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Abstract

Deep neural networks (DNNs) usually fail to general-
ize well to outside of distribution (OOD) data, especially in
the extreme case of single domain generalization (single-
DG) that transfers DNNs from single domain to multi-
ple unseen domains. Existing single-DG techniques com-
monly devise various data-augmentation algorithms, and
remould the multi-source domain generalization methodol-
ogy to learn domain-generalized (semantic) features. Nev-
ertheless, these methods are typically modality-specific,
thereby being only applicable to one single modality (e.g.,
image). In contrast, we target a versatile Modality-Agnostic
Debiasing (MAD) framework for single-DG, that enables
generalization for different modalities. Technically, MAD
introduces a novel two-branch classifier: a biased-branch
encourages the classifier to identify the domain-specific (su-
perficial) features, and a general-branch captures domain-
generalized features based on the knowledge from biased-
branch. Our MAD is appealing in view that it is pluggable
to most single-DG models. We validate the superiority of
our MAD in a variety of single-DG scenarios with different
modalities, including recognition on 1D texts, 2D images,
3D point clouds, and semantic segmentation on 2D images.
More remarkably, for recognition on 3D point clouds and
semantic segmentation on 2D images, MAD improves DSU
by 2.82% and 1.5% in accuracy and mIOU.

1. Introduction

Deep neural networks (DNNs) have achieved remarkable

success in various tasks under the assumption that train-

ing and testing domains are independent and sampled from

identical or sufficiently similar distribution [2, 48]. How-

ever, this assumption often does not hold in most real-

world scenarios. When deploying DNNs to unseen or out-

of-distribution (OOD) testing domains, inevitable perfor-

mance degeneration is commonly observed. The difficulty

mainly originates from that the backbone of DNNs ex-
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Figure 1. Most existing single-DG techniques devise various

data augmentation algorithms to introduce various image textures

and styles, pursuing the learning of domain-generalized features.

However, these approaches are modality-specific, and only appli-

cable to single modality (e.g., image). Hence it is difficult to di-

rectly employ such single-DG approach for 3D point clouds, since

the domain shifts in 3D point clouds only reflect the geometric dif-

ferences rather than texture and style differences.

tracts more domain-specific (superficial) features together

with domain-generalized (semantic) features. Therefore,

the classifier is prone to paying much attention to those

domain-specific features, and learning unintended decision

rule [53]. To mitigate this issue, several appealing so-

lutions have been developed, including Domain Adapta-
tion (DA) [18, 32, 36, 40, 41] and Domain Generalization
(DG) [31, 56, 62, 65]. Despite showing encouraging per-

formances on OOD data, their real-world applications are

still limited due to the requirement to have the data from

other domain (i.e., the unseen target domain or multiple

source domains with different distributions). In this work,

we focus on an extreme case in domain generalization: sin-
gle domain generalization (single-DG), in which DNNs are

trained with single source domain data and then required to

generalize well to multiple unseen target domains.

Previous researches [19,55] demonstrate that the specific

local textures and image styles tailored to each domain are

two main causes, resulting in domain-specific features for

images. To alleviate this, recent works [30, 37, 58, 63] de-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

24142



sign a variety of data-augmentation algorithms to introduce

diversified textures and image styles. The DG methodolo-

gies are then remolded with these data-augmentation algo-

rithms to facilitate the learning of domain-generalized fea-

tures. Nevertheless, such solution for single-DG is typically

modality-specific and only applicable to the single modal-

ity inputs of images. When coming a new modality (e.g.

3D point clouds), it is difficult to directly apply these tech-

niques to tackle single-DG problem. This is due to the fact

that the domain shift in 3D point clouds is interpreted as

the differences of 3D structural information among multi-

ple domains, instead of the texture and style differences in

2D images [10, 39]. Figure 1 conceptually illustrates the

issue, which has been seldom explored in the literature.

In this paper, we propose to address this limitation

from the standpoint of directly strengthening the capac-

ity of classifier to identify domain-specific features, and

meanwhile emphasize the learning of domain-generalized

features. Such way completely eliminates the need of

modality-specific data augmentations, thereby leading to a

versatile modality-agnostic paradigm for single-DG. Tech-

nically, to materialize this idea, we design a novel Modality-

Agnostic Debiasing (MAD) framework, that facilitates sin-

gle domain generalization under a wide variety of modali-

ties. In particular, MAD integrates the basic backbone for

feature extraction with a new two-branch classifier struc-

ture. One branch is the biased-branch that identifies those

superficial and domain-specific features with a multi-head

cooperated classifier. The other branch is the general-

branch that learns to capture the domain-generalized rep-

resentations on the basis of the knowledge derived from the

biased-branch. It is also appealing in view that our MAD

can be seamlessly incorporated into most existing single-

DG models with data-augmentation, thereby further boost-

ing single domain generalization.

We analyze and evaluate our MAD under a variety of

single-DG scenarios with different modalities, ranging from

recognition on 2D images, 3D point clouds, 1D texts, to

semantic segmentation on 2D images. Extensive experi-

ments demonstrate the superior advantages of MAD when

being plugged into a series of existing single-DG techniques

with data-augmentation (e.g., Mixstyle [65] and DSU [30]).

More remarkably, for recognition on point cloud bench-

mark, MAD significantly improves DSU in the accuracy

from 33.63% to 36.45%. For semantic segmentation on im-

age benchmark, MAD advances DSU with mIoU improve-

ment from 42.3% to 43.8%.

2. Related Work

2.1. Domain Adaptation

Over the last decade, many efforts have been devoted to

domain adaptation (DA) to address the OOD issue [18, 32,

57]. DA methods are developed to utilize the labeled source

domain and the unlabeled out-of-distributed target domain

in a transductive learning manner. Existing DA approaches

can be briefly grouped into two paradigms, i.e., moment

matching [14,32,47] and adversarial alignment [18,25,26].

DA methods have achieved significant progress in many ap-

plications, e.g., object recognition [35, 40, 41, 60], semantic

segmentation [25,47], and object detection [4,11,26]. Nev-

ertheless, the requirement of both source and target domain

data during training significantly limits their practical de-

ployment. Besides, in DA manner, DNNs are typically cou-

pled with source and target domains, affecting their capacity

to generalize to other domains. In this work, we focus on

a more challenging scenario where DNNs are required to

generalize well to multiple unseen domains.

2.2. Domain Generalization

Different from DA, domain generalization (DG) expects

to learn generalized DNNs with the assistance of multi-

ple source domains [31, 56, 65], without the access of tar-

get domain. Currently, DG methods can mainly be cat-

egorized into three dimensions, including domain align-

ment, data augmentation/generation, and ensemble learn-

ing. Most existing DG methods [20, 27, 33] belong to

the category of domain alignment. Their motivation is

straightforward: features that are invariant to the source do-

main shifts should also be generalized to any unseen tar-

get domain shift. Data generation is another popular tech-

nique for DG [45, 50, 59]. The goal is to generate diverse

and rich data to boost the generalization ability of DNNs.

Existing methods typically remould the Variational Auto-

encoder (VAE) [28], and the Generative Adversarial Net-

works (GAN) [21] to execute diversified data generation.

Ensemble learning [17] commonly learns multiple copies

of the same model with different initialization and then uti-

lizes their ensemble for final prediction. As the variant of

ensemble learning, weight averaging [5], domain-specific

neural networks [64], and domain-specific batch normal-

ization [43] have recently achieved promising results. Nev-

ertheless, it is non-trivial to directly apply these DG tech-

niques for single domain generalization.

2.3. Single Domain Generalization

Single domain generalization (single-DG) is an extreme

case of domain generalization, where DNNs are trained

with only one source domain data and required to perform

well to multiple unseen target domains. It is more challeng-

ing than DA and DG, yet indeed more realistic in practi-

cal applications. To address this challenging problem, sev-

eral methods [30, 37, 58] have designed various data aug-

mentation algorithms to enhance the diversity and infor-

mativeness of training data. In [58], the authors propose

a style-complement module to synthesize images from di-
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Figure 2. An overview of our Modality-Agnostic Debiasing (MAD) framework. The main challenge for DNNs to realize single domain

generalization (single-DG) is that the classifier tends to over-emphasize those domain-specific features, yielding unintended decision

rules [53]. To address this challenge, we propose to strengthen the capability of classifier of identifying domain-specific features, and

meanwhile emphasising the learning of domain-generalized features. Technically, the MAD framework integrates the basic backbone for

feature extraction with a new two-branch classifier, i.e., the biased branch and the general branch. We implement MAD in a two-stage

learning mechanism. In the first stage, the biased-branch is utilized to identify those domain-specific features with a multi-head cooperated

classifier. In the second stage, the general-branch classifier is encouraged to capture those domain-generalized features on the basis of the

knowledge from the biased-branch, i.e., with the guidance from Lreg . Our framework is modality-agnostic and can be applied to various

modalities such as images, point clouds, and texts.

verse distribution. In [30], synthesized feature statistics

are introduced to model the uncertainty of domain shifts

during training. To regulate single-DG training, [15] ap-

plies a variety of visual corruptions as augmentation and

designs a new attention consistency loss. A novel image

meta-convolution network is developed in [51] for captur-

ing more domain-generalized features. Nevertheless, most

methods are modality-specific and only applicable for im-

ages inputs. When we encounter a new data modality, they

are commonly not available to deploy. The reason behind

is that for different data modalities, domain shifts tend to

be different. For example, the differences in 3D geometry

structure among multiple domains are the origin of domain

shifts for point clouds, instead of style and texture differ-

ences in 2D images. Our work delves into this limitation

and targets for proposing a general and versatile framework

for single-DG that is agnostic to data modality.

3. Methodology
3.1. Preliminary

We consider an extreme case in generalization: single

domain generalization (single-DG), where the goal is to

train DNNs with single source domain DS that perform well

to multiple unseen target domains: {D1
T ,D2

T , . . . ,DZ
T }. In

particular, we consider the K-way classification. We denote

DS = {(xi, yi)}ni=1, where x ∈ X ⊂ R
X , y ∈ Y ⊂ R

K .

The whole DNN architecture is represented as F = g ◦ f ,

where f : R
X → R

D denotes the feature extractor and

g : R
D → R

K is the classifier. This setting is guaran-

teed under a general assumption in domain generalization:

There are domain-generalized features eg in the domain DS

whose correlation with label is consistent across domains,

and domain-specific features es whose correlation with la-

bel varies across domains. Classifiers that rely on domain-

generalized features eg perform much better on new unseen

domains than those that depend on domain-specific features

es. In this setting, directly applying the vanilla empirical

risk minimization (ERM) [48] on DS commonly results in

a sub-optimal model that does not generalize well to unseen

domains. The main reason originates from that the feature

extractor f often extracts more domain-specific features es
together with domain-generalized features eg [53]. DNNs

trained with SGD often count on the simplest features [44],

which leads to a tendency for the classifier g to overempha-

size es and pay less attention to eg , resulting in unintended

decision rules.

Prior methods [15,30,37,58] have designed various data-

augmentation algorithms to encourage the feature extractor

g to learn more domain-generalized features eg and sup-

press those domain-specific features es. However, these al-

gorithms are typically modality-specific, and largely limited

to images. Instead, we propose to mitigate this limitation

by directly strengthening the capacity of classifier for iden-

tifying domain-specific features, and meanwhile emphasis-

ing the learning of domain-generalized features. That com-

pletely eliminates the requirement of modality-specific data
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augmentations, pursuing a versatile and modality-agnostic

paradigm for single-DG. Technically, we present a novel

modality-agnostic debiasing (MAD) framework. MAD in-

tegrates the basic backbone for feature extraction with a new

two-branch classifier structure. One branch is the biased-

branch that identifies those domain-specific features es with

a multi-head cooperated classifier. The other is that learns to

capture the domain-generalized features eg with the knowl-

edge derived from the biased-branch. Figure 2 illustrates

the detailed architecture of our MAD.

3.2. Identifying Domain-specific Features

There have been some efforts [6, 12, 38, 52] in domain

generalization to realize domain-specific features es and

domain-generalized features eg separation. Nevertheless,

most of them require multiple training domains and pre-

defined domain labels, making them inapplicable for single-

DG. Moreover, [38] has pointed out that given a trained

classifier, it is non-trivial to uniquely decompose the clas-

sifier weight into domain-specific and domain-generalized

terms, especially with only one source domain data.

To alleviate these issues, we propose a simple yet ef-

fective domain-specific feature identification strategy. Our

motivation is straightforward: since the vanilla classifier

trained with SGD will inadvertently focus more on those

domain-specific features, the weights of the trained classi-

fier can be considered as an indicator of those features.

Nevertheless, a single vanilla classifier is typically not

effective to locate all domain-specific features. The rea-

son is that there commonly exist multiple factors that con-

tribute to domain-specific features. Taking the identifi-

cation of “elephants” and “cats” as an example, the hy-

potheses “elephants tend to be found in grasslands”, and

“elephants tend to have wrinkled skin” are both beneficial

for classification. When we deploy classifiers to the real-

world, these hypotheses are domain-specific and superfi-

cial, and might result in severe performance degradation.

For images, there are several factors typically correlated

to domain-specific features, such as the background con-

texts [1], the texture of the objects [19], and high-frequency

patterns that are almost invisible to the human eye [55].

That motivates us to design a biased-branch that identifies

more domain-specific features with a multi-head cooperated

classifier gbias : RD → R
K×M . Specifically, we apply the

cooperation cross-entropy loss to learn this branch as:

LC−CE = Ex,y

K∑

k=1

−1[k=y] log
exp(max(vk(x)))∑K
j=1 exp(max(vj(x)))

,

(1)

where vk(x) = gbias(f(x))[k, :] ∈ R
M denotes the logits

of multi-head classifier for the k-th category of sample x,

and M is the number of classification heads. Note that we

do not enforce all heads of the biased-branch classifier to

correctly predict each sample. Instead, we only need one of

them to accurately identify it. That is, all heads are encour-

aged to cooperate with each other for classification. The

spirit behind is that domain-specific features do not repre-

sent the truly domain-generalized semantics. Thereby, for a

particular-type domain-specific features, they are not neces-

sarily present in all samples. Since the max function is not

differentiable in Eq. (1), we approximate this function with

the log-sum-exp during our implementation.

In general, the sweet spot for M is set within the range

from 1 to D//K − 1. Its value depends on the dimension

and factors introduced domain-specific features. In our im-

plementation, we perform cross validation to choose a good

value for M , but it is worthy to note that the performance

is relatively stable with respect to this choice (see more dis-

cussions in Sec. 4.5).

3.3. Learning to Debias

Based on the proposed biased-branch, we have an indi-

cator to those domain-specific features. A follow-up ques-

tion is how to suppress those domain-specific features in fa-

vor of focusing more on those desired domain-generalized

features. Here, we introduce another general-branch classi-

fier ggen : RD → R
K to capture those domain-generalized

features. Let Wbias ∈ R
K×M×D and Wgen ∈ R

K×D be

weights of the multi-head biased classifier and the domain-

general classifier, respectively. An intuitive solution is to

enforce orthogonality between Wbias and Wgen in Eq. (3)

during learning the classifier ggen in Eq. (2):

LCE = Ex,y

K∑

k=1

−1[k=y] log
exp(uk(x))∑K
j=1 exp(uj(x))

, (2)

LReg =
1

K

K∑

k=1

∥∥Wbias[k, :] Wgen[k, :]
T
∥∥2
F
. (3)

Here uk(x) = ggen(f(x))[k] ∈ R represents the logit

of classifier ggen for the k-th category of input sample

x. However, if we optimize the whole network (including

the feature extractor f , biased-branch classifier gbias, and

general-branch classifier ggen) simultaneously at the begin-

ning, there is no guarantee that the classifier ggen will pay

more attention to those domain-general features. To ad-

dress this issue, we introduce a two-stage learning mech-

anism to enable the interaction between the two branches.

Technically, in the first stage, we only introduce Eq. (1) and

Eq. (3) to optimize the network, encouraging the biased-

branch classifier to learn those domain-specific features and

expecting the weight of general-branch classifier Wgen to

evade the territory of domain-specific features. Then, in the

second stage, we apply Eq. (1), Eq. (3) and Eq. (2) together
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Algorithm 1 MAD Pseudocode, PyTorch-like

# f: feature extractor
# cls_g1: the biased-branch multi-head classifier
# cls_g2: the general-branch classifier
# pro, T: training progress, second stage thresh

# During inference, we only utilize f, and cls_g2

for x, y in loader: # load a minibatch x, y
z = f(x) # (N, D)
c1 = cls_g1(z) # (N, K, M)
c1 = logsumexp(c1, dim=-1) # (N, K)
l_bias = CrossEntropyLoss(c1, y)

c2 = cls_g2(z) # (N, K)
l_gen = CrossEntropyLoss(c2, y)

g1_w = cls_g1.weight # (K, M, D)
g2_w = cls_g2.weight # (K, D)
l_reg = Reg(g1_w, g2_w)

if pro < T:
L = l_bias + l_reg # stage 1

else:
L = l_bias + l_reg + l_gen # stage 2

L.backward() # back-propagate
update(f, cls_g1, cls_g2) # SGD update

def Reg(w1, w2): # orthogonality regulation
w1 = normalize(w1, dim=-1) # l2-normalize
w2 = normalize(w2, dim=-1) # l2-normalize
reg = einsum("kmd,kd->km", w1, w2)
return mean(sum(reg ** 2, dim=-1))

to optimize the entire network. Accordingly, the overall op-

timization objective is:

min
f,gbias,ggen

LC−CE + LReg + 1[pro≥T ] · LCE , (4)

where all loss terms are equally weighted, pro denotes the

overall training progress, T is a hyper-parameter that deter-

mines when to trigger the second stage learning. In general,

the choice of T depends on the training dataset size and task

difficulty. In our implementation, for recognition task, we

typically set T = 3 epochs (50 epochs in total). As for se-

mantic segmentation, we set T = 6% of the iterations in

total. Algorithm. 1 presents the Pseudo-code of our MAD.

4. Experiments
We evaluate the effectiveness of MAD for single do-

main generalization (single-DG) via various empirical ev-

idences on a series of tasks, including recognition on im-

ages, point clouds, texts, and semantic segmentation on im-

ages. Here we include several single-DG methods as base-

lines for performance comparison: (1) ERM [49] directly

applies the vanilla strategy to train source model. (2) Aug-

Mix [24] utilizes stochastic and diverse augmentations, and

a formation to mix multiple augmented images to gener-

ate diverse samples. (3) pAdaIN [34] swaps feature statis-

tics between the samples applied with a random permuta-

tion of mini-batch, (4) Mixstyle [65] adopts linear interpo-

lation on feature statistics of two instances to generate syn-

thesized samples. (5) DSU [30] characterizes the feature

statistics as uncertain distribution to model domain shift.

(6) ACVC [15] introduces more severe image augmenta-

tions, including image corruptions and Fourier transform.

Recall that our MAD is able to directly strengthen the capa-

bility of classifier to identify domain-specific features, and

meanwhile emphasize the learning of domain-generalized

features. Therefore, MAD can be seamlessly incorporated

into these methods to further boost performances. Note that

MAD discards the additional biased-branch and only em-

ploys the feature extractor plus general-branch classifier at

inference. That is, when plugging MAD into existing meth-

ods, there is no increase in computational cost.

4.1. Single-DG on Image Recognition

Setup and Implementation Details: We validate the pro-

posed method on two image datasets: PACS [29], a widely-

used benchmark for domain generalization with four do-

mains: Photo (P), Art Painting (A), Cartoon (C), and Sketch

(S). VLCS [46], another commonly adopted benchmark

for domain generalization with four different domains:

VOC2007 (V), LabelMe (L), Caltech101 (C), SUN09 (S).

In our implementation, we adopt the ResNet-18 [23] pre-

trained on ImageNet [16] as backbone. We apply the SGD

optimizer with momentum 0.9. The batch size is set to 64.

We set the learning rate to 2e-3/1e-3 for PACS/VLCS. Ex-

periments are conducted on a Tesla P40 GPU with PyTorch-

1.5. Following [22], we split the training domain into train-

ing and validation subsets, and select the best-performing

model on validation set to report the OOD performances.

Experiment Results: We first conduct experiments on

PACS, shown in Table 1. The main domain shift in this

dataset is derived from style differences, and most data

augmentation methods manifest higher performances than

ERM baseline. Though these methods have achieved good

performances, our MAD still manages to further improve

their performance consistently. For example, MAD boosts

up the overall accuracy of ACVC from 63.61% to 65.87%.

Table 2 further summarizes the performance comparison

on VLCS. The domain shift of this dataset mainly comes

from background and view point changes. The scenes in

VLCS vary from urban to rural, and the viewpoint tends to

favor the side view or non-classical view. As a result, ex-

isting data augmentation methods which mainly introduce

diverse styles obtain relatively smaller performance gains

on VLCS dataset compared to those on PACS. Even in this

case, MAD significantly improves the overall accuracy of

ERM from 59.56% to 62.95%. Especially when taking

“LabelMe” as source domain, our MAD leads to near 10%

improvement in average accuracy. Similar to the observa-

tions on PACS, the consistent performance improvements

are attained when integrating existing data augmentation

approaches with MAD. In particular, MAD increases the

accuracy of ACVC from 61.25% to 63.82%.
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Table 1. Single-domain generalization classification accuracies

(%) on PACS dataset with ResNet-18 as backbone. Here, P, A,

C, and S denote the source domains. We train the model on one

source domain, and evaluate them on the rest domains.

Methods Venue P A C S Avg

ERM 33.65 65.38 64.20 34.15 49.34

ERM w/ MAD 32.32 66.47 69.80 34.54 50.78

Augmix [24]
ICLR 19

38.30 66.54 70.16 52.48 56.87

Augmixw/ MAD 36.19 68.04 73.11 54.44 57.94

pAdaIn [34]
CVPR 21

33.66 64.96 65.24 32.04 48.98

pAdaIn w/ MAD 34.66 65.64 70.10 42.85 53.31

Mixstyle [65]
ICLR 21

37.44 67.60 70.38 34.57 52.50

Mixstyle w/ MAD 41.57 69.88 71.61 41.58 56.16

ACVC [15]
CVPR 22

48.05 73.68 77.39 55.30 63.61

ACVC w/ MAD 52.95 75.51 77.25 57.75 65.87

DSU [30]
ICLR 22

42.10 71.54 74.51 47.75 58.97

DSU w/ MAD 44.15 72.41 74.47 49.60 60.16

Table 2. Single-domain generalization classification accuracies

(%) on VLCS dataset with ResNet-18 as backbone. Here, V, L,

C, and S denote the source domains. We train the model on one

source domain, and evaluate them on the rest domains.

Methods Venue V L C S Avg

ERM 76.72 58.86 44.95 57.71 59.56

ERM w/ MAD 76.21 67.97 46.55 61.04 62.95

Augmix [24]
ICLR 19

75.25 59.52 45.90 57.43 59.53

Augmixw/ MAD 76.57 65.60 44.35 59.47 61.50

pAdaIn [34]
CVPR 21

76.03 65.21 43.17 57.94 60.59

pAdaIn w/ MAD 76.57 68.90 42.92 63.91 63.08

Mixstyle [65]
ICLR 21

75.73 61.29 44.66 56.57 59.56

Mixstyle w/ MAD 75.00 66.17 43.61 62.01 61.70

ACVC [15]
CVPR 22

76.15 61.23 47.43 60.18 61.25

ACVC w/ MAD 76.15 69.36 48.04 61.74 63.82

DSU [30]
ICLR 22

76.93 69.20 46.54 58.36 62.76

DSU w/ MAD 76.99 70.85 44.78 62.23 63.71

4.2. Single-DG on Point Cloud Recognition

Setup and Implementation Details: Different from 2D vi-

sion, 3D vision has various modalities to represent data,

such as voxel grid, 3D mesh and point cloud. Among

them, point cloud is the most straightforward and repre-

sentative modality, which consists of a set of points with

3D coordinates. To verify the generality of MAD, we con-

duct experiments on the 3D point cloud domain adaptation

dataset PointDA-10 [39], which consists of three domains:

ShapeNet (SH), ScanNet (SC), and ModelNet (M). In our

implementation, we adopt the PointNet [39] as backbone,

and apply the SGD optimizer with momentum 0.9. The

batch size is set to 64. We set the learning rate to 1e-3. Ex-

periments are executed on a Tesla P40 GPU with PyTorch-

1.5. For model selection, similar to the experiments on im-

ages, we split the training domain into training and valida-

Table 3. Single-domain generalization classification accuracies

(%) on PointDA-10 dataset with PointNet as backbone. Here, SH,

SC, and M denote the source domains. We train the model on one

source domain, and evaluate them on the rest domains.

Methods Venue SH SC M Avg

ERM
-

25.69 45.09 32.94 34.57

ERM w/ MAD 31.11 48.07 34.69 37.91

Mixstyle [65]
ICLR 21

27.18 46.25 27.93 33.78

Mixstyle w/ MAD 29.89 51.01 33.57 38.16

DSU [30]
ICLR 22

25.74 43.53 31.61 33.63

DSU w/ MAD 28.92 47.69 32.72 36.45

tion subsets, and choose the model with maximal accuracy

on validation set to report the OOD performance.

Experiment Results: Table 3 lists the performance com-

parison on PointDA-10. An observation is that the exist-

ing data augmentation methods on 2D images do not work

well on 3D point clouds. The representative methods, e.g.,

Mixstyle and DSU, are even inferior to ERM. We speculate

that this may be the results of the different types of domain

shifts, which typically lie in geometric differences in point

clouds rather than texture and style differences in 2D im-

ages. Moreover, there is no one-to-one correspondence and

order between points, making it difficult to directly gener-

ate new point clouds by interpolating two point clouds. This

somewhat reveals the weakness of data augmentation, when

generalizing to different modalities. MAD, in compari-

son, benefits from decoupling domain-specific features and

domain-generalized features, and constantly enhances these

methods. In particular, MAD improves the overall accu-

racy of ERM/Mixstyle/DSU from 34.57%/33.78%/33.63%

to 37.91%/38.16%/36.45%. The results basically indicate

the advantage of MAD across different modalities.

4.3. Single-DG on Text Classification

Setup and Implementation Details: In addition to 2D im-

ages, and 3D point clouds, we further conduct experiments

on cross-domain text classification. We choose the Ama-
zon Reviews [3] as the benchmark, which contains four

different domains on product review, including DVDs (D),

Kitchen appliance (K), Electronics (E), and Books (B). The

dataset has already been pre-processed into a bag of features

(unigrams and bigrams), losing all word order information.

Following [8, 9], we take the 5,000 most frequent features

and represent each review as a 5,000-dimentional feature

vector. Following [8, 9], we employ an MLP as feature ex-

tractor. We apply the SGD optimizer with momentum 0.9.

The batch size is set to 64. We set the learning rate to 1e-

3. Experiments are conducted on a Tesla P40 GPU with

PyTorch-1.5. We adopt the same model selection strategy

as in image and point cloud recognition.

Experiment Results: The results shown in Table 4 clearly
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Table 4. Single-domain generalization classification accuracies

(%) on Amazon-Review dataset with an MLP as backbone. Here,

D, E, K, and B denote the source domains. We train the model on

one source domain, and evaluate them on the rest domains.

Methods Venue D E K B Avg

ERM
-

74.17 73.17 73.67 71.58 73.15

ERM w/ MAD 76.08 74.33 73.33 74.67 74.60

Mixup [61]
ICLR 18

74.83 72.17 73.58 72.67 73.31

Mixup w/ MAD 75.33 73.58 74.33 73.75 74.25

Mixstyle [65]
ICLR 21

74.75 73.17 74.33 72.33 73.65

Mixstyle w/ MAD 75.17 72.75 75.00 75.25 74.54

DSU [30]
ICLR 22

75.00 73.45 75.25 73.08 74.20

DSU w/ MAD 76.42 74.33 76.50 75.17 75.60

Table 5. Single-domain generalization on semantic segmentation

(GTA-5 → Cityscapes).

Methods Venue mIOU(%) mACC(%)

ERM - 37.0 51.5

pAdaIN [34] CVPR 21 38.3 52.1

Mixstyle [65] ICLR 21 40.3 53.8

DSU [30] ICLR 22 42.3 54.7

ERM w/ MAD - 38.9 52.2
DSU w/ MAD - 43.8 57.2

verify the effectiveness of MAD in comparison to the ex-

isting methods. Similar to the observations on 2D images

and 3D point clouds, MAD also exhibits performance im-

provement to existing approaches on text modality. For ex-

ample, MAD boosts up the accuracy of ERM on Books do-

main by 3.09%, and leads to 0.94%, 0.89%, and 1.40% gain

in overall accuracy to Mixup, Mixstyle, and DSU, respec-

tively. The improvements empirically prove the impact of

MAD on text modality.

4.4. Single-DG on Semantic Segmentation

Setup and Implementation Details: The aforementioned

experiments mainly focus on the single-DG recognition of

1D texts, 2D images and 3D point clouds. In this section,

we experiment with 2D images segmentation. As a funda-

mental ability for autonomous driving, semantic segmenta-

tion models often encounter severe performance degener-

ation due to scenarios change. Here, we conduct experi-

ments on GTA-5 [42] → Cityscape [13] datasets, the most

widely-used benchmark on semantic segmentation domain

adaptation. The experiments are based on FADA released

codes [54], using DeepLab-V2 [7] segmentation network

with ResNet-101 [23] as backbone. We apply the SGD op-

timizer with momentum 0.9. The batch size is set to 8. We

set the learning rate to 5e-4. Experiments are implemented

on 4 Tesla P40 GPUs with PyTorch-1.5. Mean Intersection

over Union (mIOU) and mean Accuracy (mAcc) for all ob-

jects categories are adopted as evaluation metric.

Experiment Results: As a pixel-level classification task,

Table 6. Ablation. Results of the vanilla ERM, ERM w/ MAD

(one-stage), ERM w/ MAD (single-head), and ERM w/ MAD. The

experiments are conducted on single-domain generalization sce-

narios of 1D Texts (Amazon Review dataset), 2D Images (VLCS

dataset), and 3D Point Clouds (PointDA-10 dataset).

Methods 1D Texts 2D Images 3D Points Avg

ERM 73.15 59.56 34.57 55.76

MAD (one-stage) 74.00 60.41 35.67 56.69

MAD (single-head) 74.31 60.49 36.61 57.14

MAD 74.60 62.95 37.91 58.49

(a) sensitivity to M (T = 3) (b) sensitivity to T (M = 7)

Figure 3. Hyper-parameter sensitivity analysis on Single-DG text

classification. M denotes the number of the biased-branch classi-

fiers and T is the training threshold for the second stage.

semantic segmentation is much harder than image-level

recognition. Table 5 details the results, demonstrating the

superiority of MAD against baselines. Specifically, MAD

contributes an mIOU increase of 1.9% and 1.5% to ERM

and DSU, respectively. The results again verify the merit of

MAD on semantic segmentation on 2D images.

4.5. Experiments Analysis

Ablation Study: To examine the contribution of differ-

ent components within MAD, we first conduct extensive

ablation studies on texts, images, and point clouds recog-

nition. Table 6 summarizes the results. Here, MAD
(one-stage) refers to a degraded version of MAD without

two-stage learning mechanism. That is, we optimize the

biased-branch gbias and the general-branch ggen simultane-

ously. MAD (single-head) indicates that we only capitalize

on a single-head classifier in the biased-branch to capture

those domain-specific features. As shown in Table 6, both

the multi-head classifier design and the two-stage learning

mechanism are effective. The two components complement

to each other and both manage the general-branch classifier

ggen to focus more on those domain-generalized features.

Hyper-parameter Sensitivity: Next, we study the hyper-

parameter sensitivity of M and T on text classification task.

M is the number of the biased-branch classifiers, and T de-

notes the second-stage training threshold. As shown in Fig-

ure 3, the accuracies are relatively stable when each hyper-

parameter varies. In our implementation, we set T to 3.

Since M depends on the factors of the introduced domain-
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Figure 4. Comparisons of ERM and ERM w/ MAD training curves

on low-frequency component (LFC) and high-frequency compo-

nent (HFC). Experiments are conducted in the “LabelMe” domain

of the VLCS benchmark. All curves in this figure are from valida-

tion samples of “LabelMe” domain.

specific features, its value differs for different datasets. We

set M to 3 for PointDA-10 and GTA-5, 5 for VLCS, and 7

for PACS and Amazon Review.

Low-frequency Component vs High-frequency Compo-
nent: As pointed out in [55], the low-frequency compo-

nent (LFC) is much more generalizable than high-frequency

component (HFC), i.e., LFC typically represents those

domain-generalized (semantic) features, and HFC denotes

those domain-specific (superficial) features. Here, we con-

duct experiments in the “LabelMe” domain of the VLCS

benchmark to verify whether MAD encourages classifier to

pay more attention to those domain-generalized features,

i.e., the LFC. Specifically, for each instance in the valida-

tion subset, we decompose the data into LFC and HFC w.r.t

different radius thresholds r via applying Fourier transform

and inverse Fourier transform. Then, we train the vanilla

ERM classifier, the ERM classifier equipped with MAD

separately, and evaluate them on LFC and HFC. Figure 4

depicts the results, where r = 12/16 low (solid line) de-

notes the LFC and r = 12/16 high (dashed line) denotes

the HFC. As shown in this figure, ERM w/ MAD performs

much better on LFC than vanilla ERM, with an accuracy

improvement of nearly 10%. The results confirm the effec-

tiveness of MAD in improving single-domain generaliza-

tion, and MAD indeed encourages classifiers to pay more

attention to those domain-generalized features (LFC).

4.6. Visualization

In addition to quantitative performance comparisons, we

further present some qualitative illustrative results. Figure 5

(a) first visualizes the confusion matrix on PACS bench-

mark. The classification model is trained on “Cartoon” do-

main and evaluated on unseen domain “Sketch”. The re-

sults show that ERM w/ MAD is less confusing for most

categories when testing in unseen domains compared to

vanilla ERM. Then, Figure 5 (b) illustrates an example for

semantic segmentation. The visualization demonstrates that

MAD can enhance the ERM baseline to achieve more pre-

Figure 5. Visualization. (a) Confusion matrix on PACS bench-

mark (“Carton”→ “Sketch”). (b) Semantic segmentation illustra-

tion on unseen domain Cityscapes with model trained on GTA-5.
cise segmentation results under domain shift, especially for

the driveable areas.

5. Conclusion

In this paper, we delve into the single domain gen-

eralization (single-DG) problem. Different from existing

methods that introduce modality-specific data augmentation

techniques, we propose a general and versatile modality-

agnostic debiasing (MAD) framework for single-DG. MAD

starts from the viewpoint of directly strengthening the capa-

bility of classifier for identifying domain-specific (superfi-

cial) features, and meanwhile emphasizing the learning of

domain-generalized (semantic) features. Technically, we

have devised a novel two-branch classifier, where a biased-

branch is responsible for identifying those superficial fea-

tures, while the general-branch is encouraged to focus more

on those semantic features. MAD is appealing in view that

it can be seamlessly incorporated into existing methods to

further boost up performances. We have evaluated the effec-

tiveness and superiority of MAD for single-DG via various

empirical evidences on a series of tasks, including recogni-

tion on 1D texts, 2D images, 3D point clouds, and semantic

segmentation on 2D images. In all tasks, MAD can facil-

itate the state-of-the-art methods to achieve better perfor-

mance without bells and whistles.
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