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Abstract

We present a simple approach which can turn a ViT en-
coder into an efficient video model, which can seamlessly
work with both image and video inputs. By sparsely sam-
pling the inputs, the model is able to do training and in-
ference from both input modalities. The model is easily
scalable and can be adapted to large-scale pre-trained ViTs
without requiring full finetuning. The model achieves SOTA
results’.

1. Introduction

Visual Transformers (ViT) [9] have been an ubiqui-
tous backbone for visual representation learning, leading to
many advances in image understanding [43, 54, 66], mul-
timodal tasks [I, 2, 62, 65] and self-supervised learning
[5, 14, 45], etc. However, adaptations to video are both
challenging and computationally intensive, so video ver-
sions have been been specially designed to handle the larger
number of frames, for example, ViViT [3], MultiView [61],
TimeSFormer [6] and others [12].

Video understanding is an essential computer vision
task, and a large number of successful video architectures
have been developed [8, 13, 15, 28, 39,46, 55, 60]. Previ-
ous video 3D CNNss [8,46] were designed to handle videos
by learning spatio-temporal information; they often borrow
from mechanisms for learning on images, for example [§]
use pre-trained image CNN weights by inflating the kernels
to 3D. However, once adapted to videos, these kernels are
no longer applicable to images.

Furthermore, most previous works treat image and video
as entirely different inputs, providing independent methods
for either videos or images, since designing a model ca-
pable of handling both is challenging. At the same time,
image and video inputs are inherently related and a single
visual backbone should be able to handle either or both in-
puts. Previous methods for co-training image and video
[4,25,51,67] adapt the architectures to do so with significant
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Figure 1. TubeViT: With Sparse Video Tubes, Vision Transform-
ers (ViTs) use both image and video inputs, providing an efficient
video backbone and more accurate performance.

portions of the network designed for each input. Works such
as Perceiver [19] and Flamingo [2] address this by resam-
pling the input and compressing it into a fixed number of
features. However, this resampling can still be expensive for
long videos, and, in the case of Flamingo, it treats videos as
individual frames sampled at 1 FPS, which limits the tem-
poral information. Such low FPS sampling and per-frame
modeling would often be insufficient for datasets which rely
on motion and temporal understanding, e.g., Something-
Something [ 18], or for recognizing quick and short actions.
On the other hand, using one of the above-mentioned ap-
proaches with dense frames is computationally infeasible.

To address these limitations, we propose a simple but ef-
fective model, named TubeViT, to utilize a standard ViT
model seamlessly for both image and videos. We intro-
duce Sparse Video Tubes, a lightweight approach for joint
image and video learning. Our method works by sparsely
sampling various sized 3D space-time tubes from the video
to generate learnable tokens, which are used by the vision
transformer (Figure 1). With sparse video tubes, the model
is easily applicable to either input, and can better leverage
either or both sources of data for training and fine-tuning.
The sparse video tubes naturally handle raw video signals
and image signals which is crucial to understanding actions
and other spatio-temporal information in videos.

Video models are also expensive to train, and previous
works have studied ways to leverage already trained mod-
els, such as using frozen ones [27] or adapting them to
videos [31]. We expand on these ideas, and use the Sparse
Video Tubes to adapt much larger ViT models to videos
with lightweight training (Sec. 3.6). Thus we create power-
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ful large video models with less resources.

We evaluate the approach across many standard video
datasets: Kinetics-400, Kinetics-600, Kinetics-700, and
SomethingSomething V2, outperforming the state-of-the-
art (SOTA). Our methods are trained from scratch or on
ImageNet-1k and Kinetics datasets and outperform even
methods additionally pre-trained from very large datasets
(e.g., JFT [44]). Our work also outperforms models target-
ing video pretraining, such as recent video Masked Auto-
Encoder (MAE) works [14,45].

Our key findings are that by using the sparse video tubes,
we are able to better share the weights learned for both im-
ages and videos. This is in contrast to prior works that
either inflate kernels or add new temporal-specific layers.
Further, due to the sparse sampling, the number of tokens
remains low, which we also find is important, both for re-
ducing FLOPs and improving performance.

Our contribution is construction of sparse video tubes,
obtained by sparsely sampling videos with various sized 3D
space-time tubes. With that we accomplish the following:
(1) a universal visual backbone which easily adapts a ViT
architecture to videos; (2) joint image and video under-
standing which seamlessly uses either input; (3) an easy-
to-scale approach for video understanding, which can also
leverage already trained (large) ViT models.

2. Related work

Video understanding is an important topic in computer
vision. Early works hand-designed trajectory features to un-
derstand motion and time [50]. With the success of neural
networks, many different approaches have been developed,
such as two-stream CNNs taking image frames plus optical
flow for motion information as input [41], finding a clear
benefit from adding the flow information. Works studying
3D CNNs found the learning of temporal kernels to be im-
portant [8, 34,46, 48], but also required much more data in
order to be effective [8]. Many of the existing video CNN
approaches, have been specialized to handle videos, either
with flow streams or 3D kernels and thus have not been ap-
plicable to images.

With the introduction of transformer models and self-
attention [49], vision transformers have been very effective
for image-based tasks. However, due to the quadratic cost
of self-attention and the dense sampling, their use for videos
has required different elements, such as space-time factor-
ized attention [3, 6,61]. However, these video transformers
have not really been tested on longer videos and are mostly
evaluated on short clips. The ability to handle larger num-
ber of input frames and understand long-term actions and
their relationships is of key importance, but becomes com-
putationally prohibitive with current models.

Previous works have found that transformers focus on
only a few tokens [30, 37] and works have been designed
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Figure 2. Illustration of the approach. We use tubes of different
shapes to sparsely sample the video. These are concatenated to-
gether and used as input to a transformer model.

to pool or reorganized tokens effectively [24,29,38]. Many
video works have found that frames contain redundant in-
formation, and thus propose strategies to sample frames
[17,59]. Other works have studied ways to reduce the num-
ber of tokens in video transformer models [32,38,52]. How-
ever, all these works still use an initial dense sampling of the
video, then some heuristics to reduce the number of inputs.
In this work, we more sparsely sample the input initially,
increasing efficiency.

Other recent works have studied video MAE tasks as pre-
training [ 14,45,53], they similarly treat videos as tubes, and
study the sparseness in terms of the masking, having simi-
lar findings that sparseness is beneficial. However, they use
a single tube shape and create non-overlapping patches and
have not been studied when joint training with images.

This work is also related to approaches which use mul-
tiple views or streams from the input data, e.g., Multi-
View Transformers [61], SlowFast Networks [15] and oth-
ers [35,41], all have found benefits from multiple input
views or streams. MultiView Transformers [61], similarly
to us, is using tubes of varying shapes. The key difference
is the sparse sampling we use enables the use of a single
ViT encoder model, rather than multiple smaller, per-view
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encoders. This further unifies the approach with images.

Another line of work in video understanding is leverag-
ing image datasets during pre-training [ 1 [,56]. This is valu-
able as image-only datasets are better annotated and provide
richer semantic information. One approach is to bootstrap
the video models from image-pretrained models, often by
inflating kernels. The model is first pre-trained on image
data, and then only trained on video. Other works proposed
to co-train image and video jointly [4, 19, 25,51, 56, 67].
These approaches adapt the architectures to handle both in-
puts which might be inefficient, e.g., treating an image in-
put as a video of 1 frames [67] or using separate networks
to first encode the inputs [2, 19].

In contrast to all the previous works, our method is sim-
ple and straightforward. One crucial set of differences is
that the tubes are sparsely applied to the raw input, con-
sists of different shaped, possibly overlapping tubes, and
uses a single, shared backbone network, different from all
previous approaches ( [3, 14,15,32,38,45,61]). This leads
to both more efficient and accurate models. Secondly, and
more importantly, the model is entirely shared between the
image and video modalities. This is an important distinction
as it not only improves performance, but also seamlessly
unifies these modalities, and data from either or both can be
leveraged.

3. Method
3.1. Preliminaries

The standard ViT architecture [9] takes an image and
converts it into patch embedding, for example, by using a
16 x 16 2D convolutional kernel, with a 16 x 16 stride.
This results in a sequence of patches as the image represen-
tation, e.g., 196 for a 224 x 224 input image. Given a video
V € RTXHXWXC prior approaches either used the same,
dense 2D patches (e.g., TimeSFormer [6]) or used dense
3D kernels, e.g., 2 or 4 x 16 x 16 as in ViViT [3]. In both
cases, this results in significantly more tokens, e.g., T 196,
where 7' is the number of frames. These tubes or patches are
then linearly projected into an embedding space, z; € RY.
This sequence of tokens is then processed by a transformer
encoder, using standard components, MSA - the multi-head
self attention and MLP - the standard transformer projection
layer (LN denotes Layer Norm). For a sequence of layers

1 €10,1,... L], we compute the representation 3! and next
token features 2! for all the z; tokens:

y; = MSA(LN(z{ 1)) + 2 (1)

2 = MLP(LN(y;)) + y; )

To reduce the computational cost, prior approaches fac-
torize the attention mechanism, to have a spatial and tem-
poral attention [3] or use multiple views with smaller, view
level transformers [01].

3.2. Sparse Video Tubes

We propose a simple and straightforward method which
is seamlessly applicable to both images and videos. Our ap-
proach follows the standard ViT tokenization approach for
images: a 2D convolution with a 16 x 16 kernel. We build
on the observation that sparseness is effective for videos.
Rather than following the prior works that densely tokenize
the video, we instead use the same 2D kernel, but with a
large temporal stride, for example, applied to every 16th
frame. Thus for an input video clip of 32 x 224 x 224, this
results in only 392 tokens, rather than the 6k in TimeS-
Former or 1-2k in ViViT.

However, this sparse spatial sampling might lose infor-
mation, especially for quick or short actions. Thus, we cre-
ate sparse tubes of different shapes, for example, a 16 x4 x4
tube to obtain information from many frames at low spatial
resolution. These tubes can have any shape, and we ex-
perimentally explore the effect of these. Importantly, these
tubes also have large strides, sparsely sampling the video in
different views. We also optionally add an offset to the start
location, so that the patches do not always start at (0,0, 0)
and this allows a reduction in the overlap between the tubes.
This is illustrated in Figure 2. Tubes of various sizes are
also used in the MultiView approach for video classification
[61], however there they are densely sampled and processed
by multiple transformers, resulting in a more computation-
ally intensive approach.

Furthermore, in contrast to prior works, we also allow for
overlap between the tubes. Specifically, we can represent a
tube as (T x H x W) for the kernel shape, (T, H,, W) for
the spatio-temporal stride applied to the kernel, and (z, y, 2)
as the offset of the starting point of the convolution.

With the proposed design, our approach enables seam-
less fusion of the image- and video- visual information. The
sparse spatial sampling allows sharing the image and frame
tokens and the sparse video tubes create a low number of
video-specific tokens. This enables better sharing of the ViT
model between images and videos.

3.3. Positional embedding for sparse video tubes

A key aspect of our approach is the implementation
of the positional embedding. In language models, rela-
tive positional embeddings are a common and effective ap-
proach [49, 57]. However, here, the relative position be-
tween two tokens has minimal meaning, and no real ref-
erence to where the patch/tube came from in the original
video or image. The ViT model [9] and similarly TimeS-
Former [6] and ViViT [3] used learnable positional embed-
dings for the patches. Here, such an approach can be hard
for the model, as these learned embeddings do not neces-
sarily reflect where the patches came from in the original
video, especially in the case where patches overlap.

Instead, we use a fixed sine/cosine embedding. Impor-

2216



tantly, we take into account the stride, kernel shape and
offsets of each tube when applying the positional embed-
dings. This ensures that the positional embedding of each
patch and tube has the global spatio-temporal location of
that tube.

Specifically, we compute the embeddings as follows.
Here 7 is a constant hyperparameter (we used 10,000). For
j from 0to d//6 (d is the number of features), and for ¢, x, y
from 0 to T, H, W, z; € RT*H>xWxD.

wj =1/ (/7% 3)
pj.¢ = sin(t * w;), cos(t * w;) 4)
Pjx = sin(x * wj), cos(x * w;) (5)
Pjy = sin(y  w;), cos(y * w;) (6)

Zi[t7x7y76j : 6(] + 1)} += [pj,tvpj,m7pj7y] (7)

This adds each spatio-temporal position embedding to the
feature dimension of the token z;. Following previous work
[49], this is done for different wavelengths for each channel.
d//6 is used since we have 6 elements (a sine and cosine
value for each z, y, t), this creates a position value for each
channel of the representation.

Importantly, here z;[t, x, y] represents the center of the
tube, taking into account any strides and offsets used in
the tube construction (the channel dimension is not shown
here).

After the tokenization step, we concatenate all the tokens
together and apply a standard transformer model. This sim-
ple structure lets the model share the majority of the weights
between all inputs, which we find to be quite beneficial.

3.4. Sparse Tube Construction

We explore several methods to create the visual tubes.
Our core approach consist of 2 tubes: the 1 x 16 x 16 x d
tube used to tokenize the image and a 8 X 8 x 8 X d tube
additionally used for the video. Both have strides of 16 x
16 x 16. This base tokenizer provides strong performance,
but we explore several variations on it.

Multi-Tube. We add multiple tubes to the core approach
of various sizes. For example, we can add temporally long
and spatially small tubes, such as 16 x 4 x 4 to learn long
actions, or more spatially focused tubes such asa2x 16 x 16
tube. There are many variations of tube shape and stride,
which we experimentally explore.

Space-to-Depth Another way to extend the core ap-
proach is a method inspired by depth-to-space [40]. Here,
we reduce the number of channels in a tube, e.g., by a fac-
tor of 2. Thus the tube shape becomes T x H x W x d/2.
Next, we concatenate 2 tokens along the channel axis. We
can then also reduce the stride of the tube. This results in
the same number of tokens and dimensions as the original,
but effectively increases the kernel size without changing
the number of parameters. I.e., when the stride is reduced

1) Train a smaller model jointly on images and videos
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Figure 3. Scaling of TubeViT models: building large scale video
models is expensive. We propose to expand model capacity for
video models leveraging large pre-trained ViTs. With TubeViT
we can easily train on both image and video data a small-scale
model. Then we can adapt the sparse video tubes to a much larger
image-only trained ViT, which can be mostly frozen.

on the time axis, the token now represents 7' % 2 x H x W
locations, but only uses 7' H « W parameters. In the exper-
iments, we explore different settings: e.g., more temporal
dense vs more spatially dense and the depth to space factor
(2,4, 8, etc.).

Interpolated Kernels. For this setting, rather than hav-
ing a unique kernel for each tube, we learn 1 3D kernel of
shape 8 x 8 x 8. We then use tri-linear interpolation to re-
shape the kernel to various sizes, e.g., 4x16x16 or 32x4x4,
etc. depending on the tube configuration. Any sized ker-
nel can be created from this single kernel. This method has
several advantages. (1) It reduces the number of learned
parameters that are only used on the video stream. (2) It
enables more flexible usage of the kernels, e.g., it can be
made longer to handle longer videos, or spatially larger to
find small objects.

The TubeViT approach consists of the union of the
above-mentioned Multi-Tube and Space-to-Depth, the ex-
act settings are provided in the supplemental materials. We
experiment with Interpolated Kernels in ablations.

3.5. Image and Video Joint Training

As described above, our approach seamlessly adapts to
either image, video or both inputs. While image+video joint
inputs are rare, the ability to use them together while train-
ing is very important as many datasets with valuable anno-
tations (e.g., ImageNet, Kinetics) come from either image
sources or video sources but not both. Jointly training with
our approach is easy — the image is tokenized by the 2D
kernel and the video is tokenized by both the 2D patches
(with large temporal stride) and Sparse Tubes. Both are then
passed into a standard ViT; the position embedding will be
supplied in either case. The position embedding approach is
also needed for the joint training to be effective. We demon-
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strate the benefits of our approach for joint training in the
experiments, Section 4.

3.6. Image-To-Video Scaling Up of Models

We also propose a method for a more efficient way of
scaling up the models (Figure 3). Training large ViT models
is computationally expensive, especially for videos. Since
nearly all the components of our model are shared between
the both images and videos, we explore a method to utilize
large models without having heavy fine-tuning.

First, we train a smaller model jointly on images and
videos. This gives us a set of weights for the tubes. Then we
take a large pre-trained image ViT, but further add the tubes.
These tubes use the same kernel weights as the smaller
model, and so we can avoid further training them. Since
larger ViTs generally use more channel dimensions than
smaller ones, we use the space-to-depth transform again
here to create tokens with the proper channel dimensions
without needing new weights.

Next, we pick a point in the network and freeze all the
layers before it, for example, the 26th of 32 layers in ViT-H.
At this point, we add a gated connection to the network:

2® = MLP(LN(y*)) + y* + tanh(a)z° 8)

where s is the layer the network is frozen at (e.g., 26) of the
ViT model and 2° is the raw input tokens from the tubes. o
is the learned gating parameter, initialized at 0. In the first
steps of training, this gate has no effect on the representa-
tion, and thus the ViT is unchanged. However, it can learn
to incorporate the raw tubes at this point and further refine
the later weights.

4. Experiments

We evaluate the approach on several popular datasets:
Kinetics 400, Kinetics 600, Kinetics 700 [7,20], and Some-
thingSomething V2 [18]. These datasets cover a wide va-
riety of video understanding challenges and are well es-
tablished in the literature. The main results are trained
jointly on ImageNet-1k (of 1.2M images) and the video
data, please see the supplemental materials for full details.
We use standard Top 1 and Top 5 evaluation metrics and
report FLOPs of ours and previous works, when available.
Our model sizes are 90M Base (B), 311M Large (L). A
635M Huge (H) is ‘created’ with Image-to-Video scaling.

4.1. Main results

For the main results, we use 4 tubes with the following
configuration (order of ¢, h, w): (1) 8 x 8 x 8 with a stride
of (16,32, 32); (2) 16 x 4 x 4 with a stride of 6 x 32 x 32
and an offset of (4,8,8); (3) 4 x 12 x 12 with a stride of
(16, 32, 32) and an offset of (0,16, 16); and (4) 1 x 16 x 16
with a stride of (32, 16, 16). For an input of 32 x 224 x 224,

Method PT Data Topl Top5 Crops TFLOPs

TSM-ResNeXt-101 [26] ImageNet-1k 76.3 - -

ImageNet-1k 7177 933 10x 3 10.77

I3D NL [55]

VidTR-L [68] ImageNet-1k 79.1 939 10x3 10.53
LGD-3D R101 [36] ImageNet-lk 79.4 944 - -
SlowFast R101-NL [15] - 798 939 10x3 7.02
X3D-XXL [13] 804 946 10x3 582

ImageNet-1k 80.5 944 - -
ImageNet-21k 80.7 947 1x3 7.14

OmniSource [11]
TimeSformer-L [6]

MFormer-HR [33] ImageNet-21k 81.1 952 10x3 2876
MVIT-B [12] - 812 951 3x3 4.10
MoViNet-A6 [21] - 815 953 1x1 0.39
ViViT-L FE [3] ImageNet-1k 817 938 1x3 11.94
MTV-B [61] ImageNet-21K 824 952 4x3 11.16
Omnivore [16] ImageNet-1IK+SUN  84.1  96.3 - -
VideoMAE [45] - 874 976 -

Large Scale Pretraining Data

VATT-L [1] HowTol00M 82.1 955 4x3 29.80
ip-CSN-152 [47] 1G-65M 825 953 10x3 327
R3D-RS [10] WTS 83.5 - 10x3 921
OmniSource [11] 1G-65M 83.6 96.0 - -
MAE-ST [14] 1G-IM 84.4 - - -
ViViT-H [3] JFT 849 958 4x3 47.77
TokenLearner-L/10 [38] JFT 854 963 4x3 4891
Florence [64] FLD-900M 865 973 4x3 -
CoVeR [67] JFT-3B 87.2 - 1x3 -
CoCa [63] ALIGN (1.8B) 889 - - -
MTV-H [61] WTS 280p 899 983 4x3 7357
TubeViT-B ImageNet-1k 88.6 976 4x3 0.87
TubeViT-L ImageNet-1k 90.2 986 4x3 9.53
TubeViT-H (created) ImageNet-1k 909 989 4x3 17.64

Table 1. Performance on Kinetics 400. TubeViT performs best.
We report the crops and total TFLOPs used for inference. The
crops, t X x denotes ¢ temporal and x spatial crops.

this results in only 559 tokens, significantly less than other
approaches. In the supplemental material, we have detailed
experiments over many tube configurations, as well as the
space-to-depth settings used.

We would like to note that with data augmentation such
as random spatial and temporal cropping, over multiple
training epochs the model will see different parts of the
video, even with sparse sampling.

Comparison to SOTA. First, we compare our final ap-
proach to previous state-of-the-art (SOTA) methods. Ta-
bles 1, 2 and 3 shows the performance of our model com-
pared to the state-of-the-art on the Kinetics-400 Kinetics-
600 and Kinetics-700 datasets. Table 1 shows additional
information (e.g. views, pre-training datasets) which ap-
plies to the other tables as well. These results show our
approach outperforms SOTA, both in terms of accuracy and
efficiency. We also outperform methods on co-training of
images and videos, and methods with strong video pre-
training.

We note that all the sizes of our model perform well,
despite the fact that others are much larger or use signifi-
cantly larger pre-training data (e.g., CoCa with 1B params
and 1.8B examples, MerlotReserve has 644M params and

2218



Method Top1 TopS5
SlowFast R101-NL [15] 81.8 95.1
X3D-XL [13] 81.9 955
TimeSformer-L [6] 822 95.6
MFormer-HR [33] 82.7 96.1
ViViT-L FE [3] 829 946
MVIT-B [12] 83.8 96.3
MoViNet-A6 [21] 84.8 96.5
R3D-RS [10] (WTS) 84.3 -

ViViT-H [3] (JFT) 85.8 96.5
TokenLearner-L/10 [38] (JFT) 86.3 97.0
Florence [64] (FLD-900M) 87.8 97.8
CoVeR [67] JFT-3B) 87.9 -

MTV-H [61] (WTS 280p) 90.3 985
CoCa [63] (ALIGN 1.8B) 89.4 -

Merlot-Reserve-L [65] (YT-1B) 91.1 97.1
TubeViT-B (ImageNet-1k) 909 973
TubeViT-L (ImageNet-1k) 91.5 98.7
¢ TubeViT-H (created) 91.8 98.9

Table 2. Performance on Kinetics 600. Similarly, to Table 1 our
model uses the ImageNet-1k dataset. Most models use signifi-
cantly larger pre-training datasets (bottom half). TubeViT outper-
forms prior work.

Top 1 Top 5
VidTR-L [68] 70.2 -
SlowFast R101 [15] 71.0 89.6
MoViNet-A6 [21] 72.3 -
CoVeR (JFT-3B) [67] 79.8 -
CoCa (Align 1.8B) [63] 82.7 -
MTV-H (WTS 280p) [61] 83.4 96.2
TubeViT-L 83.8 96.6

Table 3. Performance compared to SOTA on Kinetics 700.

Top 1 Top 5
SlowFast R50 [15] 61.7 -
TimeSformer-L [6] 62.5
VidTR-L [68] 63.0 -
CoVeR [67] 64.7 -
MoViNet-A3 [21] 64.1 88.8
ViViT-L FE [3] 65.9 89.9
VoV3D-L [22] 67.3 90.5
MFormer-L [33] 68.1 91.2
MTV-B (320p) [61]  68.5 90.4
MVIT-B [12] 68.7 91.5
MVIT [23] 73.3 94.1
MaskFeat [58] 75.0 95.0
VideoMAE [45] 75.4 95.2
TubeViT-L 76.1 95.2

Table 4. Performance on Something-SomethingV2 dataset.

uses YT-1B dataset). Table 4 shows our results on the
Something-Something dataset (SSv2). This dataset is of-
ten used to evaluate more dynamic activities. Our approach

Kinetics 600

TubeViT-L Kinetics-only 85.6
TubeViT-L ImageNet then Kinetics 90.4
TubeViT-L ImageNet+Kinetics Jointly 91.5
2D Patches only ImageNet+Kinetics 87.6
Inflated 3D Patches ImageNet then Kinetics 88.4

Table 5. Combining datasets, which TubeViT seamlessly allows,
is highly effective, as seen here in these side-by-side results for the
Kinetics-600 dataset. The results are based on the ViT-L model.

outperforms SOTA on it as well.

Joint image+video training. We further explore the ef-
fects of co-training on image+video datasets, finding this to
be highly effective as also shown above. Table 5 evaluates
this in a side-by-side experiment of using Kinetics (video)
only vs Kinetics and ImageNet datasets for pre-training. We
see that there is a large gain from the co-training of our ap-
proach. We see that two-stage training, i.e., first training on
one dataset and then training on a second one, is also weaker
than the joint training, as the two datasets cannot interact
during training. We also compare to prior methods such as
TimeSFormer [6] only using dense 2D patches, or using in-
flated 3D kernels (e.g., ViViT [3]). In both cases, we see a
clear benefit from the proposed approach. We also note that
these prior approaches have significantly more FLOPs, due
to the large number of tokens from the dense sampling. Our
observations that image and video co-training is beneficial
are consistent with prior works [25,67]; here the difference
is that we have a single compact model to do that.

As a sanity check, we also compare our performance on
ImageNet-1k, without any hyperparameter tuning or addi-
tions: our ViT-B model only trained on ImageNet has 78.1
accuracy, similar to the ViT-B in [42]. When joint train-
ing with Kinetics-600, the model gets 81.4, a gain of 3.4%,
showing the benefits of joint training for image-only tasks
too. While other works achieve higher performance on Ima-
geNet, they often use specialized data augmentation, learn-
ing schedules, and other tricks which we are not using. In-
stead, we are purely studying the benefit from using both
videos and images.

Scaling video training with sparse video tubes. In Ta-
ble 6 we demonstrate how a small TubeViT model can be
adapted leveraging a large and (often independently) pre-
trained model on images only. We start by leveraging a
large, image-pretrained ViT, here ViT-H. We then take the
learned tubes from TubeViT-B and use them along with the
ViT-H image tokenizer to generate a set of tokens from a
video, same as before. Then these are used as input to ViT-
H, and we finetune only the latter parts of the model on the
video data. These results suggests that this is an effective
way to scale and utilize giant ViT models without needing
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Models | K600, Accuracy (%)

TubeViT-H Full Finetune | 91.8
Scaling method with different portions trained
Last FC Layer 85.6
+ Last 4 Layers 86.3
+ Last 8 Layers 86.8
+ Last 8 + Gated (Eq. 8) 89.7

Table 6. Image-to-Video Scaling. We take a ImageNet pre-trained
ViT-H and use a set of Tubes from TubeViT-B to create the to-
kens. We then fine-tune different portions of the model to see how
we can best take advantage of existing, large pretrained ViT mod-
els. Even pretraining of handful of layers can achieve performance
approaching the full model training.

the high compute cost to fully finetune the model. We also
see that the gating in Eq. 8 is effective. We also found that
in this setting, training time was reduced by 43%, as it has
fewer weights to update.

Detrimental Effects of Too Many Tokens. Next we
study the effect of number of tokens used in the model,
shown in Figure 4. This result is another key insight as
to why our approach works so well: with too many tokens,
the performance drops, especially when only using Kinetics
data. There are a number of possible reasons for why this
occurs, for example, the self-attention mechanism could be
struggling to learn for longer sequences, or there may not
be sufficient data to learn the longer sequences, or perhaps
the model is overfitting with longer sequences. This result
indicates that for current datasets, the sparse sampling is
an effective and efficient way to process videos. Further,
it is possible that existing using long, densely sampled se-
quences are effected by this, and perhaps another reason the
factorized attention modules are needed.

4.2. Ablations

In this section, we present a number of ablation studies
to determine why this method is effective. For these exper-
iments we use Kinetics 600.

Main ablations. First, we study the effect of the choice
of position biases (Table 7a). We find that adding fixed co-
sine position embedding performs best and much better than
other embeddings. Intuitively, this makes sense, since we
are sparsely sampling potentially overlapping tokens, this
method is able to best capture the token location.

Next in Table 7b, we study the number of tubes used.
This finding, which is consistent with previous multi-view
observations [01], shows that having a variety of tubes is
beneficial to video understanding.

Next, in Table 7c, we study the depth-to-space versions
of the network. Here, we reduce the channels of the gen-
erated tokens from D//S, e.g., by a factor of 2 or 4. Then
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Figure 4. Accuracy vs. Number of tokens used in our model.
We find that when increasing the tokens above 1500, there is a
noticeable drop in performance, especially when only training on
Kinetics-600 data. Joint training is more robust.

after generating the tokens, we concatenate them along the
channel axis. We study both increasing the number of to-
kens along the spatial and temporal dimensions. We find
this to be an effective method, as it enables more dense sam-
ples without increasing the number of parameters or tokens.

Table 7d compares evaluating with more patches than the
model was trained with. To do this we reduce the strides of
the kernel. Initially this improves results, but after increas-
ing 2x, the performance begins to drop, likely because the
evaluation data is too different from the training one.

In Table 7e, we study the ability of the interpolated single
kernel. L.e., rather than having N 3D convolutional kernels,
one for each tube, we build 1 8 x 8 x 8 3D kernel and use in-
terpolation to generate the different tube shapes. Somewhat
surprisingly, we find this works fairly well, while also re-
ducing the number of learnable parameters in the network.

In Table 7f, we compare the approach with different
number of temporal and spatial crops. We find that even
a single crop gives strong performance, and the standard
4 x 3 performs nearly the same as the 10 x 10 setting, sug-
gesting that the sparse samples are quite suitable and further
information is not as beneficial.

Factorized attention ablations. In Table 8, we further
study the effect of adding a new attention layer to an Ima-
geNet pre-trained ViT model. Here, we are using the tube
method to tokenize the inputs, but instead of using a fac-
torized attention module, we simply add an additional self-
attention layer. This has a similar effect of the factorized
attention approaches that add new, uninitialized K, Q,V
projections to a pre-trained ViT (e.g., TimeSFormer and
ViViT). These results indicate that such methods are not
able to best utilize the image pre-trained weights of the net-
work due to these new layers. Since the sparse tubes yield
few additional tokens, they can directly use the same ViT
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| GF| K600

| K600 |GF|K600 -

None 73.6 _— Baseline 72| 83.4
Learned 79'2 1170 78.4 WithD2S x2 T |72 | 84.7
Relative 77'5 2171|815 With D2S x2S |72 | 84.5
. . . ' 4172 | 83.4 WithD2S x4 T |72 | 85.1

Fixed Cosine (no stride) | 77.7 .
Fixed Cosine (Ours) 84.5 8] 74854 With D2S x4 § 172 85.4
- _ . With D2S x4 ST| 72| 85.3

(a) Position Embeddings. Fixed, co- (b) Number of Tubes. (c) Space To Depth. Applying space-

sine embeddings with strides is best.

| K600
Base (559) | 84.5
768 84.9
1024 84.6
1536 83.5

(d) Eval Tokens. Generating
larger number of tokens at eval
time than in training, where
559 are used.

(e) Interpolated Kernel.
Using a single 3D kernel in-
terpolated to different sizes.

to-depth temporally (T), spatially (S),
and spatio-temporally (ST).

| K600

| K600 1x1 |828
Interpolated | 83.8 4x1 83.3
TubeViT | 84.5 1x3 |836
= 7 4x3 | 845
10 x 10| 84.7

(f) Multi-Crop Evaluation.
4 x 31is used in the paper.

Table 7. Ablation studies on various components of our approach on Kinetics-600, using TubeViT-B.

Layers Added | K600

0 | 8423
1 80.23
2 78.87
4 75.24
8 72.95

Table 8. We find that adding even a single layer to a pretrained
image network degrades performance. This suggests that the fac-
torized attention methods are sub-optimal since they cannot fully
take advantage of the image-pre-trained networks. Trained for 70k
steps.

model without factorized attention and are thus able to bet-
ter utilize the image trained weights. Note that there are still
differences between the works, e.g., the reduced number of
tokens, etc. However, we believe this observation holds,
and is a possible explanation for why the spatio-temporal
attention in ViVit performed better for some datasets.
Model scaling ablations. Table 9 provides ablations on
scaling to create TubeViT Base from a Tiny one. Even just
training the final few layers is effective (4 of 12), and can
nearly match the performance of full finetuning. This is
consistent with our observations in Table 6 for ViT-H.
Figure 5 visualizes the learned 2D patches and 3D tubes.

5. Conclusion

We proposed sparse video tubes for video recognition.
With sparse video tubes, a ViT encoder can be transformed
into an efficient video model. The approach is simple, en-

Trained ‘ K600
Last FC Layer | 79.6
+ 1 Layer 80.8
+ 4 Layers 81.1

Whole Model 81.4

Table 9. Image-to-Video scaling from Tiny to Base. We take a
ImageNet pre-trained ViT-Base and the TubeViT corresponding
to ViT-Tiny and ImageNet pre-trained ViT-Base to create a larger
TubeViT. These models were trained for 50k steps.

s .

2D Patches

8x8x8 Tube

4x12x12 Tube

Figure 5. Visualization of a selected set of 2D patches and tubes.

ables seamless joint training with images and videos and
improves video recognition across multiple datasets. We
also demonstrate an elegant scaling of video models with
our proposed method. We conduct extensive ablation ex-
periments to determine why the approach works, finding
the a combination of the joint training, reduced tokens, and
better utilization of shared image+video weights led to the
improvements. We obtain SOTA or above performance.
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