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Abstract

Referring Expression Segmentation (RES) can facili-
tate pixel-level semantic alignment between vision and lan-
guage. Most of the existing RES approaches require mas-
sive pixel-level annotations, which are expensive and ex-
haustive. In this paper, we propose a new partially super-
vised training paradigm for RES, i.e., training using abun-
dant referring bounding boxes and only a few (e.g., 1%)
pixel-level referring masks. To maximize the transferabil-
ity from the REC model, we construct our model based on
the point-based sequence prediction model. We propose
the co-content teacher-forcing to make the model explicitly
associate the point coordinates (scale values) with the re-
ferred spatial features, which alleviates the exposure bias
caused by the limited segmentation masks. To make the
most of referring bounding box annotations, we further pro-
pose the resampling pseudo points strategy to select more
accurate pseudo-points as supervision. Extensive experi-
ments show that our model achieves 52.06% in terms of ac-
curacy (versus 58.93% in fully supervised setting) on Re-
fCOCO+ @testA, when only using 1% of the mask anno-
tations. Code is available at https://github.com/
qumengxue/Partial-RES.git.

1. Introduction

Referring Expression Segmentation (RES) aims to gen-
erate a segmentation mask for the object referred to by the
language expression in the image. It allows pixel-level se-
mantic alignment between language and vision, which is
meaningful to many multi-modal tasks and can be applied
to various practical applications, e.g., video/image editing
with sentences. Benefiting from the development of deep
learning techniques, significant progress [31,9, 12, 2, 19,
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Figure 1. Comparison of MDETR and SeqTR. On the left is the
streamlined framework of the two, and on the right is their loU
performance on RefCOCOg@val. Best viewed in color.

, 27, 54, 9] has been made in this field and achieved re-
markable performance.

The success of current methods partially attributes to the
large-scale training dataset with accurate pixel-level masks.
However, labeling masks for a huge amount of images is
often costly in terms of both human effort and finance, and
thus hardly be scaled up. Therefore, it is meaningful to
explore a new training paradigm for RES where extensive
pixel-level annotations are not necessary. It is well known
that bounding box annotations are much cheaper and easier
to be collected compared with pixel-level masks. Thus, we
try to study this question: is it possible to learn an accurate
RES model using abundant box annotations and only a few
mask annotations?

To answer this question, for the first time, we ex-
plore a new partially supervised training paradigm for RES
(Partial-RES). Intuitively, a naive pipeline for this partially
supervised setting is to first train a Referring Expression
Comprehension (REC) model and then transfer it to the
RES task by fine-tuning on a limited number of data with
mask annotations. However, due to the difference between
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the REC and RES tasks, prevalent models (e.g., Mask R-
CNN [14], MDETR [24]) have to simultaneously optimize
two different heads, with one for detection prediction and
the other for segmentation prediction. Such kind of struc-
tures would lead to a severe issue during the fine-tuning
stage, i.e., a randomly initialized mask head can not get
well optimized given only a few mask annotations (hun-
dreds of images). As shown in Figure 1, it is not easy to
optimize MDETR with only 1% mask-annotated data even
transferred from a well-trained REC model.

Recently, a contour-based method named SeqTR has
been proposed for unifying REC and RES. The idea is to
use a sequence model (usually a Transformer decoder) to
sequentially generate contour points of the referred object.
The predictions are two points (top-left and bottom-right
corner points of the bounding box) in the REC task while
dozens of points (contour) are in the RES task. As shown
in Fig. 1, both boxes and masks are converted to point se-
quences and optimized using the same simple cross-entropy
loss in SeqTR, which ensures the consistency between REC
and RES. It incorporates two optimization heads into a uni-
fied one, making the knowledge learned with four points
(i.e., detection) be naturally transferred to predict multiple
ones (i.e., segmentation). Inspired by SeqTR, we have the
conjecture that sequence prediction might be a better solu-
tion for partially supervised training.

In this paper, we investigate methods for achieving bet-
ter partially supervised training for RES sequence predic-
tion models. Sequence-to-sequence prediction models are
typically trained with Teacher-Forcing (TF) [39], wherein
the model utilizes the ground truth token as input to pre-
dict the next token during the training stage. However, the
model can only predict the next state by taking its previous
output as input in inference, which is known as the expo-
sure bias [34]. This issue is even more severe in the par-
tially supervised setting due to the very limited ground truth
data. Consequently, we introduce the Co-Content Teacher-
Forcing (CCTF), which combines the ground truth point
coordinates together with the spatial visual feature of the
pointed row or column. In contrast to the previous sequence
model SeqTR, our CCTF explicitly associates the point co-
ordinates (scale values) with the referred spatial region, pro-
viding a more natural approach for visual grounding.

Furthermore, we estimate the referring region via our
proposed Point-Modulated Cross-Attention, to ensure the
decoder attends to those region content while generating the
point contour sequences. To fully utilize the data without
mask annotation in Partial-RES, we retrain the model with
the generated pseudo labels, and we present a Resampling
Pseudo Points (RPP) Strategy. Unlike most pseudo-label
works that directly use the network’s predictions as labels,
we select the appropriate pseudo masks with Dice coeffi-
cient and then resample the predicted points in a uniform

way to regularize the contour sequence labels.

With extensive experiments, our method displays signif-
icant improvement compared to SeqTR [54] baselines on
all three benchmarks, i.e., at an average of 3.5%, 2.4%, and
3.0% on 1%, 5% and 10% mask-labeled data. With 10%
mask annotated data, our method achieves 97% of the fully
supervised performance on RefCOCO+ @val. We are also
able to achieve 88% of the fully supervised performance
only with 1% mask-labeled data on RefCOCO+ @testA.

2. Related Work
2.1. REC and RES

Referring Expression Comprehension (REC) aims at
grounding the object referred to by a sentence, which
achieves instance-level vision language alignment. Com-
pared to REC, Referring Expression Segmentation (RES)
grounds language expression at the fine-grained pixel-level.
REC and RES are separate but closely related fundamental
multi-modal tasks.

For REC, previous methods can be roughly divided into
two-stage and one-stage. Two-stage methods [16, 18, 29,

,41,43,49, 52, 55] typically utilize an object detector to
generate region proposals in the first stage, and are trained
to maximize the similarity between region and text with bi-
nary cross-entropy loss or similarity loss. One-stage meth-
ods [5, 28, 38, 45, 46] avoid being constrained by the qual-
ity of the proposal by directly fusing visual and linguistic
features rather than matching region-language pairs.

For RES, typical solutions are to incorporate as much lin-
guistic information as possible in various ways on pixel-
level visual features [31, 9, 12, 2, 19, 20]. In previous
methods, researchers propose various attention mechanisms
[9, 23, 20] to better merge vision and language. Recently,
since the superior ability of modeling vision and language
of Transformer-based model, more high-performance meth-
ods [27, 54, 9, 36] are proposed to solve RES tasks.

For REC and RES, multi-task methods [32, 27] are pro-
posed to better use the correlation between two tasks, which
can facilitate learning of both tasks. However, all the prior
work require different task-specific branch and loss func-
tion, whose generalization ability is limited. Recently, a
simple and universal network term SeqTR [54] is presented,
which regards both REC and RES as a point prediction
problem. SeqTR greatly reduces the difficulty and com-
plexity of both architecture design and optimization.

In some work, REC is treated as a pretext task for other
multi-modal tasks [24, 51], e.g., Visual Question and An-
swering. RES has a more fine-grained visual language
alignment capability than REC, but the capability of RES
to be used in multi-modal pre-training has not yet been de-
veloped because of the lack of a large-scale RES dataset.
It is well known that annotating binary masks for a multi-
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Figure 2. (a) Overall architecture of our method. It consists of three main modules: (1) Visual-Language Fusion; (2) Transformer Encoder
and Decoder; (3) Sequence Construction. “CCTF”: Co-Content Teacher-Forcing; “PMCA”: Point-Modulated Cross-Attention. (b) The
suggested training steps of our method in the Partially Supervised RES task. Best viewed in color.

modal dataset is expensive while bounding box is easy. In
this paper, we make use of the bounding box annotations
and the consistent task expression of REC and RES in Se-
qTR, attempting to train RES task with less mask-labeled
data based on SeqTR.

2.2. Partially Supervised Instance Segmentation

Partially Supervised Instance Segmentation (PSIS) was
first raised in [17], where object categories are divided
into base and novel splits. Both of them have bounding
box annotation while only base have mask annotation. The
training target of this task is to generate segmentation for
novel categories. PSIS has been studied for a period of time
in the field of Instance Segmentation [I, 11, 26, 35, 53].
Some works address this problem by learning class-agnostic
mask segmentation models, i.e., separate foreground and
background only. They capture class-agnostic cues, e.g.,
shape [26] and appearance commonalities [ I]. For better
use of the training data from novel categories, [42] propose
ContrastMask to learn a mask segmentation model on both
base and novel categories under a unified pixel-level con-
trastive learning framework. In this paper, we suggest the
partially supervised RES, drawing on the partially super-
vised instance segmentation. We train the RES model with
bounding box annotation of all train data, and a small frac-
tion of mask annotation.

2.3. Sequence Prediction in Visual Tasks

Visual tasks differ greatly in their output format and as-
sociated content, making it difficult to handle them with an
identical structure. Unlike previous approaches requiring

prior knowledge in Object Detection, Pix2Seq [4] first cast
object detection as a language modeling task conditioned
on the observed pixel inputs. The class and the bounding
box are expressed as sequences of discrete tokens, and train
the detection model to generate the coordinate and class
of each tone by one. Built on Pix2Seq, [0] proposes an
object-centric vision framework Obj2Seq that takes objects
as the basic unit, and human pose estimation is also been
converted to a sequence-generated form. In addition, an-
other similar work SeqTR [54] is proposed to unify REC
and RES, regarding both REC and RES as a point predic-
tion problem. Inspired by the above-mentioned work, we
consider whether this sequence prediction framework can
be used in scenarios with few labels to take advantage of its
good format uniformly property.

3. Method

In this section, we first briefly revisit the sequence pre-
diction model SeqTR in Sec. 3.1. Then we illustrate the
architecture of our method in Sec. 3.2. In Sec. 3.3, we elab-
orate on our proposed Co-Content Teacher-Forcing, and the
Point-Modulated Cross Attention in Sec. 3.4 and the Re-
sampling Pseudo Point Strategy in Sec. 3.5.

3.1. Revisit SeqTR

SeqTR [54] is a sequence prediction model for Visual
Grounding tasks, which first reformulate visual grounding
as a point prediction problem. The bounding box and the
segmentation mask are serialized into a sequence of dis-
crete coordinate tokens {z;, yi}f\il, where N is 4 vertices
of the bounding box on REC or the number of contour
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points of the segmentation mask on RES. With a task to-
ken [TASK], SeqTR can predict the target coordinate to-
kens in an auto-regressive manner during inference, and
end the coordinate sequence with [EOS] token. In addition,
different from those loss functions adopted in DETR-like
multi-task frameworks (e.g., GIoU loss, set-based matching
loss, focal loss, and dice loss), SeqTR only uses a simple
cross-entropy loss for REC and RES, which requires no fur-
ther prior knowledge or expertise. SeqTR greatly reduces
the difficulty and complexity of both architecture design
and optimization for visual grounding tasks. Meanwhile,
it nicely aligns REC and RES, and naturally converts them
into one type of expression form. Following SeqTR, our
model is also optimized with a simple cross-entropy loss.

3.2. Architecture

We build our architecture on the latest RES sequence
prediction method SeqTR [54], which consists of three
main modules: (1) Visual-Language Fusion; (2) Trans-
former Encoder and Decoder; (3) Sequence Construction;
The overall architecture is illustrated in Fig. 2.
Visual-Language Fusion. We adopt the convolutional
backbone DarkNet-53 [37] to obtain the visual representa-
tion for an input image I. Following SeqTR, we downsam-
ple the multi-scale visual feature from the finest to coarsest
spatial resolution and flatten it to F,, € RUTXW)xC  For
referring expressions, we encode the text with a one-layer
bidirectional GRU [7] as in SeqTR. Then we concatenate

—
both unidirectional hidden states h; = {ht, ht] at each step

t to get language feature I} = {ht}le. Before V-L fusion,
we adopt max pooling mp(-) along the channel dimension
of F;. Then visual feature F), and language feature F; will
be fused to F},, by Hadamard product:

Fop = 6(F,) @ 6(mp(F)), (D

here the activation function §(-) is set to tanh(-) if no spe-
cial instructions.

Transformer Encoder and Decoder. We use the Trans-
former with 6 layers encoder and 3 layers decoder to learn
the multi-modal feature and decode out the vertices or the
contour points. The hidden dimension of transformer is
set to 256. The fused multi-modal feature F;,, is added
sine and learned positional encoding [39] before entering
Transformer Encoder. The original Cross-Attention be-
tween Transformer Encoder and Decoder will be replaced
by Point-Modulated Cross-Attention (PMCA), which is in-
troduced in Sec. 3.4.

Sequence Construction. Following SeqTR [54], we con-
struct the sequence of floating points {z;, y}}f\;l with the
top-left and bottom-right corner points of the bounding box
(N=2). For the binary mask on RES, the sequence is uni-
formly sampled N points clockwise on top of the mask on
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Figure 3. Sketch of CCTF. We extract multi-modal features from
the reshaped Transformer Encoder output according to the target
coordinates and fuse them by element-wise addition, e.g., x,, cor-
responds to the 2, W/M line of row of the feature map, and yy,
corresponds to the y,, H/M line of column.

RES. Then they are quantized into integer bins by

By =romd(S0) @)
where each coordinate is normalized by image width w and
height h, and M is the number of quantization bins.

The sequence will be embedded and then combined with
the output multi-modal feature of the Transformer Encoder
to conduct Co-Content Teacher-Forcing (CCTF) training.
Details are described in Sec. 3.3. Moreover, we will resam-
ple pseudo points and reconstruct the sequence for model
retraining. Details can be found in Sec. 3.5.

x; = round(

3.3. Co-Content Teacher-Forcing

The Co-Content Teacher-Forcing is proposed to alleviate
the over-reliance on the sampled ground truth points during
training, which leads to exposure bias of the inconsistency
of Training and Inference.

In the normal Teacher-Forcing training, the se-

N .
quence {x;,y;},_, will be embed to a feature sequence

{mi,ni}i
{mi, b, = dic({zi, yibi,),s 3)

where dic(-) is a learnable coordinate embedding dictio-
nary. The coordinate sequence {z;, yz}f\r:1 can be viewed
as the index of the dictionary. However, in the Co-Content
Teacher-Forcing, the feature sequence will be combined
with the encoder output multi-modal feature. As shown in
Fig. 3, we reshape the output multi-modal feature F;,, €
RHXWXC" of Transformer Encoder to F,,,’ € RUHXW)xC’
for better correspondence with coordinate points. Then, for
each coordinate x; or y;, we extract the feature of the cor-
responding row or column from the feature map F},,” and
average them with E{-}:
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ffm = El?:l{le( n{xi’ k)}v
4

H
fyi = EIZZI{Fm/(ka Myz)}’
M is the number of quantization bins. {¥z;, %yl}il
is the normalized index. Then the sequential feature
{my,n;}1, will be combined with { f..,, f,,} | by simple
element-wise addition, the final sequence input to Decoder
is represented as

S = {mi,ni} iy + {foes b ©)

With CCTF training, our model explicitly associate the
point coordinates (scale values) with the referred spatial re-
gion, which is more natural for visual grounding.

3.4. Point-Modulated Cross Attention

We adopt the SMCA proposed in [13] to replace the
original Cross-Attention, which can constrain the cross-
attention responses via estimating the Gaussian-like refer-
ring region prior. In the sequence prediction model, we
generate the attention map for each co-content coordinates
embedding, leading to a matched cross-attention region
learned when the supervised data is reduced. To distinguish
we denote it as Point-Modulated Cross-Attention (PMCA).

For each co-content coordinate embedding S =
{fj}§£1 = {fmi,fyi}ivzl» we use a 3-layer MLP fol-
lowed by a sigmoid activation function to generate a prior
Gaussian-like attention map. The center point coordinates
Cw, cp, and the scales s,,, s, of the prior Gaussian map is
denoted as

Sw, Sh, Cw, Cn, = sigmoid(M LP(f;)), 6)

and the Gaussian map is represented as

Glu,v) = exp (— (u-co)® (o= C”)2> (7)

2 2
082 osi,

where u € RW v € RH, they are the spatial indices of G,
and o is a hyper-parameter to modulate the bandwidth of
the Gaussian map.

3.5. Resampling Pseudo Point Strategy

To fully utilize the data without mask annotation in
Partial-RES, we retrain the model with the generated
pseudo label, and we propose a Resampling pseudo point
strategy. To remain the consistency of the pseudo points
with the original sampled contour points of the ground truth
mask, we will resample the pseudo points. As shown in
Fig. 4, we first connect the points predicted by the network
to a binary mask. Then we compute the dice coefficient D

Figure 4. Sketch of Resampling Pseudo Point (RPP) Strategy. (a)
Screening the appropriate pseudo mask with the dice coefficient
between the predicted binary mask and the ground truth bounding
box; (b) The generated points by the RES model; (c) The uni-
formly resampled pseudo points from pseudo mask; (d) The uni-
formly sampled target points from ground truth mask.

of the projection of this mask and the ground truth bounding
box.
D(1,b) = dice(ly, by)) + dice(ly, by)) (8)

where I, [, are the projection of the mask on x-axis, y-axis,
bz, by are of the ground truth bounding box.

We set a threshold 7" for D(I, b) to pick out those pseudo
masks that are more accurate to avoid introducing too much
noise by pseudo labels. For the selected samples, the pre-
dicted points are spaced may be inhomogeneous as shown
in Fig. 4(b). So we resample the pseudo points with a uni-
form sampling scheme. It is considered that the contour
points of previously labeled data are sampled uniformly and
the pseudo point should be kept consistent with it.

We propose a feasible training process for the Partially
Supervised RES task as shown in Fig. 2 (b):

Stepl. REC Training. Since in the Partial-RES task, all
the bounding box labels are seen in the model training, we
first train the model on fully supervised REC to get a better
representation relatively of multi-model features from the
encoder output. The feature will be used to enhance TF
learning in the next step of RES training. In practice, we
load the REC model trained in SeqTR as a pretrained one.
Step2. Initial RES Training. In this step, we train the
model with only 1%, 5%, and 10% labeled mask data on
the RES task. The model is equipped with the new method
proposed in this paper, including CCTF and PMCA.

Step3. Retraining with Pseudo Points. After obtaining the
RES model from Step2, we can utilize it to generate more
pseudo contour points. While these points may contain a lot
of noise or may not match the way labeled data is sampled,
so we re-selected and sampled out the appropriate pseudo
points with the proposed RPP strategy.
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Label Method Venue Visual RefCOCO RefCOCO+ RefCOCOg
Ratio Encoder val testA  testB val testA  testB | val-g val-u  test-u
Fully-supervised:

CMSA [47] CVPR’19 | RNI101 | 5832 60.61 55.09 | 43.76 47.60 37.89 | 39.98 - -

STEP [3] ICCV’19 RN101 | 60.04 63.46 5797 | 48.19 5233 40.41 | 46.40 - -

CMPC [21] CVPR’20 DNS53 6136 6453 59.64 | 49.56 5344 4323 | 49.05 - -

LSCM [22] ECCV’20 | DLA34 | 61.47 6499 59.55 | 49.34 53.12 43.50 | 48.05 - -
100% MCN [32] CVPR’20 DNS53 6244 6420 59.71 | 50.62 5499 44.69 - 4922 49.40

BUSNet [44] CVPR’21 | RNI101 | 63.27 6641 61.39 | 51.76 56.87 44.13 | 50.56 - -
LTS[21] [23] CVPR’21 DN53 6543 67.76 63.08 | 5421 58.32 48.02 - 54.40 54.25
VLT [9] ICCV’21 DN56 65.65 6829 62.73 | 5550 59.20 4936 | 49.76 5299 56.65

ResTR [25] CVPR’22 ViT-B 6722 69.30 6445 | 5578 60.44 48.27 | 54.48 - -
SeqTR [54] ECCV’22 DNS53 67.26 69.79 64.12 | 54.14 5893 48.19 - 55.67 55.64

Partially-supervised

10% Baseline - DNS53 57.92 60.74 55.06 | 50.84 54.87 44.54 - 49.50 49.30
Our Method - DNS53 63.99 6586 61.54 | 52.56 55.79 46.09 - 5243 5240
5% Baseline - DN53 58.85 61.72 56.36 | 49.78 5422 43.34 - 48.33  48.27
Our Method - DNS53 62.23 64.67 6042 | 51.30 54.68 44.85 - 51.28 50.55
1% Baseline - DNS53 54.67 5748 52.62 | 4491 4881 39.44 - 42.57 4246
Our Method - DN53 5741 59.60 55.84 | 47.68 52.06 41.54 - 46.80 46.12

Table 1. Comparisons with state-of-the-art fully-supervised methods on RefCOCO [

], RefCOCO+ [

], and RefCOCOg [

] in terms

of IoU scores. We defined mask label ratio as 1%, 5%, and 10% to compare our method with the baseline in partially-supervised RES.

“RN101": ResNet-101 [15], “DN53”: DarkNet-53 [

4. Experiments
4.1. Datasets

RefCOCO/RefCOCO+ are proposed in [50]. There
are 19,994 images in RefCOCO with 142,209 refer expres-
sions for 50,000 objects. Similarly, 19,992 images are in-
cluded in RefCOCO+ which contains 141,564 expressions
for 49,856 objects.

In these datasets, each image contains two or more ob-
jects from the same category. In RefCOCO+ dataset, po-
sitional words are not allowed in the referring expression,
which is a pure dataset with appearance-based referring ex-
pression, whereas RefCOCO imposes no restriction on the
phrase. In addition to the training set and validation set, the
test set for RefCOCO/RefCOCO+ is divided into a testA
set (containing several people in an image) and a testB set
(containing multiple instances of other objects in an image).

RefCOCOg [33] contains 26,711 images with 85,474
referring expressions for 54,822 objects, and each image
usually contains 2 ~ 4 objects of the same category. The
length of referring expressions in this dataset is almost twice
as long as those in RefCOCO and RefCOCO+. This dataset

is directly divided into “train”, “val” and “test”.

4.2. Experimental Settings

Each instance to be segmented is equipped with an ex-
pression sentence in RES datasets, the sentence can be seen
as a kind of open category. Therefore, different from the
manner of dividing data [17], we simulate the partially su-

1, “DN56”: DarkNet-56 [

], “DLA-34” [48], “ViT-B” [10].

pervised training scenario on RES by randomly sampling
the entire train data proportionally without considering the
category.

Implementation Details. Following SeqTR [54], all pa-
rameters in the network are optimized with AdamW [30],
and the batch size is 128. We train the model with 120 ~
150 epochs for full convergence, and we set the learn-
ing rate as 5e-4@10%, 3e-4@5%, and le-4@1% in step2
training, while 5e-4 in step3 training with pseudo points.
We use DarkNet-53 [37] as the visual encoder. Follow-
ing standard practices [8, 32, 23, 9], images are resized
to 640 x 640, and the length of language expression is
trimmed at 15 for ResCOCO/RefCOCO+ and 20 for Re-
fCOCOg. The training epochs and the learning rate used
vary slightly for different settings of mask-labeled data ra-
tio and different training stages. For the number of sampled
contour points, we use the same as in SeqTR, i.e., 18 points
for RefCOCO/RefCOCO+, and 12 for RefCOCOg.
Evaluation Metrics. Following the proposal setting in
the previous work, we use mask Intersection-over-Union
(IoU) and Precision with thresholds (Pr@X). The mask
IoU demonstrates the mask quality, which emphasizes the
model’s overall performance and reveals both targeting and
segmenting abilities. The Pr@X metric computes the ra-
tio of successfully predicted samples using different ToU
thresholds. Low threshold precision like Pr@0.5 reflects the
identification performance of the method, and high thresh-
old precision like Pr@0.9 reveals the ability to generate
high-quality masks.
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Ratio | CCTF | PMCA ToU Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9
257 4754 32.89 17.61 5.07 0.36
1% v 4420 (+1.63) | 50.68 (+3.14)  37.00 (+4.11)  21.21 (+3.60)  7.89 (+2.82)  0.66 (+0.30)
v V' | 4458 (+0.38) | 50.98 (+0.30) 37.32(+0.32) 2242 (+1.21)  8.21(+0.32)  0.76 (+0.10)
55.95 67.73 62.20 49.02 29.55 7.07
100% | 56.03 (+0.08) | 67.79 (+0.06)  62.32 (+0.12)  49.88 (+0.86)  30.63 (+1.08)  8.04 (+0.97)
v V' | 56.89 (+0.86) | 68.43 (+0.64) 62.96 (+0.64)  50.72 (+0.84)  31.21 (+0.58)  8.05 (+0.01)

Table 2. Validity verification of our proposed CCTF and PMCA. We conduct experiments on 1% and 100% supervised data with mask

labels (100% means fully-supervised training).

Method | ToU |Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9

Baseline |44.58| 50.98 3732 2242 821 0.76
w/o RPP|44.27| 51.28 38.24 2428 10.24  0.96
w/RPP |46.80| 56.29 43.19 2740 1034 0.98

Table 3. Comparison of our method with re-sampling pseudo
points and without RPP in step3 training.

Baseline and oracle We suggest the baseline in the follow-
ing way: we initialize our model with the parameters of Se-
qTR trained on the REC task, and refine it on the RES task
with 1%, 5%, and 10% mask annotation data. Our compar-
ison with the baseline is discussed in Sec. 4.3. The “oracle”
model is SeqTR trained on REC and refined on RES with
all mask annotation data. This fully supervised model is a
performance upper bound for our partially supervised RES.

4.3. Comparison with other Method

We compare our method with other fully supervised
state-of-the-art methods on three common benchmarks of
Referring Expression Segmentation, i.e., RefCOCO, Ref-
COCO+, and RefCOCOg. In addition, we also compare
with our suggested baseline in partially-supervised training.
Results are reported in Table 1. Our method displays sig-
nificant improvement over the baseline method on all three
datasets, at an average of 3.5%, 2.4%, and 3.0% on 1%, 5%,
and 10% mask labeled data. With 10% mask annotated data,
we can achieve 97% of the fully supervised performance on
RefCOCO+@val. We are also able to achieve 88% fully
supervised performance on 1% mask-labeled data on Ref-
COCO+ @testA. Our methods can even surpass some fully-
supervised methods, e.g., MCN, [32], BUSNet [44].

4.4. Ablation Studies

Effectiveness of CCTF and PMCA. To verify the ef-
fectiveness of Co-Content Teacher Forcing (CCTF) and
Point-Modulated Cross-Attention (PMCA), we show the re-
sults of our RES model with 1% partially supervised train-
ing data and 100% fully supervised training data on Ref-
COCOg@val in Table 2.

When trained with 100% mask label of the data, PMCA

Method ToU ‘ Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@09
Baseline | 44.58 50.98 37.32 22.42 8.21 0.76
T@1.00 | 44.53 51.36 38.14 22.40 7.29 0.58
T@0.05 | 44.35 50.68 38.52 24.18 9.70 0.78
T@0.10 | 46.80 | 56.29 43.19 27.40 10.34 0.98

Table 4. Performance with different Threshold 7" of dice coeffi-
cient on RefCOCOg@val. T'@1.00 means that all the predicted
pseudo masks are used for training in step3 without selection of
the more accurate one with dice coefficient.

embodies more performance enhancements than CCTEF,
which proves the effectiveness of PMCA. CCTF contributes
little to performance improvement. While with 1% super-
vised mask labeled training data, the improvement contribu-
tion of CCTF far exceeds that of PMCA, 80% performance
improvement comes from CCTF (1.63% in 2.01%). This
demonstrates that the exposure bias of the inconsistency of
the training and inference process may be more serious in
the case of partially supervised data, which is alleviated by
our proposed CCTF somewhat.

Ablation of Resampling Pseudo Points To better demon-
strate the effectiveness of re-sampling pseudo points (RPP),
we compare the results with those obtained without re-
sampling. In the case of re-sampling, we uniformly re-
sample the pseudo points from the generated pseudo mask
and consider them as the target sequence. In contrast, for
no re-sampling, we use the points predicted by the model
directly as the target sequence. As illustrated in Table 3,
the reported performance is superior when the RPP strat-
egy is employed. This is primarily attributed to the fact that
after re-sampling, the unlabeled data is pseudo-labeled uni-
formly, which mitigates the potential noise introduced by
pseudo labels.

Performance with different Threshold 7' of dice coeffi-
cient. We establish a threshold for the dice coefficient to se-
lect more suitable pseudo points that will serve as prediction
targets for unlabeled mask annotation data in step3 men-
tioned in Sec. 3.5. To demonstrate the effectiveness of our
pseudo points selection strategy and the impact of different
threshold, we compare the results with different thresholds
T of the dice coefficient on RefCOCOg@val. As presented
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Figure 5. Qualitative examples of our method at 1%, 5%, 10% mask label in Partially Supervised RES. We identify the image and its

corresponding referring expression in the first column.
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Figure 6. The mloU with different mask-labeled data ratio.

in Table 4, without any constraint ( T is set to 1.00), we
observe that the side effect of pseudo points is greater than
the main effect due to the noise contained in pseudo points.
Therefore, we determine to select out those pseudo masks
with dice coefficient < T for re-sampling pseudo points.
Meanwhile, our ablation studies declare that the threshold
of 0.10 is the optimal choice for our selection strategy.
Experiment of increasing the proportion of mask-
labeled data We conduct an additional experiment to inves-
tigate the proportion of mask-labeled data in training that
can reach SotA performance. As depicted in Fig. 6, compar-
ing the mIoU with the fully supervised SotA method (55.67)
on RefCOCOg@val, our method attains remarkably similar
results (55.59) by using 50% mask-labeled data.

4.5. Qualitative Results

We evaluated the segmentation performance of our
method at various ratios, i.e., 1%, 5%, and 10% of Partial-

RES data in Fig. 5. As the mask-labeled data increases, the
contours fit more accurately. By comparing these results,
we observe that with a low percentage of mask-labeled data,
our segmentation results are already similar to those of the
GT points.

5. Conclusion

In this paper, we investigate the partially supervised
learning paradigm for RES, where only a few segmenta-
tion masks are available so the model has to learn transfer
knowledge from REC. Unlike existing RES/REC works that
have different decoders for the two tasks, we leverage the
contour-based sequence prediction model to maximize the
transfer ability. We then propose CCTF to explicitly asso-
ciate the point coordinates (scale values) with the referred
spatial regions, which alleviates the exposure bias brought
by the limited segmentation masks. Besides, we present
RPP strategy to select appropriate pseudo labels and resam-
ple pseudo points during the retraining stage. We conduct
extensive experiments to demonstrate the effectiveness of
our model in the Partial-RES setting. One limitation of this
work is that the smoothness and edge accuracy of the point-
contour mask prediction may not be as precise as the pixel-
level mask predictions.
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