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Abstract

Semi-supervised learning (SSL) essentially pursues class
boundary exploration with less dependence on human an-
notations. Although typical attempts focus on ameliorat-
ing the inevitable error-prone pseudo-labeling, we think
differently and resort to exhausting informative semantics
from multiple probably correct candidate labels. In this pa-
per, we introduce Fuzzy Positive Learning (FPL) for accu-
rate SSL semantic segmentation in a plug-and-play fash-
ion, targeting adaptively encouraging fuzzy positive pre-
dictions and suppressing highly-probable negatives. Be-
ing conceptually simple yet practically effective, FPL can
remarkably alleviate interference from wrong pseudo la-
bels and progressively achieve clear pixel-level semantic
discrimination. Concretely, our FPL approach consists
of two main components, including fuzzy positive assign-
ment (FPA) to provide an adaptive number of labels for
each pixel and fuzzy positive regularization (FPR) to re-
strict the predictions of fuzzy positive categories to be
larger than the rest under different perturbations. Theo-
retical analysis and extensive experiments on Cityscapes
and VOC 2012 with consistent performance gain justify
the superiority of our approach. Codes are provided in
https://github.com/qpc1611094/FPL.

1. Introduction
Semantic segmentation models enable accurate scene

understanding [1, 29, 45] with the help of fine pixel-level
annotations. Yet, collecting labeled segmentation datasets
is time-consuming and labor-costing [6]. Considering unla-
beled data are annotation-free and easily accessible, semi-

*Equal contribution.
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supervised learning (SSL) is introduced into semantic seg-
mentation [5, 34, 43, 49, 51, 53] to encourage the model to
generalize better on unseen data with less dependence on
artificial annotations.

Figure 1. (a) Existing methods using pseudo label to utilize un-
labeled data. (b) The proposed FPL that provides multiple fuzzy
positive labels for each pixel to utilize unlabeled data. The exam-
ple of ‘Truck’ shows that our method covers ground truth (GT)
more comprehensively than vanilla positive learning.

The semi-supervised segmentation task faces a scenario
where only a subset of training images are assigned seg-
mentation labels while the others remain unlabeled. Cur-
rent state-of-the-art (SOTA) methods utilize unlabeled data
via consistency regularization, which aims to obtain invari-
ant predictions for unlabeled pixels under various perturba-
tions [5, 34, 49, 53]. Their general paradigm is to use the
pseudo label generated under weak (or none) perturbations
as the learning target of predictions under strong perturba-
tions. Though achieving promising results, errors are in-
evitable in the pseudo label used in these methods, misguid-
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ing the training of their models [24,33]. An intuitive exam-
ple is that some pixels may be confused in categories with
similar semantics. As Fig. 1 (a), some pixels belonging to
‘Truck’ are wrongly classified into the ‘Car’ category (e.g.,
white boxed pixel). To mitigate this problem, typical meth-
ods focus on ameliorating the learning of pseudo labels by
filtering low-confidence pseudo labels out [14,21,38,51,53]
and generating pseudo labels more accurately [8,20,26,48].
However, the semantics of ground truth buried in other un-
selected labels are ignored in existing methods.

In this paper, we propose Fuzzy Positive Learning
(FPL), a new SSL segmentation method that exhausts in-
formative semantics from multiple probably correct candi-
date labels. We name these labels “fuzzy positive” labels
since each of them has the probability to be the ground
truth. As shown in Fig. 1 (b), our fuzzy positive labels
cover the ground truth more comprehensively, facilitating
our FPL to exploit the semantics of ground truth better. Ex-
tending learning from one pseudo label to learning from
multiple fuzzy positive labels is not a simple implemen-
tation, which contains two pending issues. One is how to
provide an adaptive number of labels for each pixel. And
the other one is how to exploit the possible GT semantics
from fuzzy positive labels. For these two issues, a fuzzy
positive assignment (FPA) algorithm is first proposed to se-
lect which labels should be appended to the fuzzy positive
label set of each pixel. Afterward, a fuzzy positive regular-
ization (FPR) is developed to regularize the predictions of
fuzzy positive categories to be larger than the predictions of
the rest negative categories under different perturbations.

Our FPL achieves consistent performance gain on
Cityscapes and Pascal VOC 2012 datasets using CPS [5]
and AEL [14] as baselines. Moreover, we theoretically and
empirically analyze that the superiority of FPL lies in re-
vising the gradient of learning ground truth when pseudo-
labels are wrongly-assigned. Our main contributions are:

• FPL provides a new perspective for SSL segmentation,
that is, learning informative semantics from multiple
fuzzy positive labels instead of only one pseudo label.

• A fuzzy positive assignment is proposed to provide an
adaptive number of labels for each pixel. Besides, a
fuzzy positive regularization is developed to learn the
semantics of ground truth from fuzzy positive labels.

• FPL is easy to implement and could bring stable per-
formance gains on existing SSL segmentation methods
in a plug-and-play fashion.

2. Related Work
2.1. Semi-supervised Learning

Modern SSL classification approaches typically learn se-
mantics from unlabeled data by introducing techniques of

entropy minimization and consistency regularization. En-
tropy minimization enforces the predicted probability dis-
tribution to be sharp by training upon pseudo labels [2, 3,
23, 27, 38, 46]. On the other hand, consistency regular-
ization aims to obtain prediction invariance under various
perturbations, including input perturbation [31, 38, 46], fea-
ture perturbation [34], network perturbation [10,18,35,40],
etc. Variants of their combination have achieved great suc-
cess [35,38,44,47,50], whose core inspiration is computing
consistency regularization via pseudo labeling.

2.2. Semi-supervised Semantic Segmentation

Semi-supervised semantic segmentation methods bene-
fit from the development of general semi-supervised learn-
ing, which could be also roughly divided into two types
of approaches: consistency regularization based meth-
ods [11, 17, 19, 34] and entropy-minimization based meth-
ods [4, 9, 16, 28, 30, 52]. More recently, SOTA semi-
supervised segmentation methods combine both two tech-
nologies together to train their models. PseudoSeg [53],
AEL [14], UCC [8] and Jianglong Yuan et al. [49] propose
to use the pseudo label generated from weak augmented im-
age to supervise the prediction of strong augmented image.
CPS [5] designs a mutual learning mechanism that trains
two student models with pseudo labels from each other.
PC2Seg [51] proposes a negative sampling technique to pro-
vide reliable negative samples for SSL segmentation. Dif-
ferent from existing methods, we propose for the first time
to exploit the informative semantics of unlabeled data from
multiple fuzzy positive labels, resulting in less interference
from wrong pseudo labels and accurate segmentation.

Pseudo-label learning is the key technology in current
SSL segmentation methods, but it has a limitation in that
wrong pseudo labels mislead the training of SSL mod-
els. Typical approaches design filter-out mechanisms to use
only high-confidence pseudo-labels for training [8, 14, 21,
51,53] and develop complex training mechanisms to predict
accurate pseudo-labels [8,20,26,48]. Apart from the above
methods, U2PL [43] introduces the idea of negative learning
into SSL segmentation, which has similarities to our FPL. It
thinks uncertain pixels usually get confused among only a
few classes. Hence, it uses uncertain pixels as negative sam-
ples for those unlikely classes. We analyze that our FPL and
negative learning have mathematically different optimiza-
tion objectives. That is, negative learning implicitly max-
imizes only the prediction of the pseudo-label, while our
FPL learns all fuzzy positive labels. (cf. Appendix).

3. Method
3.1. Preliminaries

Overview: For the SSL segmentation task, we have a
small labeled dataset Dl = {(xl, yl)}Ll=1 and a large unla-
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beled dataset Du = {xu}Uu=1, where L is the size of the
labeled dataset, and U is the size of the unlabeled dataset
(L ≪ U ). The xl, yl, xu are the image and label of the
l-th labeled data and the image of the u-th unlabeled data,
respectively. The purpose of SSL segmentation is to learn
the parameters θ of a segmentation model F(•; θ) by op-
timizing a loss function that contains both supervised and
unsupervised loss:

L =
1

L

L∑
l=1

Lsup(F(xl; θ)) +
β

U

U∑
u=1

Luns(F(xu; θ)), (1)

where Lsup and Luns are supervised loss and unsupervised
loss, and β is a regularization weight.

In current SOTA methods [5,8,14,20,26,49,53], the un-
supervised loss in Eq. 1 is formulated as the cross-entropy
loss between model predictions and pseudo labels, which
are also predicted by their models. The paradigm is:

yu = 1(argmax(F(xu))), zu = F̂(x̂u)

Lv
u =

1

S

S∑
s=1

Lv
us(zus,yus)

=
1

S

S∑
s=1

C∑
c=1

−ycus log(
exp(zcus)∑C
n=1 exp(z

n
us)

),

(2)

where the yu is the one-hot encoding of the pseudo label
generated from a segmentation model F, and 1 is the one-
hot-encoding function. The zu is the prediction vector from
disturbed model F̂ with disturbed input x̂u. The disturbed
model is often realized by adding dropout layers [22, 34]
into the model structure, or injecting random noises into the
feature maps [26, 34]. And the disturbed input is usually
realized by data augmentations [5, 14, 49, 53]. The S is the
number of pixels in image xu and C is the number of cat-
egories, and ycus and zcus are the elements of yu and zu for
the c-th class of the s-th pixel. This vanilla positive loss Lv

u

has only one learning target, the pseudo label.
Motivation: By the definition of Lv

us, its gradient with
respect to the prediction zus in backpropagation is:

∂Lv
us

∂zcus
=

{
pcus − 1, if ycus = 1,

pcus, else,
(3)

where the pcus =
exp(zc

us)∑C
n=1 exp(zn

us)
is the predicted probability

for the c-th class computed by softmax. According to the
gradient descent algorithm [37], only the prediction for the
pseudo label category (ycus = 1) is optimized to increase,
and the predictions for other categories (ycus = 0) are opti-
mized to decrease. This means that once the pseudo-label is
assigned incorrectly, the training of the SSL model will be
misled since the prediction of ground truth is suppressed.

Algorithm 1 K value selection strategy

Input: sorted prediction p = (p1, p2, ..., pC)
Output: K value
Initialize: cumulative probability upper bound T , cate-
gory numbers C, cumulative probability V = p
Compute cumulative probability:
for n = 1 to C do

if V n > T or n = C then
return n

end if
V n+1 = V n + pn+1

end for
Determine K value:
K = max(n− 1, 1)
Return K

To reduce interference from wrong pseudo labels, we
propose an FPL to exploit informative semantics from un-
labeled data via multiple fuzzy positive labels, as shown in
Fig. 2. Concretely, in Sec. 3.2, we propose a fuzzy positive
assignment (FPA) algorithm, which assigns the top-K pre-
dicted categories of each pixel as its fuzzy positive labels,
where K is computed according to our elaborate K value
selection strategy. In Sec. 3.3, we develop a fuzzy positive
regularization (FPR), which enables our model to exploit
the possible ground truth in the fuzzy positive label set by
regularizing the predictions of fuzzy positive categories to
be larger than the rest negative categories.

3.2. Fuzzy Positive Assignment

The assignment of fuzzy positive labels determines from
which our FPL exploits the semantics of ground truth. To
provide an adaptive number of labels for each pixel, we
first propose to choose the categories with top-K predicted
probabilities as fuzzy positive labels since high-confidence
predictions are prone to be correct [3]. We then design an
easy but effective K value selection strategy to adaptively
determine the K value for each pixel, as shown in Alg. 1.
Specifically, we set a hyperparameter T that represents the
upper bound of cumulative probability. For each pixel, we
compute the cumulative probability of its top-n predicted
categories and record the value of n where the cumulative
probability exceeds T for the first time. Finally, the K value
for this pixel is set as max(n− 1, 1).

Selecting top-n predicted categories whose cumulative
probability exceeds T guarantees that the ground truth has
a high probability of being selected. A counter-intuitive de-
sign in our Alg. 1 is choosing K = n−1 instead of K = n.
This is because setting K < n alleviates the gradient van-
ishing problem in training our FPL (cf. Appendix). Another
noteworthy point is that our algorithm provides K = 1 for
pixels with high confidence, while K > 1 are usually sup-
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Figure 2. Pipeline illustration of our FPL, where FPA densely allocates multiple labels as a fuzzy positive label set for each pixel, while
FPR enforces the discrimination of the fuzzy positive assigns with the rest negative labels to facilitate more reliable semantic generalization.

plied for uncertain pixels, as illustrated in Fig. 4 and Fig. 5.
This property is in line with semantic intuition because a
certain pixel should learn an explicit label, while an uncer-
tain pixel needs to learn from multiple fuzzy labels. The
ablation study about the K value selection is in Appendix.

3.3. Fuzzy Positive Regularization

In our FPA, we generate a fuzzy positive label set Yus =
{y1us, y2us, ..., yKus} that contains K labels for each unlabeled
pixel instead of only one pseudo label as in previous works.
Hence we need to propose a new loss function to learn the
possible ground truth from Yus.

Our FPL regards all categories in the fuzzy positive label
set Yus are probable to be the ground truth, but the cate-
gories outside the Yus are unlikely to be the ground truth.
Therefore, we hope that the predictions of our model for the
K fuzzy positive categories to be larger than the predictions
for the rest C − K negative categories. We refer to some
works in metric learning [25, 39, 41, 42] and formulate our
optimization objective for each pixel as:

min
i∈Yus

(zius) > max
j /∈Yus

(zjus), (4)

where zius represents the prediction of our model for the i-
th category. Eq. 4 means we regularize the minimum of the
predictions for categories in Yus to be larger than the maxi-
mum of the predictions for other categories. In other words,
we enforce all the predictions for fuzzy positive categories
to be larger than those for negative categories. From Eq. 4,
a straightforward loss function can be formulated as:

Lf
us = ReLU(max

j /∈Yus

(zjus)− min
i∈Yus

(zius)). (5)

However, this Lf
us is globally non-differentiable with re-

spect to zus = {z1us, z2us, ..., zCus} since the max and min

functions in Eq. 5 are globally non-differentiable [27, 36].
And the ReLU function also has a singularity at x = 0.
Thanks to existing functional approximations [7,12,27,32],
we approximate the Eq. 5 to make Lf

us differentiable:

max(z1, z2, ..., zn) ≈ log(

n∑
i=1

exp (zi))

min(z1, z2, ..., zn) ≈ − log(

n∑
i=1

exp (−zi))

ReLU(z) = max(z, 0) ≈ log(1 + exp(z)).

(6)

Based on these functional approximations, our fuzzy pos-
itive consistency loss Lf for one pixel xus (i.e., the s-th
pixels of the u-th unlabeled image) could be converted to:

Lf
us = log(1 +

∑
i∈Yus

e−zi
us ×

∑
j /∈Yus

ez
j
us). (7)

Next, we analyze the behavior of Lf
us in backpropaga-

tion. The gradient of Lf
us with respect to the prediction zus

of our model is computed as:

∂Lf
us

∂zius
=

−
∑

j /∈Yus
ez

j
us × e−zi

us

1 +
∑

j /∈Yus
ez

j
us ×

∑
i∈Yus

e−zi
us

, i ∈ Yus

∂Lf
us

∂zjus
=

∑
i∈Yus

e−zi
us × ez

j
us

1 +
∑

j /∈Yus
ez

j
us ×

∑
i∈Yus

e−zi
us

, j /∈ Yus,

(8)
where the ∂Lf

us

∂zi
us

and ∂Lf
us

∂zj
us

denote the derivatives with re-
spect to predictions for fuzzy positive categories and other
negative categories, respectively. From Eq. 7 and Eq. 8, we
see that our Lf

us has following characteristics:
1) The prediction for the ground truth increases when it

appears in Yus. This is because predictions for fuzzy posi-
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tive categories have gradients less than 0, and thus are opti-
mized to increase by gradient descent.

2) The existing Lv
us is a special case of our Lf

us when we
set K = 1, as shown in Eq. 9.

Lv
us = log(1 + e−zi

us ×
∑
j ̸=i

ez
j
us), (9)

where i is the index of the top-1 predicted pseudo label.
Adaptive weight for each pixel: From Eq. 4, it can be

seen that our model learns informative semantics based on
the assumption that the ground truth exists in the fuzzy pos-
itive label set Yus. Thus, we propose to integrate the con-
fidence of this assumption into the training of FPL. When
our assumption is not tenable, the ground truth will be out-
side Yus, and its largest predicted probability is max

j /∈Yus

(pjus).

Therefore, the max
j /∈Yus

(pjus) is negatively correlated with the

assumption confidence since high max
j /∈Yus

(pjus) means ground

truth has a low probability inside Yus, and vice versa.
Formulately, the range of max

j /∈Yus

(pjus) is derived as:

1− T

C −Kus
< max

j /∈Yus

(pjus) <

∑
i∈Yus

pius
Kus

. (10)

In practice, T is close to 1 (e.g., 0.9), thus 1−T
C−Kus

is close
to 0. For simplicity, we obtain the approximate range of

max
j /∈Yus

(pjus) as (0,
∑

i∈Yus
pi
us

Kus
). We then define our adaptive

weight as a monotonically decreasing concave function:

wus =

log [1 +A× (
∑

i∈Yus
pi
us

Kus
− max

j /∈Yus

(pjus))]

log [1 +A× (
∑

i∈Yus
pi
us

Kus
)]

, (11)

where A is a scalar used to control the radian of this func-
tion, which is fixed as 50. It is worth noting that our adap-
tive weight is different from the weights computed by top-1
confidence used to filter out or re-weight low-confidence
pixels [11, 17, 34]. Those weights are small for pixels with
low top-1 probability, resulting in those pixels not being suf-
ficiently used in training [43]. But our weight is only small
when the prediction of a pixel is confused in the top-(K+1)
categories, thus our model still uses the information that its
prediction should not belong to other C-K-1 categories.

3.4. Analysis

Ideally, we hope to learn the semantics of ground truth in
unlabeled data, but in practice, we can only learn the seman-
tics of positive categories and suppress the rest. Here, we
propose a positive gradient score R to measure how prop-
erly the ground truth is learned :

Rus =
∂Lus

∂zgtus
/

∑
i∈Yus

∂Lus

∂zius
, (12)

where the Yus represents the fuzzy positive label set Yus

when Lus is Lf
us, and Yus represents the pseudo label when

Lus is Lv
us. The positive gradient score Rus is the ratio of

the gradient for the ground truth to the sum of the gradients
for all positive categories. It ranges from [−1, 1] and a posi-
tive Rus means the GT prediction is encouraged to increase,
while a negative Rus means the GT prediction is incorrectly
suppressed to decrease. Based on actual training, we con-
sider Rus in three cases:

Case 1. The pseudo label is correct, that is, the ground
truth is the top-1 predicted category. In this case, the posi-
tive gradient score Rus computed by Lv

us and Lf
us are:

Rv
us =

pgtus − 1

ppseus − 1
= 1, Rf

us =
e−zgt

us∑
i∈Yus

e−zi
us

∈ [0, 1],

(13)
where pgtus and ppseus are the predicted probabilities for
ground truth and the pseudo-label category. When the size
of Yus (i.e., K value) is 1, the Rf

us will be equal to Rv
us as

1. We see that Rf
us and Rv

us are both greater than 0, mean-
ing they both encourage the GT prediction to increase. In
practice, the statistics of Rf

us is close to 1. This is because
most pixels in this case have K = 1 (cf. Appendix).

Case 2. The top-1 prediction is wrong, but the ground
truth is in the categories with top-K probabilities, where K
is computed by our K value selection strategy in Alg. 1.
For Case 2, the positive gradient score Rv

us and Rf
us are

computed as:

Rv
us =

pgtus
ppseus − 1

∈ [−1, 0], Rf
us =

e−zgt
us∑

i∈Yus
e−zi

us
∈ [0, 1].

(14)
We see that Rf

us is larger than 0 while Rv
us is less than 0.

This is because the ground truth is missed by the pseudo
label but captured by our fuzzy positive label set. It means
that vanilla Lv

us erroneously suppresses GT prediction, but
our Lf

us encourages GT prediction, reflecting FPL remark-
ably reduces the interference from wrong pseudo labels.

Case 3. The pseudo label is wrong, and the ground truth
is also outside the fuzzy positive labels Yus. In this case,
the positive gradient score Rv

us and Rf
us are:

Rv
us =

pgtus
ppseus − 1

∈ [−1, 0], Rf
us =

−ez
gt
us∑

j /∈Yus
ez

j
us

∈ [−1, 0].

(15)
It is obvious that Rf

us and Rv
us are both less than 0, meaning

neither Lv
us nor Lf

us is beneficial for learning the seman-
tics of ground truth in this case. In Fig. 3 (a), we display
some examples which intuitively reflect the advantages of
Rf

us over Rv
us. That is, many parts of Rv

us less than 0 (col-
ored in blue) becomes larger than 0 in Rf

us (colored in red).
In Fig. 3 (b), the statistics of positive gradient score show
Rf

us significantly outperforms the existing Rv
us in Case 2,

and they perform similarly in Case 1 and Case 3.
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Figure 3. Positive gradient score R. (a) shows the positive gradient score maps of some unlabeled examples, where the red color means
the prediction of ground truth is encouraged, while the blue color indicates suppression. (b) is the statistics value of the positive gradient
score in three cases (Sec. 3.4). This figure is plotted on VOC2012 with 1/16 labeled data.

Method ResNet 50 ResNet 101
1/32 (93) 1/16 (186) 1/8 (372) 1/4 (744) 1/32 (93) 1/16 (186) 1/8 (372) 1/4 (744)

MT [40] - 66.14 72.03 74.47 - 68.08 73.71 76.53
CCT [34] - 66.35 72.46 75.68 - 69.64 74.48 76.35
GCT [17] - 65.81 71.33 75.30 - 66.90 72.96 76.45
U2PL [43] - - - - - 74.90 76.48 78.51
CPS w/o cutmix† [5] 54.40 68.68 73.06 75.75 59.70 71.22 74.98 77.45
FPL+CPS w/o cutmix 55.77(↑1.37) 69.71(↑1.03) 74.43(↑1.37) 76.76(↑1.01) 61.00(↑1.30) 72.05(↑0.83) 75.67(↑0.69) 77.57(↑0.12)
CPS w/ cutmix† [5] 71.33 74.05 76.92 77.77 72.51 74.72 77.62 78.93
FPL+CPS w/ cutmix 72.39(↑1.06) 74.80(↑0.75) 77.32(↑0.40) 78.53(↑0.76) 73.20(↑0.69) 75.74(↑1.02) 78.47(↑0.85) 79.19(↑0.26)
AEL† [14] 68.39 74.03 75.83 76.18 73.00 75.26 78.07 78.26
FPL+AEL 71.21(↑2.82) 74.54(↑0.51) 76.25(↑0.42) 76.88(↑0.70) 75.01(↑2.01) 76.58(↑1.32) 78.19(↑0.12) 78.46(↑0.20)

Table 1. The mIoU on Cityscapes. Results marked by † are reproduced in the same experimental environment as FPL.

4. Experiments
4.1. Implementation Details

Frameworks and dataset: We evaluate the effective-
ness of our FPL on two widely used frameworks, CPS [5]
and AEL [14], and two datasets PASCAL VOC 2012 and
Cityscapes. The Cityscapes is a large-scale dataset designed
for urban street scene segmentation which consists of 19
semantic classes containing 2,975 images for training, 500
for validation, and 1,525 for testing. The PASCAL VOC
2012 is a generic object segmentation benchmark that con-
sists of 20 object classes and 1 background class. It is di-
vided into training, validation, and test sets including 1,464,
1,449, and 1,456 images, respectively. There is also an
augmented set [13] adding 10,582 images into the standard
training set. Following the setting of previous works [5,53],
we implement two splits on VOC2012: standard split (with
augmented set) and low data split (without augmented set).

Experimental setting: Following the default settings
of CPS and AEL, we use Deeplab v3+ with pre-trained
ResNet-50 and ResNet-101 as backbones. Specifically, on

Cityscapes using CPS as the baseline, we use SGD opti-
mizer with a weight decay of 1e-4. The initial learning rate
is set to 0.02 and the momentum is fixed at 0.9. We use the
default ‘poly’ learning rate decay policy to scale the learn-
ing rate by (1 − iter/max iter)0.9, and this policy is used
in all our experiments. The input images are cropped to
800 × 800 and the batchsize is 64. When using AEL as
the baseline, the batchsize, learning rate, and image size are
changed to 16, 0.01, and 769. On VOC2012 using CPS as
the baseline, we use SGD optimizer with a weight decay
of 1e-4. The initial learning rate is set to 0.01 and the mo-
mentum is fixed at 0.9. The input images are cropped to
512 × 512 and the batchsize is 32. When using AEL as
the baseline, the batchsize is changed to 16. The cumula-
tive probability upper bound T in all our experiments is set
from {0.95, 0.9, 0.85}. More details are in Appendix.

4.2. Quantitative Results

Our FPL model is trained with the same hyperparame-
ters as the baseline model, only replacing the vanilla pos-
itive learning using one pseudo label with our fuzzy posi-
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Method ResNet 50 ResNet 101
1/16 (662) 1/8 (1323) 1/4 (2646) 1/16 (662) 1/8 (1323) 1/4 (2646)

MT [40] 66.77 70.78 73.22 70.59 73.20 76.62
CCT [34] 65.22 70.87 73.43 67.94 73.00 76.17
CutMix-Seg [11] 68.90 70.70 72.46 72.56 72.69 74.25
GCT [17] 64.05 70.47 73.45 69.77 73.30 75.25
CAC [21] 70.10 72.40 74.00 72.40 74.60 76.30
CPS w/o cutmix† [5] 68.13 72.79 74.24 72.50 74.97 77.14
FPL+CPS w/o cutmix 68.67(↑0.54) 73.03(↑0.36) 74.80(↑0.56) 73.18(↑0.68) 75.74(↑0.77) 77.47(↑0.33)
CPS w/ cutmix† [5] 71.78 73.44 74.90 74.48 76.44 77.68
FPL+CPS w/ cutmix 72.52(↑0.74) 73.74(↑0.30) 75.35(↑0.45) 74.98(↑0.50) 77.75(↑1.31) 78.30(↑0.62)
AEL† [14] 69.93 73.17 75.50 74.20 76.58 77.98
FPL+AEL 71.01(↑1.08) 73.69(↑0.52) 76.61(↑1.11) 74.98(↑0.78) 76.73(↑0.15) 78.35(↑0.37)

Table 2. The mIoU on VOC2012. Results marked by † are reproduced in the same experimental environment as FPL.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732)
AdvSemSeg [15] 39.69 47.58 59.97 65.27
CCT [34] 33.10 47.60 58.80 62.10
VAT [31] 36.92 49.35 56.88 63.34
MT [40] 48.70 55.81 63.01 69.16
GCT [17] 46.04 54.98 64.71 70.67
CutMix-Seg [11] 52.16 63.47 69.46 73.73
PseusoSeg [53] 57.60 65.50 69.14 72.41
PC2Seg [51] 57.00 66.28 69.78 73.05
U2PL [43] 67.98 69.15 73.66 76.16
CPS w/ cm† [5] 67.53 70.41 75.27 78.69
FPL+CPS w/ cm 69.30(↑1.77) 71.72(↑1.31) 75.73(↑0.46) 78.95(↑0.26)

Table 3. The mIoU on VOC2012 LowData. Results marked by †
are reproduced in the same experimental environment as FPL. The
‘cm’ is the cutmix.

tive learning using multiple fuzzy positive labels. The seg-
mentation results on Cityscapes, VOC2012, and VOC2012
LowData are presented in Table 1, Table 2, and Table 3,
where red numbers represent the improvement brought by
FPL to the baseline. We see that FPL achieves stable im-
provements over baseline models across all data splits. Be-
sides, FPL improves the CPS baseline under both with and
without CutMix settings, indicating that the performance
gain from FPL and data augmentation (e.g., CutMix) can
be accumulated. Furthermore, FPL is effective on multiple
baselines, i.e., CPS and AEL, which means FPL is universal
for various existing SSL frameworks.

4.3. Empirical Study

4.3.1 The Hyperparameter T

The T is the only new hyperparameter brought by FPL,
which controls the K values of pixels in training. Here we
summarize two rules for setting a proper T value. First, a T
value around 0.9 (e.g., 0.85, 0.9, 0.95) is usually a promis-
ing setting. Second, a T value set negatively correlated to
the number of labeled data usually brings high performance.

The effect of T on the training behaviors. In training,
T affects the number of fuzzy positive labels for each pixel
(K value), which reflects the degree of fuzziness of our FPL.
Specifically, a higher T leads to large K values meaning
more labels will be selected as candidates, thus the ground

T value 0.5 0.75 0.85 0.9 0.95 0.99
mIoU 68.80 68.97 69.34 69.71 69.08 67.52

Table 4. The performances of FPL models with various T .
These results are obtained on Cityscapes with 1/16 labeled data
using CPS as the baseline.

T 1/32 1/16 1/8
0.85 55.22 (↑0.90) 69.34 (↑0.66) 74.37 (↑1.31)
0.9 55.40 (↑1.08) 69.71 (↑1.03) 74.43 (↑1.37)
0.95 55.77 (↑1.45) 69.08 (↑0.40) 74.03 (↑0.97)

Table 5. The relationship between cumulative probability up-
per bound T and the amount of labeled data. The results are
obtained on Cityscapes using CPS as the baseline.

Weight functions Baseline Convex Linear Concave w/o weight
mIoU 76.44 76.68 77.02 77.75 77.01

Table 6. FPL+CPS w/ cutMix on VOC2012 with 1/8 labels. The
‘w/o’ represents the FPL model trained without adaptive weight.

Figure 4. (a) The K values during training, where the input size
is 800 × 800 meaning there are 640000 pixels in total. (b) The
adaptive weights plotted in the setting of T = 0.95 and K = 2.

truth will be captured with a higher probability. However,
too large T value (e.g. 0.99) makes our model learn from
too many labels, which is also not suitable for a single-label
classification task. In Table 4, we present the mIoU of our
FPL models trained with various T values, and we find a T
value around 0.9 always provides promising results.

The relationship between T and the amount of la-
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beled data. We find a high T usually obtains good perfor-
mance when labeled data are limited, while a low T usually
performs better when labeled data are sufficient. As shown
in Table 5, in the 1/32 labeled data setting, T = 0.95 obtains
the highest improvement about 1.45%, while T = 0.85 and
T = 0.9 only obtain improvements about 1%. In the 1/16
labeled data setting, T = 0.9 obtains the best performance,
improving baseline by 1.03%, and the rest two T values
improve baseline by about 0.5%. In the 1/8 labeled data
setting, T = 0.9 and T = 0.85 obtains close performances
which improve baseline by 1.3%, while T = 0.95 performs
not as well as the previous two T settings. It is obvious that
setting the T value negatively according to the amount of
labeled data significantly benefits the performance.

4.3.2 Adaptive Weight

In Sec. 3.3, we show that the adaptive weight function
should be inversely proportional to max

j /∈Yus

(pjus). Here we

provide an experiment showing that the used concave de-
creasing function performs better than linear or convex de-
creasing functions. The function curves are illustrated in
Fig. 4 (b), and the formulas of convex and linear functions
are expressed as:

wconvex =

∑
i∈Yus

pi
us

Kus
− max

j /∈Yus

(pjus)∑
i∈Yus

pi
us

Kus
+ 4 ∗ max

j /∈Yus

(pjus)
,

wlinear =

∑
i∈Yus

pi
us

Kus
− max

j /∈Yus

(pjus)∑
i∈Yus

pi
us

Kus

.

(16)

The segmentation performances are shown in Table 6,
where we see that the used convex function performs bet-
ter than other alternatives.

4.3.3 K Values in Training

The number of pixels with different K values is shown in
Fig. 4 (a). We see that within training, the number of pix-
els with K > 1 decreases and the number of pixels with
K = 1 increases. At the late stage of training, the K values
for more than 93.75% (i.e., 6e5 / 6.4e5) pixels are 1. This
indicates the K values automatically converge to 1, meaning
FPL could progressively achieve clear pixel-level semantic
discrimination. In Fig. 4 (b), we illustrate that our FPL pro-
vides K = 1 for certain pixels with low entropy while pro-
viding K > 1 for uncertain pixels with high entropy.

Moreover, we show the K value maps of some examples
during training in Fig. 5. We see that the K values of most
pixels in the background are 1 since background pixels are
usually easy to classify. In the early stage of training, the

Figure 5. K value visualization, plotted on the VOC2012 with
1/16 labeled data using CPS+FPL w/ CutMix.

pixels with K > 1 are mainly located on objects, since
the classification of objects for our model is uncertain at
early training. As the training progresses, the number of
pixels with K > 1 gradually decreases and these pixels are
mainly located at the boundary of objects. This is because
our model has certain predictions for most pixels in the later
stage of training. But for pixels located at the object bound-
ary, their categories are fuzzy, for which our model makes
uncertain predictions for them. Our FPL provides multi-
ple labels (i.e., K > 1) for these uncertain pixels to learn,
which is in line with their fuzzy property.

5. Conclusion
In this paper, we introduce a novel plug-and-play method

named FPL for semi-supervised semantic segmentation.
Our method is the first to explore learning the seman-
tics of ground truth from multiple fuzzy positive labels.
Specifically, We first propose a fuzzy positive assignment
algorithm to provide an adaptive number of labels for each
pixel. We then develop a fuzzy positive regularization to
learn the possible ground truth from these fuzzy positive
labels. Extensive experiments on two commonly used
benchmarks with consistent performance gain demonstrate
the effectiveness of our method. Moreover, we provide an
analysis showing the superiority of FPL in that it revises
the gradient of learning ground truth when pseudo labels
are wrong. There are still directions worth continuing
to explore in FPL, e.g., “extending discrete K values to
continuous form for finer-grained fuzzy positive labels.”
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