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Abstract

Generating synthetic images of handwritten text in a
writer-specific style is a challenging task, especially in the
case of unseen styles and new words, and even more when
these latter contain characters that are rarely encountered
during training. While emulating a writer’s style has been
recently addressed by generative models, the generalization
towards rare characters has been disregarded. In this work,
we devise a Transformer-based model for Few-Shot styled
handwritten text generation and focus on obtaining a ro-
bust and informative representation of both the text and the
style. In particular, we propose a novel representation of
the textual content as a sequence of dense vectors obtained
from images of symbols written as standard GNU Unifont
glyphs, which can be considered their visual archetypes.
This strategy is more suitable for generating characters
that, despite having been seen rarely during training, pos-
sibly share visual details with the frequently observed ones.
As for the style, we obtain a robust representation of unseen
writers’ calligraphy by exploiting specific pre-training on a
large synthetic dataset. Quantitative and qualitative results
demonstrate the effectiveness of our proposal in generat-
ing words in unseen styles and with rare characters more
faithfully than existing approaches relying on independent
one-hot encodings of the characters.

1. Introduction
Styled handwritten text generation (HTG) is an emerg-

ing research area aimed at producing writer-specific hand-
written text images mimicking their calligraphic style [7,
14, 29]. The practical applications of this research topic
range from the synthesis of high-quality training data for
personalized Handwritten Text Recognition (HTR) mod-
els [5, 6, 8, 27, 28, 48] to the automatic generation of hand-
written notes for physically impaired people. Moreover, the
writer-specific style representations that can be obtained as
a by-product of models designed for this task can be applied
to other tasks such as writer identification, signature verifi-
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Figure 1. Different from previous approaches that use indepen-
dent one-hot vectors as input text tokens (e.g., the State-of-the-Art
HWT [7]), we exploit visual archetypes, i.e., geometrically-related
binary images of characters. By resorting to similarities between
the archetypes, we are able to generate both characters that are
rarely seen during training (highlighted in red) and frequently ob-
served ones more faithfully.

cation, and handwriting style manipulation. When focus-
ing on styled handwriting generation, simply adopting style
transfer is limiting. In fact, imitating a specific writer’s cal-
ligraphy does not only concern texture (e.g., the color and
texture of background and ink), nor just stroke thickness,
slant, skew, and roundness, but also single characters shape
and ligatures. Moreover, these visual aspects must be han-
dled properly to avoid artifacts that might result in content
change (e.g., even small additional or missing strokes).

In sight of this, specific approaches have been designed
for HTG. The handwriting can be handled in the form
of a trajectory (made of the underlying strokes), as done
in [1, 2, 19, 24, 31], or of an image that captures its appear-
ance, as done in [3,7,11,14–16,20,29,32,35,36,39,43,45].
The former approaches adopt online HTG strategies that en-
tail predicting the pen trajectory point-by-point, while the
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latter ones are offline HTG models that output entire text
images directly. We follow the offline HTG paradigm since
it has the advantage, over the online one, of not requiring
costly pen-recording training data, and thus, being applica-
ble also to scenarios where the information on online hand-
writing is not available for a specific author (e.g., in the case
of historical data) and being easier to train for not suffering
of vanishing gradient and being parallelizable.

Specifically, in this work, we focus on the Few-Shot
styled offline HTG task, in which we have just a few exam-
ple images of the writer’s style to mimic. State-of-the-Art
(SotA) approaches tackling this scenario feature an encoder
that extracts writer-specific style features and a generative
component, which is fed with the style features and the con-
tent representations, and produces styled text images condi-
tioned on the desired content. These approaches usually
exploit Generative Adversarial Networks (GANs [18, 40]),
for example [3, 11, 14–16, 29, 32, 36]. A more recent ap-
proach [7] is based on an encoder-decoder generative Trans-
former model [44] that captures character-level style varia-
tions better than previous GAN-based strategies thanks to
the cross-attention mechanism between style representation
and content tokens. In the approaches mentioned above, the
encoding of the text content is obtained by starting from
one-hot vectors, each representing a different character in a
fixed charset. In this way, the characters are all independent
by design. Thus, possible geometric and visual similarity
among them cannot be modeled nor exploited for genera-
tion, which might result in a quality gap between the images
generated by these approaches for characters that are highly
represented in the training set and rare ones (i.e., long-tail
characters). Moreover, for computational tractability, the
fixed charset that the approaches relying on a one-hot rep-
resentation of text tokens can handle is relatively small.

Contribution. Our proposed approach entails represent-
ing characters as continuous variables and using them as
query content vectors of a Transformer decoder for gener-
ation. In this way, the generation of characters appearing
rarely in the training set (such as numbers, capital letters,
and punctuation) is eased by exploiting the low distance in
the latent space between rare symbols and more frequent
ones (see Figure 1). In particular, we start from the GNU
Unifont font and render each character as a 16×16 binary
image, which can be considered as the visual archetype of
that character. Then, we learn a dense encoding of the char-
acter images and feed such encodings to a Transformer de-
coder as queries to attend the style vectors extracted by a
Transformed encoder. Note that, by resorting to charac-
ter images rendered in the richer GNU Unifont, which is
the most complete in terms of contained Unicode charac-
ters, we can handle a huge charset (more than 55k charac-
ters) seamlessly, i.e., without the need for additional param-
eters, as it is the case for the commonly-adopted one-hot

encoding. Moreover, as for the style encoding part, we ex-
ploit a backbone to represent the style example images that
has been pre-trained on a large synthetic dataset specifically
built to focus on the calligraphic style attributes. This strat-
egy, widely adopted for other tasks, is usually disregarded
in HTG. Nonetheless, we demonstrate its effectiveness in
leading to strong style representations, especially for unseen
styles. We validate our proposal with extensive experimen-
tal comparison against recent generative SotA approaches,
both quantitatively and qualitatively, and demonstrate the
effectiveness of our proposal in generating words with both
common and rare characters and in both seen and unseen
styles. We call our approach VATr: Visual Archetypes-
based Transformer. The code and trained models are avail-
able at https://github.com/aimagelab/VATr.

2. Related Work

HTG is related to the Font Synthesis task, where the de-
sired style must be represented and used to render char-
acters consistently [4, 9, 33, 41, 46]. However, Font Syn-
thesis approaches just need to generate single characters,
thus, are more closely related to HTG for ideogrammatic
languages [10, 17, 25, 47]. In general, both for ideogram-
matic and non-ideogrammatic languages, handwriting can
be treated either as a trajectory capturing the shape of the
strokes making up the characters or as a static image captur-
ing their overall appearance. Depending on this conception,
online or offline approaches to HTG can be applied.

Online HTG. Approaches to online HTG exploit sequen-
tial models, such as LSTMs [19], Conditional Variational
RNNs [2], or Stochastic Temporal CNNs [1], to predict the
pen position point-by-point based on its current position and
the input text to be rendered. The first approach following
this strategy was proposed in [19] and did not have control
over the style. This limitation was then addressed by fol-
lowing works by decoupling and then recombining content
and writer’s style [1,2,31]. Further improvements to online
HTG approaches can be obtained by training the sequential
model alongside a discriminator [24], which is a philosophy
similar to SotA GAN-based offline HTG approaches. The
main drawbacks of approaches following the online HTG
strategy are that they struggle to learn long-range dependen-
cies and that they require training data consisting of digital
pen recordings, which are difficult to collect or even impos-
sible to obtain for application scenarios such as historical
manuscripts. In the sight of these limitations, in this work,
we follow the offline HTG paradigm.

Offline HTG. Traditional offline HTG solutions [20,35,43,
45] resort to heavy human intervention for glyphs segmen-
tation and then apply handcrafted geometric static-based
feature extraction before combining those glyphs with ap-
propriate ligatures and rendering them with texture and
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Figure 2. Overview of our Visual Archetypes-based Transformer for HTG (VATr). Few-shot learning is provided by a few images of the
desired calligraphic style, encoded via a convolutional backbone pre-trained on a large synthetic dataset; the output vector is passed through
a Transformer encoder for creating a latent space with robust style vectors (the Style Encoder E on the left). The text to generate is rendered
as a sequence of GNU Unifont binary images, representing the visual archetypes of the characters. These are the queries of a Transformer
decoder to perform cross-attention with the style vectors. The resulting content-style representation is then fed to a convolutional decoder
that outputs the styled handwritten text image. These last two components are our Content-Guided Encoder D.

background blending. Other than the costly human inter-
vention that these approaches entail, their main limitation is
that they can only render the glyphs and ligatures observed
for each style. More recent deep learning-based approaches,
instead, are able to infer styled glyphs even if not directly
observed in the style examples. Learning-based solutions
rely on GANs, either unconditioned (for non-styled HTG)
or conditioned on a varying number of handwriting style
samples (for styled HTG). In this latter case, style samples
can be entire paragraphs or lines [11], a few words [7, 29],
or a single word [15, 16, 36]. Collecting a few handwrit-
ing samples from a writer is not much more costly than one
and generally results in better performance [32]. The first of
these approaches was proposed in [3] and was able to gen-
erate fixed-sized images conditioned on the content embed-
ding but with no control over the calligraphic style. Note
that, different from natural image generation, generating
handwritten text images should entail producing variable-
sized images. Thus, the approach presented in [14] aims at
overcoming this limitation by concatenating character im-
ages, still not being able to imitate handwriting style.

Approaches tackling styled HTG condition the genera-
tion not only on the text content but also on a vector repre-
sentation of the style [11,15,16,29,39]. In such approaches,
the style and the content representations are obtained sep-
arately and then combined in a later stage for generation.
This prevents those approaches from effectively capturing
local writing style and patterns. This limitation is addressed
by the Transformer-based approach proposed in [7], which

is able to better capture content-style entanglement by ex-
ploiting the cross-attention mechanism between the style
vector representation and the content text representation. In
this work, we follow the Transformer-based paradigm for
its superior capability of rendering local style patterns.

Content Representation. The content tokens used in the
approaches mentioned above [3,7,11,14–16,29,39] are usu-
ally independent one-hot vectors, each representing a char-
acter in a finite and generally small charset. This strategy
is thus limiting due to the relatively small charset that can
be handled with reasonable computational cost and is inef-
ficient for hindering the possibility of leveraging similari-
ties between characters. Our approach, instead, is to exploit
character images as text content inputs. Note that the ap-
proaches proposed in [32, 36] feed the textual input as a
whole image containing the desired text written in a type-
face font. These images are then rendered in the desired
style in a style-transfer fashion, also exploiting the geome-
try encoded in the typeface-written image for letter spacing
and curvature. Different from these approaches, we input
text tokens as sequences of character images rendered in the
richer GNU Unifont, which is as modular as the approaches
employing one-hot encodings and allows exploiting geo-
metric similarities between characters for generation.

3. Proposed Approach

The few-shot offline HTG problem that we tackle in
this work can be formulated as follows. Consider a writer
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w∈W, for which we have P samples of handwritten word
images at disposal, Xw={xw,i}Pi=0 (in this work, follow-
ing [7, 29], we set P=15). Moreover, consider an arbitrar-
ily long set of Q text words C={ci}Qi=0, each containing an
arbitrary number ni of characters. Our goal is to generate
images YC

w of words with the content of the strings in C
and the style of the writer w (see Figure 1, bottom).

Model Overview. We devise a Transformer encoder-
decoder architecture, in combination with a pre-trained con-
volutional feature extractor for handling the style samples
Xw, and rendered characters images for handling the con-
tent strings C. First, a pre-trained convolutional feature ex-
tractor handles the style samples Xw and feeds the resulting
vectors to a Transformer encoder that enriches them with
the long-range dependencies captured by the self-attention
mechanism and outputs a sequence of style vectors Sw. The
Transformer decoder performs cross-attention between Sw

and the content strings C to be rendered, which are repre-
sented as a sequence of their visual archetypes. The cross-
attention mechanism brings to an entangled content-style
representation that better captures local style patterns in ad-
dition to global word appearance. Finally, the obtained rep-
resentation is fed into a convolutional decoder that gener-
ates the content and style conditioned word images YC

w . We
refer to this part of our architecture as the Content-Guided
Decoder D. A schematic overview of our VATr architecture
is reported in Figure 2.

3.1. Style Encoder

The Style Encoder E , which transforms the few sam-
ple images Xw into the style features Sw, is a pipeline of
a convolutional encoder and a Transformer encoder. This
choice is motivated by the data efficiency of convolutional
neural networks and their ability to extract representative
features and the suitability of the multi-head self-attention
mechanism to model long-range dependencies in the style
images. The selected convolutional encoder backbone is a
ResNet18 [21], which is a popular choice for approaches
dealing with text images [7, 23, 37, 49]. A novel additional
characteristic is a pre-training process to obtain robust fea-
tures from the style sample images. For this, we exploit a
specifically built large dataset of word images rendered in
calligraphic fonts. The details on the pre-training dataset
are given in § 3.1.1. Once pre-trained, we use the back-
bone to extract P feature maps hw,i∈Rh×w×d from the P
style images xw,i∈Xw. These feature maps are then flat-
tened along the spatial dimension to obtain a (h·w)-long
sequence of d-dimensional vectors. Note that while h and
w depend on the input images shape, the embedding size
d is fixed and set equal to 512 in this work. The elements
of this sequence represent adjacent regions of the original
images, corresponding to the receptive field of the con-
volutional backbone. The flattened feature maps of each

style image are further concatenated to obtain the sequence
Hw∈RN×d, where N=h·w·P , which is fed into the first
layer of the multi-layer multi-headed self-attention encoder.
This encoder comprises L=3 layers, each with J=8 atten-
tion heads and a multilayer perceptron. The output of the
last layer HL=Sw∈RN×d is the sequence of style features
for writer w, which is fed to the Transformer decoder in D.

3.1.1 Synthetic Pre-training

Large-scale pre-training is an effective strategy employed
in a number of learning tasks. For HTG, the pre-training
data should be abundant and should capture the shape vari-
ability of the glyphs and the texture characteristics of the
ink and background. In the sight of these considerations,
to build the dataset used for pre-training the convolutional
backbone, we render 10 400 random words from the En-
glish vocabulary, each in 10 400 freely online available cal-
ligraphic fonts and on backgrounds randomly selected from
a pool of paper-like images, thus obtaining more than 100M
samples. To achieve better realism, we apply random trans-
formations such as rotation and elastic deformation via the
Thin Plate Spline transformation [13] to introduce shape
variability, gaussian blur to avoid sharp borders and sim-
ulate handwriting strokes, and grayscale dilation and color
jitter to simulate different ink types1. We use the so ob-
tained dataset to train the backbone to recognize the style of
the word images by minimizing a Cross-Entropy Loss. Note
that by exposing the network to such variability, we force it
to extract features that are representative of the calligraphic
style rather than the overall image appearance (which is in-
fluenced by the textual content, the background, and the ink
type or writing tool).

3.2. Content-Guided Decoder

The first block of the Content-Guided Decoder D is a
multi-layer multi-head decoder with L=3 layers and J=8
heads as the encoder. The decoder performs self-attention
between the content vectors representing the elements in C,
followed by cross-attention between the sequence of con-
tent vectors (treated as queries) and the style vectors Sw

(used as keys and values). In this way, the model can learn
content-style entanglement since each query is forced to at-
tend at the style vectors that are useful to render its final
shape other than the general appearance.

Unlike existing approaches that represent the content
queries as embeddings of independent one-hot-encoded
characters, in this work, we propose to exploit a represen-
tation that captures similarities between characters. In par-
ticular, we obtain the content queries as follows. Each con-
tent string ci∈C is made of a variable number of characters
ki, i.e., ci={qj}kij=0. First, we render the characters in the

1Available at https://github.com/aimagelab/VATr
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will

Figure 3. Comparison between the Unifont characters (top) and
the same characters in different calligraphic styles (bottom). The
geometric similarities between the characters are captured by the
visual archetypes and thus can be exploited in generation.

GNU Unifont font, which, different from all other typeface
fonts, contains all the Unicode characters. The rendering
results in 16×16 binary images, which are then flattened
and linearly projected to d-dimensional query embeddings,
a strategy that is related to the direct use of image patches
as input to Vision Transformer-like architectures [12].

In Figure 3, we show some exemplar visual archetypes
(GNU Unifont characters) and the corresponding handwrit-
ten characters in different styles. It can be observed that the
geometric similarities among the archetypes are reflected
in styled characters. These similarities can be exploited
for generating long-tail characters, i.e., characters that are
rarely seen during training. In fact, by being fed with in-
dependent tokens as content queries, the network is forced
to simply memorize content-shape relations. Not being ex-
posed to a sufficient number of such pairs does not allow the
model to learn such relations and results in unsatisfactory
generation capabilities of long-tail characters. Conversely,
with our image-based input, the network can learn to ex-
ploit geometric attributes and similarities between highly-
represented and long-tail characters for rendering those lat-
ter, and thus, can generate them more faithfully. It is also
worth noting that this character representation makes our
model more scalable than one-hot encoding-based solu-
tions. In fact, the query embedding layer we use has 256×d
parameters and allows us to handle a charset containing up
to 2(16·16) characters. For handling the same amount of
characters represented as one-hot vectors, the query embed-
ding layer would have 2(16·16)×d parameters.

The output of the last Transformer decoder layer for the
content string ci is a tensor Fci∈Rki×d. We add normal
gaussian noise to Fci , to enhance variability in the gener-
ated images, and project it into a (ki×8192) matrix, which
we then reshaped into a 512×4×4ki tensor. This tensor
is fed to a convolutional decoder consisting of four residual
blocks and a tanh activation function that outputs the styled
word images YC

w .

3.3. Model Training

Formally, our complete VATr model is given by Gθ =
E◦D : (Xw,C)→YC

w . We train it alongside other modules
used to calculate the overall loss for Gθ.

The first of those modules is a convolutional discrimi-
nator Dη , which is trained to distinguish real images from
images generated by Gθ, thus forcing the generator to pro-
duce realistic images. To optimize Gθ and Dη we follow the
adversarial paradigm with the hinge adversarial loss [34]

Ladv =E [max(1−Dη(Xw), 0)]+

E [max(1+Dη(Gθ(Xw,C)), 0)] .

Additionally, we exploit an HTR model [42], Rϕ, which
is in charge of recognizing the text in the generated images,
thus forcing the generator to reproduce the desired textual
content other than rendering the style. The HTR model is
trained with the real images Xw and their ground truth tran-
scription, while its loss value calculated on the generated
images YC

w is propagated through the generator Gθ. The
loss of the HTR model is obtained as

LHTR = Ex

[
−
∑

log(p(tx|Rϕ(x)))
]
,

where x can be either a real or a generated image, and tx is
its transcription coming from the ground truth label in case
x∈Xw or from C in case x∈YC

w .
Moreover, we employ a convolutional classifier Cψ in

charge of classifying the real and generated images based
on their calligraphic style (i.e., the style of writer w), thus
forcing the generator Gθ to render the correct style. As done
for the Rϕ module, also this classifier is trained with the real
images, and its loss value on the generated images is used
to guide the generator. Formally, the loss for this module is

Lclass = Ex

[
−
∑

log(p(w|Cψ(x)))
]
.

Also in this case, x∈Xw or x∈YC
w .

To further enforce the generation of images in the desired
style, we use an additional regularization loss, namely the
cycle consistency loss given by:

Lcycle = E
[∥∥E(Xw)− E(YC

w )
∥∥
1

]
.

The rationale is to force the generator to produce styled im-
ages for which the encoder E would extract the same style
vectors. In other words, we want the style features of the
input images to be preserved in the generated ones.

Overall, the complete objective function we use to train
our model is given by combining the above loss terms
equally weighed, i.e.,

L = Ladv + LHTR + Lclass + Lcycle.

For an analysis of the role of each loss term on the perfor-
mance, we refer to the Supplementary material.
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Figure 4. Distribution and classification of the characters in the
training set of the IAM dataset (in logarithmic scale). We set a
threshold on the frequency with which the characters appear equal
to 1000 to identify the long-tail ones (indicated as a red line).

4. Experiments
In this section, in addition to analyzing the performance

in the standard styled HTG scenarios, we aim to explore
the capability of our approach and of SotA ones to gen-
erate characters that are long-tail-distributed in the dataset
used for training. We believe that this is a relevant aspect
to consider when evaluating the HTG performance, which
has been so far neglected in the literature on this task. Ad-
ditional analysis is reported in supplementary materials.
Implementation Details. All the experiments have been
carried out on a single NVIDIA RTX 2080 Ti GPU. For pre-
training the convolutional style encoder, we set the batch
size to 32. We use the Adam optimizer with an initial learn-
ing rate equal to 2×10−5 and apply exponential scheduling
with a decay factor equal to 10−1/90000. We stop the train-
ing with an early stopping strategy with patience 30. Note
that, due to the large amount of samples in the dataset, we
are able to feed the convolutional backbone with almost al-
ways unseen samples before convergence. For this reason,
we count an epoch every 1000 iterations. We employ the
Adam optimizer also for training the complete HTG model
on the real benchmark dataset considered in this work but
fix the learning rate to 2 · 10−4 and batch size equal to 8. In
this case, the training is stopped after 7k epochs.
Evaluation Protocol. For validating our proposal and com-
paring it as fairly as possible against SotA HTG approaches,
we consider the widely-used IAM dataset [38], with im-
ages rescaled to have 64 pixels in height and proportional
width. Moreover, we adopt the same evaluation procedure
as in [7, 29]. In particular, the dataset contains 62 857 En-
glish words from the Lancaster-Oslo/Bergen (LOB) cor-
pus [26], handwritten by multiple users. For this work, we
consider the words written by 340 of those users for train-
ing and those written by the remaining 160 for testing. The
words in the dataset are composed starting from an alphabet
of 79 characters distributed in the training set as shown in
Figure 4. It can be noticed that these characters appear in
the dataset in a long-tail distribution: small letters are the
most represented (note that ‘e’, ‘t’, ‘a’, and ‘o’ are the most
common letters, which reflects the frequency in the English

Table 1. Ablation analysis on the components of VATr.

Pre-training Content input FID (All) FID (Long-Tail)

None One-hot vectors 18.48 24.93
Synthetic One-hot vectors 19.19 23.71

None Visual archetypes 17.91 22.15
IAM Visual archetypes 18.93 21.88

Synthetic Visual archetypes 17.79 21.36

vocabulary), while almost all the capital letters, digits, and
punctuation are rare characters in the dataset. In our ex-
periments, we consider long-tail characters those appear-
ing less than 1000 times in the training set. We compare
the proposed VATr model against the following learning-
based methods for HTG. When available, we use the of-
ficial implementation and weights released by the authors
and evaluate all the models in the same setups. In particu-
lar, we consider the non-styled HTG ScrabbleGAN [14], the
one-shot styled HTG model HiGAN [15], the approach pro-
posed in [11] (which we refer to as TS-GAN), and the few-
shot styled methods GANwriting [29] and HWT [7]. These
two latter approaches use the same number of style exam-
ples as we use. Notably, HWT is the most closely related to
our proposal for following a Transformer encoder-decoder
paradigm for HTG. For performance evaluation, we con-
sider the Fréchet Inception Distance (FID) [22] and the Ge-
ometry Score (GS) [30] for measuring the visual quality of
the generated images. Moreover, to further evaluate the ca-
pability of the considered methods to generate rare charac-
ters faithfully, we calculate the Character Error Rate (CER)
of an HTR network trained on the IAM dataset [42] when
recognizing the text in the generated images. Note that, for
all the scores, the lower the value, the better.

4.1. Ablation Analysis

First, we validate the benefits of using visual archetypes
instead of one-hot vectors by replacing those latter as input
to D. The results of this analysis are reported in Table 1,
both when generating styled words in the whole IAM test
set and when generating words containing long-tail charac-
ters. It can be observed that our approach is superior to the
baseline, especially for the generation of long-tail words.
Moreover, we study the effect of the proposed synthetic pre-
training strategy by comparing the performance obtained
when training on real images only, and when pre-training to
recognize the writers in the IAM dataset. Also these results
are reported in Table 1 and show that the proposed synthetic
pre-training brings more gain than training on real data, es-
pecially when used in combination with visual archetypes.

4.2. Few-Shot Styled HTG

In this section, we evaluate the capability of the proposed
approach to generate realistic handwritten text images, re-
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Figure 5. Qualitative comparison between our approach and the few-shot style HTG competitors in generating images with the desired
textual content in the desired calligraphic style.

Table 2. Generated image quality evaluation on the IAM test set,
regardless of the calligraphic style. Best results in bold.

FID GS

ScrabbleGAN [14] 20.72 2.56×10-2

HiGAN [15] 24.90 3.19×10-2

TS-GAN [11] 20.65 4.88×10-2

HWT [7] 19.40 1.01×10-2

VATr (Ours) 17.79 1.68×10-2

gardless of the calligraphic style. To this end, we calcu-
late the FID and GS on the IAM test set. The results of
this study are reported in Table 2. It can be observed that
our approach gives the best FID score and is second-best
in terms of GS by a small margin, suggesting the realism
of its generated images. As for the styled HTG evaluation,
we follow the procedure proposed in [29]. In particular, we
calculate the FID of the generated images in comparison
to the real ones for each considered writer separately and
then average the scores. We perform our analysis by distin-
guishing four increasingly challenging scenarios, namely:
1) the IV-S case, in which we generate in-vocabulary words
in styles seen during training (i.e., both style and content
have been seen during training); 2) the IV-U case, in which
the words to generate are in-vocabulary, but the style has
never been observed; 3) the OOV-S case, in which the tex-
tual content consists of out-of-vocabulary words, but the
style has been encountered during training; 4) the OOV-U
case, in which both the desired style and words are unseen.
The results of this analysis are reported in Table 3. It can
be observed that our approach outperforms the competitors

Style VATr HWT

Figure 6. Exemplar generated images from style images with
background artifacts.

in all four settings by a large margin. Some qualitative re-
sults are reported in Figure 5, which refer to the generation
of a text with different unseen styles. It is also worth noting
that, thanks to our large-scale synthetic pre-training strat-
egy, VATr is able to focus on the shape attributes of the style
to reproduce rather than on the background. This results
in clearer generated images that reflect the handwriting of
the reference ones rather than nuisances in the background
(see Figure 6). Note that separating the handwriting from
the background can negatively affect the FID score, which
works on Inception v3 features, and even more the GS since
it is calculated directly on the images. Nevertheless, this
is an interesting capability for HTG models since it makes
them suitable for generating styled text that can be easily
superimposed to any desired background without artifacts.

4.3. Long-Tail Characters Generation

In this section, we focus on the capability of our visual
archetypes-based approach to faithfully render rare charac-
ters. Note that the split of the IAM dataset used in train-
ing contains a total of 66 608 word images. Among those,
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Table 3. Generated image quality evaluation by considering
seen and unseen calligraphic style and in-vocabulary and out-of-
vocabulary textual content. Best results in bold.

IV-S IV-U OOV-S OOV-U

TS-GAN [11] 118.56 128.75 127.11 136.67
GANwriting [29] 120.07 124.30 125.87 130.68
HWT [7] 106.97 108.84 109.45 114.10
VATr (Ours) 88.20 91.11 98.57 102.22

6887

5651

5107

0216

2023

5051

7311

6817

VATr HWTContent

Figure 7. Comparison of the images of numbers generated by our
approach and HWT.

only 13 064 contain at least one long-tail character. In Ta-
ble 4, we present the performance on the generation of test
strings that contain those characters, with a further evalu-
ation on words made up of just digits. In particular, we
evaluate both style and content preservation by measuring
the FID and the CER. As can be observed from the val-
ues of the FID, SotA approaches relying on one-hot vector
encodings of the content struggle to generate realistic im-
ages, especially when these contain only rare characters, as
in the case of numbers. Our approach, instead, can handle
such words more easily by exploiting shape similarity be-
tween the visual archetypes of the characters to render. This
is confirmed by the qualitative results of the generation of
numbers reported in Figure 7, where we compare our ap-
proach against HTW to better highlight the benefit of using
the visual archetypes over one-hot encodings. It can be ob-
served that the images generated by HWT do not resemble
digits, while those of VATr better preserve the content.

Finally, it is worth mentioning that our approach comes
with the machinery to generate, to some extent, also out-of-
charset characters, i.e., unseen symbols (e.g., from other al-
phabets) in different handwriting styles. In particular, when
those unseen symbols share visual details with the char-
acters encountered during training (e.g., as in the case of
Greek letters ‘δ’ and ‘ω’ and Latin letters ‘s’ and ‘w’), our
model can resort to the geometric patterns learned for the
latter. Some qualitative examples of out-of-charset gener-
ation are given in Figure 8. Although the visual quality is
inferior compared to that of the seen characters, our VATr

Table 4. Generated image quality evaluation by considering words
containing at least one among the long-tail characters in the IAM
dataset, and just numbers. The CER value calculated on real im-
ages is reported for reference. Best results in bold.

All Long-Tail Digits

FID CER FID CER

Real Images - 6.21 - 45.80

HiGAN [15] 26.08 8.63 129.61 101.53
HWT [7] 40.95 20.36 131.74 98.47
VATr (Ours) 21.36 11.85 104.12 94.66

Style examples

Figure 8. Generated images of some out-of-charset symbols
(greek letters) in different styles.

strives to generate some out-of-charset symbols.

5. Conclusion

In this work, we have proposed VATr, a few-shot styled
HTG approach that is able to reproduce unseen calligraphic
styles and generate characters rarely encountered in the
training set. These capabilities are achieved by exploiting
supervised pre-training on a large synthetic dataset of calli-
graphic fonts and by representing the textual content as a se-
quence of visual archetypes, i.e., binary images of Unifont-
rendered characters. Experimental results demonstrate that
by pre-training, we are able to extract more representative
style features that disregard the background and the ink tex-
ture. Moreover, by using the visual archetypes, we are able
to exploit shape similarities among characters, which eases
the generation of the rare ones.
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