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Figure 1. Our DyNCA model can synthesize infinitely-long realistic dynamic texture videos with arbitrary size in real time. Target
Appearance: DyNCA learns a desired texture pattern from a given target appearance image. Target Dynamics: DyNCA can learn motion
from different target sources. We allow the users to define the desired motion either by a hand-crafted optical-flow image1or a dynamic
texture video. Synthesized Result: DyNCA synthesizes realistic dynamic texture videos. Each synthesized video frame resembles the
target appearance, while the concatenation of frames induces the motion of the target dynamics. See our real-time interactive demo at2.

Abstract

Current Dynamic Texture Synthesis (DyTS) models can
synthesize realistic videos. However, they require a slow it-
erative optimization process to synthesize a single fixed-size
short video, and they do not offer any post-training control
over the synthesis process. We propose Dynamic Neural
Cellular Automata (DyNCA), a framework for real-time
and controllable dynamic texture synthesis. Our method
is built upon the recently introduced NCA models and can
synthesize infinitely long and arbitrary-sized realistic video
textures in real time. We quantitatively and qualitatively
evaluate our model and show that our synthesized videos
appear more realistic than the existing results. We improve
the SOTA DyTS performance by 2 ∼ 4 orders of magni-
tude. Moreover, our model offers several real-time video
controls including motion speed, motion direction, and an
editing brush tool. We exhibit our trained models in an on-
line interactive demo that runs on local hardware and is
accessible on personal computers and smartphones.

1. Introduction
Textures are everywhere. We perceive them as spa-

tially repetitive patterns. Dynamic Textures are textures that
change over time and induce a sense of motion. Flames,
sea waves, and fluttering branches are everyday examples.
Understanding and computationally modeling dynamic tex-
tures is an intriguing problem, as these patterns are observed
in most natural scenes.

The goal of Dynamic Texture Synthesis (DyTS) [5–
8, 10, 12, 23, 24, 27, 29, 32] is to generate perceptually-
equivalent samples of an exemplar video texture3. Ap-
plications of DyTS include the creation of special effects
for backdrops and video games [21], dynamic style trans-
fer [24], and creating cinemagraphs [12].

The state-of-the-art (SOTA) dynamic texture synthesis

1We use the same flow visualization as Baker et al. [2].
2Link to the demo: https://dynca.github.io
3We use ”video texture” and ”dynamic texture” interchangeably.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Overview of DyNCA. Starting from a seed state,
DyNCA iteratively updates it, generating an image sequence. We
extract images from this sequence and compare them with an ap-
pearance target as well as a motion target to obtain the DyNCA
training objectives. After training, DyNCA can adapt to seeds of
different heights and widths, and synthesize videos with arbitrary
lengths. Sequentially applying DyNCA updates on the seed syn-
thesizes dynamic texture videos in real time.

methods [8, 24, 27, 29, 32] follow the same trend. They aim
to find better optimization strategies to iteratively update a
randomly initialized video until the synthesized video re-
sembles the exemplar dynamic texture. Although the SOTA
methods are able to synthesize acceptable quality videos,
their optimization process is very slow and requires several
hours to generate a single fixed-resolution short video on a
high-end GPU. Moreover, these methods do not offer any
post-training control over the synthesized video.

In this paper we propose Dynamic Neural Cellular
Automata (DyNCA), a model for dynamic texture synthe-
sis that is fast to train, and once trained, can synthesize
infinitely-long, arbitrary-resolution dynamic texture videos
in real time on a low-end GPU. Moreover, our method en-
ables several real-time video editing controls, including mo-
tion direction and motion speed. Through quantitative and
qualitative analysis we demonstrate that our synthesized
videos achieve better quality and realism than the previous
results in the literature.

Our model builds upon the recently introduced Neural
Cellular Automata (NCA) model [18,19]. While Niklasson
et al. [19] train the NCA with the goal of synthesizing static
textures only, the NCA model is able to spontaneously gen-
erate randomly moving patterns. As an inherent property
of NCA, these spontaneous motions are, however, unstruc-
tured and uncontrolled. We modify the architecture and the
training scheme of NCA so that it can learn to synthesize
video textures that have the desired motion and appearance.

In short, our DyNCA model acts as a stochastic Partial
Differential Equation (PDE), parameterized by a small neu-
ral network. DyNCA starts from a constant initial state
called seed, and then iteratively evolves the state accord-
ing to its trainable PDE update rule to generate a sequence
of images. This image sequence is then evaluated against
the appearance exemplar and the motion target to calculate
the loss functions for the optimization of DyNCA, as illus-
trated in Figure 2. We allow the user to specify the desired

motion either by a motion vector field or an exemplar dy-
namic texture video. Moreover, by using a different target
for the appearance and the motion, our model can perform
dynamic style transfer, as shown in Figure 1. Our contribu-
tions summarized are:

• Our DyNCA model, once trained, can synthesize dy-
namic texture videos in real time.

• Our synthesized videos are on-par with or even better
than the existing results in terms of realism and quality.

• After training, our DyNCA model can synthesize
infinitely-long videos with arbitrary frame sizes.

• Our DyNCA framework enables several real-time in-
teractive video editing controls including speed, direc-
tion, a brush tool, and local coordinate transformation.

• We can perform real-time dynamic style transfer by
learning appearance and motion from distinct sources.

2. Related Works
In the following section, we discuss the existing DyTS

methods. For comparison, Table 1 summarizes the strengths
(✓) and shortcomings (✗) of these methods.

2.1. Dynamic Texture Synthesis

In the literature, there are two dominant techniques to
synthesize dynamic texture videos. Recent approaches
follow the seminal work of Gatys et al. [9] for texture syn-
thesis. The authors propose an optimization-based method
that relies on the features extracted by a deep neural net-
work trained for image classification. Gatys et al. [9] show
that the Gram matrices of features extracted by the VGG
network [22] capture the perceptual qualities of texture im-
ages. Funke et al. [8] extend Gatys’s idea to dynamic tex-
ture synthesis, and use a cross-frame Gram matrix of VGG
features to capture the temporal characteristics of dynamic
textures. Tesfaldet et al. [24] and Zhang et al. [32] use a
pre-trained optical flow network for extracting the motion
features, which allows them to disentangle the appearance
and motion aspects of video textures. Xie et al. [27] use
an energy-based model characterized by a spatio-temporal
3D ConvNet and synthesize textures by sampling using
Langevin dynamics.

These methods utilize the expressivity of neural net-
works to produce realistic high-quality dynamic texture
videos. However, they require a long training time to syn-
thesize a single short video. Moreover, none of these meth-
ods provide any post-training controls over motion speed,
frame size, and motion direction. These shortcomings make
these methods unsuitable for real-time applications.

Earlier DyTS methods that can potentially enable real-
time synthesis utilized PDEs to model dynamic textures
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Method A B C D E F G

Costantini et al. [5] ✗ ✓ ✓ ✗ ✓ ✗ ✗
Doretto et al. [6] ✗ ✓ ✓ ✗ ✓ ✗ ✗
Funke et al. [8] ✗ ✓ ✗ ✗ ✗ ✗ ✗

Tesfaldet et al. [24] ✗ ✓ ✗ ✗ ✗ ✓ ✓
Xie et al. [27] ✗ ✗ ✗ ✗ ✓ ✗ ✗

Zhang et al. [32] ✗ ✓ ✗ ✗ ✗ ✓ ✓

DyNCA (Ours) ✓ ✓ ✓ ✓ ✗ ✓ ✓

Table 1. Comparison of DyTS methods. (A) Can synthesize
videos with arbitrary frame size after training. (B) Can synthesize
arbitrarily long videos. (C) Can synthesize new video samples
without re-training. (D) Allows real-time video editing (speed, di-
rection, and a brush tool). (E) Does not rely on pre-trained models
to extract motion or texture information. (F) Has disentangled ap-
pearance and motion. (G) Can learn motion from vector fields.

[5, 6, 10, 30, 31]. To synthesize video textures, Doretto et
al. [6] propose to use a linear dynamical system (LDS) in
which each frame of the video is controlled by a latent
variable whose evolution through time is driven by random
noise. The latent variable is obtained via projection of the
target texture image into a lower dimensional space by sin-
gular value decomposition (SVD). Costantini et al. [5] pro-
pose to use higher-order SVD to improve the expressivity of
LDS-based models. Yuan et al. [31] introduce feedback into
the LDS to improve the stability of the dynamical system.
All these methods can synthesize new video textures with-
out re-training, and potentially in real time. However, the
synthesized videos are of low quality and contain artifacts.

Our DyNCA method benefits from the best of both ap-
proaches by combining the expressivity of neural networks
with PDEs. Having 2 ∼ 4 orders of magnitude fewer pa-
rameters than the SOTA models, our model can synthesize
realistic dynamic texture videos in real time.

2.2. NCA for Texture Synthesis

Gilpin [11] shows that Cellular Automata models can be
represented using Convolutional Neural Networks. Extend-
ing [11], Mordvinstev et al. [18] propose the Neural Cellu-
lar Automata model and show its potential in creating var-
ious self-organizing systems [17–20]. NCA is inspired by
Turing’s seminal work [25] on pattern generation, and the
observation that many natural patterns stem from local in-
teractions between tiny particles, cells, or molecules [19].

Niklasson et al. [17,19] were the first to train NCA mod-
els to synthesize textures. While the NCA training signal
originates from a static exemplar texture image, the model is
able to spontaneously generate stable but randomly moving
textures. We modify the architecture and training scheme
of NCA to enable synthesizing structured motion. First,
our DyNCA model receives supervision from a pre-trained
optical-flow network, which enables it to synthesize a video

texture with structured motion. Moreover, we incorpo-
rate multi-scale perception and positional encoding into the
DyNCA architecture. The proposed architectural changes
increase the communication range of the cells and allow the
cells to be aware of global information, respectively.

3. DyNCA Architecture
In the following sections, we first review the NCA model

and then present the architecture of our DyNCA.

3.1. Neural Cellular Automata (NCA)
The idea of NCA stems from cellular automata, in which

cells live on a grid, and each cell communicates with its
neighbors to determine the cell’s next state. In NCA, cell
states at time t are represented by St ∈ RH×W×C where
H ×W is the grid size. The C dimensional vector stij en-
codes the state of the cell at location i, j, where the first
three dimensions define the RGB color of the cell.

The NCA starts from a constant zero-filled initial state
called seed and evolves this state over time according to its
trainable PDE. The update rule of this PDE consists of two
parts, Perception and Stochastic Update. At the perception
stage, each cell gathers information from its surrounding
neighbors, forming the perception vector zij ∈ R4C , illus-
trated in the green box in Figure 3.

zij = Concat(sij ,∇xS|ij ,∇yS|ij ,∇2S|ij) (1)

Note that the convolution kernels in the perception stage
are frozen during training. In the stochastic update stage,
the new state of each cell is determined based on its percep-
tion vector. The update stage of NCA can be viewed as a
stochastic discrete-time, discrete-space PDE:

St+1 = F(St) = St +
∂S

∂t
∆t

∂sij
∂t

= MLP(zij)⊙M

(2)

where MLP is a Multi Layered Perceptron with two layers
and a ReLU activation function. The residual update values
produced by the MLP are multiplied by a binary random
variable M to introduce stochasticity into the model. This
ensures that the cells can work asynchronously, and also
enables synthesizing new texture samples. The stochastic
update stage is illustrated in the blue box in Figure 3.

To facilitate long-range cell communication and to al-
low the cells to be aware of global information, we intro-
duce multi-scale perception and positional encoding into
the vanilla NCA architecture, respectively. Our experiments
in section 5 demonstrate their necessity for DyTS. The over-
all architecture of our DyNCA model is illustrated in Fig-
ure 3. To the best of our knowledge, we are the first to
incorporate these two architectural changes in conjunction
with NCA models. In the following sections, we elaborate
on the proposed architectural modifications.
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Figure 3. Illustration of a single DyNCA step. Given an input state St ∈ RH×W×C at time step t, each cell first perceives its neighbors on
various scales with the same perception layer. The perception tensor of each scale is then upsampled and summed up, and is concatenated
with the positional encoding tensor Pxy. Each cell then applies the same update rule, parameterized by a small MLP. Finally, all cells
perform a stochastic residual update to determine the state of the cells in time t+∆t. We use ∆t = 1 in our model.

3.2. Multi-scale Perception

In the perception stage of vanilla NCA, each cell only re-
ceives information from its eight surrounding cells. There-
fore, many timesteps are needed for far-apart cells to per-
ceive and communicate with each other. This problem be-
comes more pronounced when we increase the grid size
H ×W , since the 3× 3 perception kernels become smaller
in proportion to the image size. One straightforward solu-
tion is to increase the number of NCA steps during training
to facilitate long-range cell communication. However, this
simple solution increases memory usage, slows down the
training, and makes the training more unstable.

To solve this problem, we propose Multi-Scale Percep-
tion (MSP). The idea of using multi-scale analysis predates
deep learning and has shown its effectiveness in many com-
puter vision tasks [1, 3, 14, 15]. We build a pyramid of cell
states via bilinear downsampling and apply the same per-
ception kernels at different scales. To combine the informa-
tion from all scales, we upsample and sum up the perception
vectors, as shown in the red box in Figure 3. Multi-scale
perception increases the communication range of the cells
and allows messages to pass between faraway cells in fewer
steps. It also improves the stability of DyNCA and makes
the training less sensitive to hyperparameters. We perform
an ablation study of multi-scale perception in section 5.4
and show its importance in preserving appearance fidelity.

3.3. Positional Encoding

In order to apply the 3 × 3 depth-wise convolutions in
the perception stage, one needs to adopt a padding strat-

egy to retain the spatial dimensions. Niklasson et al. [19]
use circular padding to make the cells homogeneous and
to reduce spatial inductive bias. While cell homogeneity is
a good assumption for generating static textures, it is not
suitable for synthesizing structured motion. Our intuition
is that, in physical systems, motion not only arises from
local interactions between tiny particles and cells, but also
from global external forces such as gravity. Hence, we al-
low the cells to be aware of their position and propose to
use replicate padding and Cartesian Positional Encoding
(CPE), which is known to provide a more consistent spa-
tial inductive bias than zero-padding [28]. As illustrated in
the purple box in Figure 3, we concatenate the output of
the multi-scale perception stage with a two-channel tensor

Pxy, where Pij =

[
2i+1.0

W
2j+1.0

H

]
− 1.0. Our ablation study in

section 5.4 shows that employing CPE drastically improves
motion consistency and accuracy in the synthesized videos.

4. DyNCA Training
Our DyNCA model acts as a PDE and generates a se-

quence of images Ig = {Ig
1 , Ig

2 , ...}. We sample the syn-
thesized video frames Vg = {Vg

1 ,Vg
2 , ...} from this image

sequence by mapping T DyNCA steps to one frame, i.e.
Vg
k = Ig

kT . The synthesized video is then evaluated against
the target appearance and the target motion to compute the
appearance loss Lappr and the motion loss Lmotion, respec-
tively. This process is shown in Figure 2. Our final loss is
LDyNCA = Lappr + λLmotion. The overall scheme of the
proposed loss functions is illustrated in Figure 4.
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Figure 4. Overview of our loss functions. Appearance loss
(Lappr): DyNCA learns the target appearance from a static im-
age via minimizing an optimal-transport-based style matching loss
[13] between deep features extracted from the VGG16 network
[22]. Motion Loss (Lmvec): We guide DyNCA to synthesize a
video having an optical flow similar to the target vector field. Mo-
tion Loss (Lmvid): DyNCA fits the target video motion by min-
imizing an optimal-transport-based style matching loss between
deep features of a pre-trained optical-flow prediction network.

4.1. Appearance Loss

We follow the texture fitting scheme proposed by Niklas-
son et al. [19], where the statistics of deep features of the
NCA-generated images are forced to match the ones of the
target texture. We use a pre-trained VGG16 network [22]
to extract the deep features from the images. We denote
VGG as FV GG and the feature map extracted from layer l as
F l

V GG. Niklasson et al. [19] use the Gram matrix to define
the training objective of the NCA. However, using Gram
matrices can cause unstable training [26], and can result in
textures with wrong colors [16,19]. Hence, we use the style
loss proposed by Kolkin et al. [13], which has shown to
produce better results. This loss is composed of a structure-
matching term and a moment-matching term. Given a fea-
ture map of size C ×H ×W , the algorithm first creates a
set of deep features with n = H×W elements by flattening
the feature map along the spatial dimensions. Let X and Y

be the deep feature set of a synthesized image and target ap-
pearance image, respectively. Then the structure-matching
term Ls and the moment-matching term Lm are defined as:

D(A,B) =
1

|A|
∑
i

min
j

(
1− Ai ·Bj

||Ai||2||Bj ||2

)
Ls(X,Y ) = max {D(X,Y ), D(Y,X)} ,

(3)

Lm(X,Y ) =
1

C
∥µX − µY ∥1 +

1

C2
∥ΣX −ΣY ∥1 , (4)

where D measures the distance between two deep feature
sets, and µ, Σ are the mean and covariance matrix of their
corresponding set, respectively. Let X l

k and Y l be deep
VGG features extracted by Fconv l 1

V GG , where l and k indi-
cate the VGG block index and the synthesized image index,
respectively. Our final appearance loss is then defined as:

Lappr =
1

K

K∑
k=1

5∑
l=1

(
Ls(X

l
k, Y

l) + Lm(X l
k, Y

l)
)

(5)

4.2. Motion Loss
The motion loss guides the DyNCA to produce the de-

sired motion. We use the pre-trained Optical-Flow Predic-
tion Network from [24] to quantify the motion information
between two frames. We denote this network as FOF , and
the feature map extracted from layer l as F l

OF . For differ-
ent types of target motion sources, namely vector fields and
videos, our motion loss takes two different forms, Lmvec

and Lmvid, respectively. These terms are discussed below.

4.2.1 Motion from Vector Field

Let U t ∈ RH×W×2 be the target motion vector field. Let
Ug = FOF (Ig

t1 , I
g
t2) be the optical-flow prediction on two

synthesized images, where t1, t2 are two random indices
such that t2 > t1. We propose two losses, Ldir for match-
ing the motion direction, defined as:

Ldir =
1

HW

∑
i,j

(
1−

Ug
ij · U t

ij∥∥Ug
ij

∥∥
2

∥∥U t
ij

∥∥
2

)
, (6)

and Lnorm for matching the motion magnitude, defined as:

Lnorm =
1

HW

∑
i,j

∣∣∣∣ T

t2 − t1

∥∥Ug
ij

∥∥
2
−
∥∥U t

ij

∥∥
2

∣∣∣∣ . (7)

Since t1, t2 are selected randomly, we scale the norm of the
Ug by T

t2−t1
before comparing it against the target motion

vector field. We define our final loss Lmvec as:

Lmvec = (1.0−min{1.0,Ldir})Lnorm + γLdir, (8)

where γ is a constant coefficient. We set the norm-matching
loss weight to (1.0−min{1.0,Ldir}) to guide the training
process to first focus on producing motion with the correct
direction before trying to match the norm of the synthesized
motion with the target vector field.
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4.2.2 Motion from Video
For training DyNCA to learn the motion from a target video,
we aim to match the motion between successive frames of
the synthesized and target videos. We synthesize a video Vg

with K frames, and randomly pick the same number of con-
secutive frames from the target video, forming Vt. Inspired
by Tesfaldet et al. [24], we feed successive video frames
to a pre-trained optical-flow network and extract deep fea-
tures from the concatenation layer of the network, denoted
as Fconcat

OF . To compare the deep optical flow features
of the target and the synthesized videos, we use the same
structure-matching and moment-matching terms defined in
Section 4.1. We denote the extracted deep optical-flow fea-
tures as Xk for the synthesized video, and Yk for the target
video, where k indicates the frame index. Notice that there
are K − 1 successive frame pairs in total. We define the
objective for learning motion from video textures as:

Lmvid =
1

K − 1

K−1∑
k=1

(Ls(Xk, Yk) + Lm(Xk, Yk)) (9)

5. Experiments
We conduct experiments on the critical parame-

ters of DyNCA, including NC , NH , NW , NFC , where
NC , NH , NW are the size of the DyNCA seed state and
NFC is the output dimensionality of the first layer of MLP
in DyNCA. Concretely, we set NC = 12, NFC = 96 for
DyNCA-S and NC = 16, NFC = 128 for DyNCA-L. Al-
though DyNCA can adapt to arbitrary seed sizes after train-
ing, the seed resolution used during training affects the tex-
ture details. We experiment with both 1282 and 2562 spatial
resolutions for the seed. We use Positional Encoding for all
of the DyNCA configurations, and enable Multi-Scale Per-
ception only when training with the 256×256 seed size. Ta-
ble 2 summarizes the DyNCA configurations. We perform
our experiments on an Nvidia-A100 GPU, and use Adam
optimizer with an initial learning rate of 0.001. We refer the
reader to the supplementary for further training details.

5.1. Dynamic Texture Synthesis
We present the results of synthesizing dynamic textures

using DyNCA, where the target motion is either a vector
field or a video, and the target appearance is a static image.

Motion from Vector Field: We manually design 12 tar-
get vector fields, and for each target motion, we train both
DyNCA-S and DyNCA-L configurations on 45 different
target appearances. We provide the resulting 1080 trained
models in our real-time interactive demo. We set seed size
to 128×128 and T = 24, assuming that 24 steps of DyNCA
update equals one frame of the synthesized video. Figure 6
shows the optical flow of the DyNCA-S synthesized videos
and the corresponding target vector fields used for training.

Motion from Video. We train DyNCA to match the tar-
get motion from videos. For the target appearance image,

we use one of the video frames or a stylistic image, to per-
form dynamic texture synthesis and dynamic style transfer,
respectively. We train both DyNCA-S and DyNCA-L on 59
target dynamic texture videos provided in [24], setting seed
size to 256 × 256 and T = 64. Figure 5 provides some
visual results. More results are provided in our demo and
supplementary. In Table 2, we compare our DyNCA and
the previous SOTA models [24, 27] in terms of the compu-
tational costs, namely performance and the number of pa-
rameters. Note that our DyNCA model is orders of mag-
nitude more efficient in both training and synthesis time as
well as the number of parameters. We refer the reader to the
supplementary material for the detailed experimental setup.

5.2. Real-time Video Editing
DyNCA can also perform real-time video editing by uti-

lizing the post-training NCA controls introduced in [19].
These edits include direction control, speed control, a brush
tool, and local coordinate transformations. We refer the
reader to our online demo at https://dynca.github.io for real-
time and interactive visualization and experimentation.
Direction Control: By rotating the Sobel convolution ker-
nels ∇x and ∇y in the perception stage, we can control
the direction of the motion in the synthesized video. This
is done by replacing ∇x and ∇y with ∇u and ∇v, where(u

v

)
= Rθ

(x
y

)
and Rθ is the rotation matrix with angle θ. We

also rotate Pxy by angle θ so that the position-dependent part
of the motion magnitude also rotates accordingly.
Speed Control: We control the speed of the synthesized
video by increasing/decreasing T , which determines how
many DyNCA steps are used to synthesize one video frame.
Brush Tool: The brush tool allows the users to delete pix-
els from the video. Since our DyNCA model exhibits the
self-organization property of the original NCA [19], the
model can reorganize itself and continue synthesizing re-
alistic videos by naturally filling the deleted pixels.
Local Coordinate Transformation: DyNCA can create
complex motion transformations by allowing each cell to
use a different rotation angle θ(i, j) for transforming its So-
bel convolution kernels. For example, setting the rotation
angle for the cell at location (i, j) to arctan

(
i−W

2

j−H
2

)
will

transform a rightward motion into a circular motion.

5.3. User Study
Although it is tempting to use a metric, e.g. the Gram

matrix difference [9], to compare the quality of the videos
synthesized by different methods, the variety of training ob-
jectives used in the existing methods makes such compar-
isons biased and unfair. Therefore, we conduct a similar
user study as Tesfaldet et al. [24] to quantitatively evaluate
and compare the realism of the videos. We show a pair of
videos to the participants and ask them to choose the video
that appears more realistic. We compare the videos syn-
thesized by (DyNCA, [24], [27]) with each other and also
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Figure 5. Results of dynamic texture synthesis and dynamic style transfer with DyNCA-L-2562. Dynamic Texture Synthesis: DyNCA
faithfully reproduces the target appearance and target dynamics. Dynamic Style Transfer: DyNCA can learn appearance and motion from
different sources. Note that DyNCA does not simply copy the target dynamics from the video, but learns the style of the given motion and
naturally adapts it to the target appearance, as shown by the optical-flow images. See our real-time interactive demo https://dynca.github.io

Method Res. Training Time (s) Synthesis Time (s) # Parameters

A [24] 2562 #frames × 500 5.0× 102 #frames × 0.2M
B [27] 2242 #frames × 400 4.0× 102 81M
C [27] 1002 #frames × 8.5 8.5× 100 2.8M

DyNCA-S 1282 2320 3.3× 10−2 0.006M
DyNCA-S 2562 3980 5.7× 10−2 0.006M
DyNCA-L 1282 2370 3.5× 10−2 0.010M
DyNCA-L 2562 4380 5.7× 10−2 0.010M

Table 2. Comparison of training time, synthesis time per frame,
and number of trainable parameters of different DyTS methods.
(A) Tesfaldet et al. [24]; (B) Xie et al. [27] FC config; (C) Xie et
al. [27] ST config. For (B) and (C), training and synthesis happen
simultaneously, and the video is synthesized once the training is
finished. All methods are evaluated on a single A100 40GB GPU.

with real videos using the same 59 dynamic texture videos
as Tesfaldet et al. [24]. Table 3 shows the results of our user
study. Each entry shows the percentage of times that the
video from the corresponding column was chosen over the
video from the corresponding row. Our method outperforms
the other DyTS method in realism. We refer the reader to
our supplementary for more details on the user study.

Figure 6. Results of DyNCA trained on various target vector fields
as the motion target. First and second row: Symbolic and colored
optical-flow representations of the target vector fields. Third row:
Snapshot of the optical-flow estimations of the videos synthesized
by DyNCA-S-1282. The target appearance used for training the
model is fibrous 0145 texture from the DTD dataset [4].

5.4. Ablation Study
Positional Encoding: We ablate the Cartesian Posi-

tional Encoding (CPE) and train DyNCA-S-1282 with dif-
ferent padding strategies for comparison. In Table 4, we re-
port the average of Ldir and Lnorm losses on 4 target vector
fields (Diverge, Converge, Circular, and Hyperbolic shown
in the last 4 columns of Figure 6) and 10 different target
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Real DyNCA A [24] B [27] C [27]

Real N/A 27% 26% 24% 8%
DyNCA 73% N/A 40% 46% 20%
A [24] 74% 60% N/A 52% 25%
B [27] 76% 54% 48% N/A 15%
C [27] 92% 80% 75% 85% N/A

Table 3. Top: Comparison of real and synthesized video frames
from different methods: (A) Tesfaldet et al. [24]; (B) Xie et al. [27]
FC config; (C) Xie et al. [27] ST config. Bottom: Pair-wise
comparison results from our user study. The participants see two
videos one after another in random order and are asked to choose
the video that appears more realistic. Our DyNCA achieves an
on-par “fooling” rate when compared with real videos. Yet, our
synthesized videos look more realistic when compared to existing
DyTS methods (60%, 54%, 80%). All error margins are ≤ 2%.

appearances. The results demonstrate that CPE is a nec-
essary component for DyNCA to learn the motion from a
structured target vector field, in which the motion direction
and magnitude are position-dependent. We show the impor-
tance of CPE for video motion fitting in the supplementary.

Multi-Scale Perception:. MSP is key to enable training
DyNCA with larger seed sizes. We train DyNCA-L-2562

both with and without multi-scale perception and evaluate
the results qualitatively and quantitatively. Figure 8 shows
the corresponding synthesized video frames, qualitatively
demonstrating that single-scale perception causes artifacts
to appear in the synthesized frames. We also perform a
quantitative evaluation in the supplementary, showing that
training with multi-scale perception improves both the ap-
pearance Lappr and the video motion Lmvid losses.

6. Limitations
DyNCA has certain limitations. In the case of vector

field motion, it cannot generate a correct motion when the
target appearance and the target motion are not compatible.
For example, DyNCA fails to move a 45-degree oblique-
line pattern in a circular manner. For video motion, we find
it difficult to automatically set the motion loss weight λ.
Moreover, DyNCA cannot generate diverse motion when
the target videos are violating the underlying assumption of
dynamic textures, i.e. when they are not temporally homo-
geneous. In these cases, DyNCA suffers from overfitting to

Seed Size Loss Circular Zero Replicate CPE

128× 128
Ldir 0.989 0.162 0.318 0.062
Lnorm 0.640 0.296 0.364 0.235

256× 256
Ldir 0.993 0.411 0.478 0.054
Lnorm 0.678 0.331 0.397 0.218

Table 4. Comparison of motion loss for DyNCA trained with
different padding strategies. Using Cartesian Positional Encod-
ing (CPE) improves the motion fidelity, and allows the DyNCA to
synthesize the correct motion regardless of the seed size.
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Figure 8. Comparison between training DyNCA with and without
multi-scale perception. The first row shows the target appearance
texture. The results without multi-scale perception (second row)
contain artifacts and are of lower quality.

the dominant direction of the motion in the target videos We
refer to our supplementary material for more details.

7. Conclusion
We propose DyNCA, a model that can, in real time, syn-

thesize dynamic texture videos with arbitrary frame size and
infinite length. Exploiting multi-scale perception and posi-
tional encoding, the cells in DyNCA can readily perform
long-range communication and obtain global information.
This ensures improved performance both in terms of visual
quality and computational expressivity as compared to the
vanilla NCA model, as we show with both qualitative and
quantitative experiments. DyNCA can learn motion either
from a hand-crafted vector field or a video, thus allowing for
broader synthesis options. DyNCA produces more realistic
video textures than the current DyTS methods, as demon-
strated through a user study. DyNCA is also 2 ∼ 4 orders
of magnitude faster than the SOTA methods in synthesis
time and has much fewer trainable parameters, thus facil-
itating real-world deployment. Lastly, DyNCA allows for
several real-time and interactive video control tools that let
the users control DyNCA without re-training.
Acknowledgement. This work was supported in part by the
Swiss National Science Foundation via the Sinergia grant CRSII5-
180359.
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