Distance for Domain Adaptation Regression (RSD) [10].
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Method C → N C → S N → C N → S S → C S → N Avg

Resnet-18 [27] 0.94 0.90 0.16 0.65 0.08 0.26 0.498
TCA [51] 0.94 0.87 0.19 0.66 0.10 0.23 0.498
MCD [57] 0.81 0.81 0.17 0.65 0.07 0.19 0.450
JDOT [13] 0.86 0.79 0.19 0.64 0.10 0.23 0.468
AFN [73] 1.00 0.96 0.16 0.62 0.08 0.32 0.523
DAN [44] 0.70 0.77 0.12 0.50 0.06 0.11 0.377
DANN [18] 0.47 0.46 0.16 0.65 0.05 0.10 0.315
RSD [10]. 0.31 0.31 0.12 0.53 0.07 0.08 0.237
DARE-GRAM (ours) 0.30 0.20 0.11 0.25 0.05 0.07 0.164

Table 1. Comparisons with previous works on the dSprites regression tasks. All results are shown in sum of MAE with the ResNet-18.

Methods RL → RC RL → T RC → RL RC → T T → RL T → RC Avg

Resnet-18 [27] 0.17 0.44 0.19 0.45 0.51 0.50 0.377
TCA [51] 0.17 0.42 0.19 0.42 0.50 0.50 0.373
MCD [57] 0.13 0.40 0.15 0.45 0.52 0.50 0.358
JDOT [13] 0.16 0.41 0.16 0.41 0.47 0.47 0.353
AFN [73] 0.18 0.45 0.20 0.46 0.53 0.53 0.390
DAN [44] 0.12 0.35 0.12 0.27 0.40 0.41 0.278
DANN [18] 0.09 0.24 0.11 0.41 0.48 0.37 0.283
RSD [10]. 0.09 0.19 0.08 0.15 0.36 0.36 0.205
DARE-GRAM (ours) 0.09 0.15 0.10 0.14 0.24 0.24 0.160

Table 2. Comparisons with related works on the MPI3D regression tasks. All results are shown in sum of MAE with the ResNet-18.

4.2. Results

Evaluation on dSprites: As shown in Table 1, our model
achieves the best performance among all competing meth-
ods. Specifically, our method outperforms the previ-
ous state-of-the-art regression-based method RSD [10] by
30.8% in terms of average MSE over all directions. On
the three difficult adaptation directions C → N, C → S,
N → S. DARE-GRAM also improves the performance over
the RSD. The improvement is especially significant on the
direction C → S and N → S. The improvement is by 33.3%
and 52.8%, respectively. Evaluation on MPI3D: We fur-
ther evaluate the effectiveness of our method on this more
complex simulation-real data set. As shown in Table 2,
in average, our method outperforms all previous methods.
The improvement over the previous state-of-the-art RSD is
more than 21.9%.The improvement is especially significant
in the four hard adaptation directions T → RL, T → RC,
RL → T, and RC → T. The performance is comparable
with RSD on the RC/RL pair. This might be because the
domain gap is relatively small between the pair and the per-
formance (≈ 0.1) could be close to saturation.

Evaluation on Biwi Kinect: Given the much smaller size
of the dataset (15,000 images compared to the number of
samples in the scale of millions in the other two datasets),
the Biwi Kinect regression task is particularly challenging.
Additionally, the high imbalance between the two domains

Method M → F F → M Avg

Resnet-18 [27] 0.29 0.38 0.335
TCA [51] 0.31 0.39 0.350
MCD [57] 0.31 0.37 0.340
JDOT [13] 0.29 0.39 0.340
AFN [73] 0.32 0.41 0.365
DAN [44] 0.28 0.37 0.325
DANN [18] 0.30 0.37 0.335
RSD [10] 0.26 0.30 0.280
DARE-GRAM (ours) 0.23 0.29 0.260

Table 3. Comparisons with previous works on Biwi Kinect.

and the lack of separation of training and testing sets makes
it more difficult and closer to real-world scenarios for DAR.
The results reported in Table 3 demonstrate that our model
can also consistently improve over previous methods on
both directions on this more challenging task.

The performance improvement on the three datasets of
very different natures demonstrates the effectiveness of our
proposed method.

4.3. Discussion and Analysis

To provide more insights on the proposed Unsupervised
Domain Adaptation Regression by Aligning Inverse Gram
Matrices, we provide a detailed analysis of the different
components of the methodology.

11750



Method C → S N → S
Resnet-18 (source only) 0.90 0.65
RSD 0.31 0.53
Angle Alignment for Gram 0.88 0.55
Angle Alignment for truncated Gram 0.89 0.52
Angle Alignment for Gram Inverse (ours) 0.27 0.36
Scale Alignment (ours) 0.23 0.60
DARE-GRAM (ours, angle + scale) 0.20 0.25

Table 4. Ablation study of different components in our proposed
method on C → S and N → S task from dSprites. All results are
shown in sum of MAE.

Angle Alignment and Scale Alignment In the first abla-
tion, we study the impact of our angle alignment on the in-
verse Gram matrix and our scale alignment on the eigenval-
ues. The C → S and N → S tasks in dSprites are used for
the ablation here. As shown in Table 4, both components
of the proposed methodology are able to improve over the
baseline. Minimizing the angle between the pseudo-inverse
of the gram Matrix can reduce the MSE over the source-
only baseline by 70% on the C → S task. We also compare
the alternate angle alignment on the Gram matrix and trun-
cated Gram matrix without considering the inverse. The
MAE in both cases is significantly worst than our inverse
version. This demonstrates the significant impact of the in-
verse operation (as in Equation 5) on the regression layer
and verifies our motivation for considering the closed-form
solution of OLS regression problems. In addition, as dis-
cussed in Section 3.4, the scaling constraints provide es-
sential additional supervision on the alignment and further
improve the model performance. Both terms are effective
in improving the performance.
Effect of a Larger Batch Size Given the direct relation-
ship between the number of samples in a batch to the vari-
ance of the estimated β in Equation 5, we studied the effect
of the different training batch sizes in Figure 7 (using the
same hyperparameters). As the batch size increases, our
approach results in lower MAE. Furthermore, the RSD ap-
proach is more sensitive to the batch size and leads to nu-
merical errors for batches bigger than 64. In this paper, we
used only the same batch size of 36 to have a fair compari-
son with RSD. However, better results can be achieved with
our method by further increasing the batch size to 256.
Effect of alignment factors: We conduct additional exper-
iments to evaluate the impact on the performance when us-
ing different values of hyperparameter αcos, γscale and the
threshold T . As shown in Figure 8, results confirm that our
method is not sensitive to hyperparameters.
Alignment performance of Z and (ZTZ)−1 To further
validate the proposed method, we examined the cosine sim-
ilarity of the k-principal components of Zs, Zt, as well as
(ZT

s Zs)
−1, (ZT

t Zt)
−1, after applying our proposed method

and RSD. The results are shown in Table A2 in the sup-
plementary material. Our results demonstrate that aligning
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Figure 7. Batch size sensitivity on transfer task C → S. For RSD,
larger batch sizes lead to numerical errors, thus results not shown.
Our method DARE-GRAM is able to achieve better performance
with large batch sizes because the feature correlations can be better
captured by the Gram matrix with larger number of samples.
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Figure 8. Hyperparameter sensitivity of our method on dSprites
transfer task S → N.

Z by RSD can lead to poorly aligned inverse Gram matrix
(ZTZ)−1. In contrast, by aligning (ZTZ)−1, our proposed
method leads to a well-aligned Z, providing further empir-
ical support for the effectiveness of our proposed method.

5. Conclusion

In this paper, we have presented a new domain adaptative
regression method called DARE-GRAM. We tackled the
domain adaptation for regression problems from a differ-
ent perspective analyzing the ordinary least square solution
to the linear regressor in the deep domain adaptation con-
text. Rather than aligning the original feature embedding
space, we aligned a selected subspace of the pseudo-inverse
Gram matrix, leveraging the pseudo-inverse low-rank prop-
erty. Finally, two new regularization terms were proposed to
align the scale and angle in a selected subspace generated by
the Gram matrix of the two domains. Experimental results
show that DARE-GRAM achieves significant improvement
in three benchmark regression datasets while ensuring the
stability and robustness of the training procedure.
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