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Figure 1. (left) PACO includes objects with object masks, object attributes, part masks, and part attributes. (right) Object instance queries
composed of object and part attributes are shown with corresponding positive images in green and negative images in red.

Abstract
Object models are gradually progressing from predict-

ing just category labels to providing detailed descriptions
of object instances. This motivates the need for large
datasets which go beyond traditional object masks and pro-
vide richer annotations such as part masks and attributes.
Hence, we introduce PACO: Parts and Attributes of Com-
mon Objects. It spans 75 object categories, 456 object-
part categories and 55 attributes across image (LVIS) and
video (Ego4D) datasets. We provide 641K part masks an-
notated across 260K object boxes, with roughly half of
them exhaustively annotated with attributes as well. We
design evaluation metrics and provide benchmark results
for three tasks on the dataset: part mask segmentation, ob-
ject and part attribute prediction and zero-shot instance de-
tection. Dataset, models, and code are open-sourced at
https://github.com/facebookresearch/paco.

∗ Equal contribution † Work done during internship at Meta AI

1. Introduction

Today, tasks requiring fine-grained understanding of
objects like open vocabulary detection [8, 14, 20, 51],
GQA [17], and referring expressions [3, 21, 32] are gaining
importance besides traditional object detection. Represent-
ing objects through category labels is no longer sufficient.
A complete object description requires more fine-grained
properties like object parts and their attributes, as shown by
the queries in Fig. 1.

Currently, there are no large benchmark datasets for
common objects with joint annotation of part masks, ob-
ject attributes and part attributes (Fig. 1). Such datasets
are found only in specific domains like clothing [18, 47],
birds [42] and pedestrian description [25]. Current datasets
with part masks for common objects [2, 15, 50] are lim-
ited in number of object instances with parts (59K for
ADE20K [2] Tab. 1). On the attributes side, there exists
large-scale datasets like Visual Genome [23], VAW [35] and
COCO-attributes [34] that provide object-level attributes.
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However, none have part-level attribute annotations.
In this work, we enable research for the joint task of ob-

ject detection, part segmentation, and attribute recognition,
by designing a new dataset: PACO. With video object de-
scription becoming more widely studied as well [19], we
construct both an image dataset (sourced from LVIS [13])
and a video dataset (sourced from Ego4D [11]) as part of
PACO. Overall, PACO has 641K part masks annotated in
77K images for 260K object instances across 75 object
classes and 456 object-specific part classes. It has an order
of magnitude more objects with parts, compared to recently
introduced PartImageNet dataset [15]. PACO further pro-
vides annotations for 55 different attributes for both objects
and parts. We conducted user studies and multi-round man-
ual curation to identify high-quality vocabulary of parts and
attributes.

Along with the dataset, we provide three associated
benchmark tasks to help the community evaluate its
progress over time. These tasks include: a) part segmen-
tation, b) attribute detection for objects and object-parts and
c) zero-shot instance detection with part/attribute queries.
The first two tasks are aimed at benchmarking stand alone
capabilities of part and attribute understanding. The third
task evaluates models directly for a downstream task.

While building the dataset and benchmarks, we navigate
some key design choices: (a) Should we evaluate parts and
attributes conditioned on the object or independent of the
objects (eg: evaluating “leg” vs. “dog-leg”, “red” vs. “red
cup”)? (b) How do we keep annotation workload limited
without compromising fair benchmarking?

To answer the first question, we observed that the same
semantic part can visually manifest very differently in
different objects (“dog-leg” vs “chair-leg”). This makes
the parts of different objects virtually independent classes,
prompting us to evaluate them separately. This also forces
models to not just identify parts or attributes independently,
but predict objects, parts and attributes jointly. This is more
useful for downstream applications.

Next, to keep annotation costs limited, we can construct
a federated dataset as suggested in LVIS [13]. For object de-
tection, LVIS showed that this enables fair evaluation with-
out needing exhaustive annotations for every image. How-
ever, this poses a specific challenge in our setup. Object
detection requires every region to be associated with only
one label (object category), while we require multiple la-
bels: object, part and attribute jointly. This subtle but im-
portant difference, makes it non-trivial to extend definition
and implementation of metrics from LVIS to our setup. We
provide a nuanced treatment of missing labels at different
levels (missing attribute labels vs. missing part and attribute
labels) to handle this.

Our design choices allow us to use popular detection
metrics: Average Precision and Average Recall for all our

tasks. To facilitate calibration of future research models, we
also provide benchmark numbers for all tasks using simple
variants of mask R-CNN [16] and ViT-det [28].

1.1. Related work

Availability of large-scale datasets like ImageNet [4],
COCO [30], LVIS [13] have played a crucial role in the
acceleration of object understanding. We briefly review
datasets that provide a variety of annotations for objects be-
sides category labels.
Object detection and segmentation datasets
The task of detecting and segmenting object instances
is well studied with popular benchmark datasets such as
COCO [30], LVIS [13], Object365 [37], Open Images [24]
and Pascal [7] for common objects. There are also domain-
specific datasets for fashion [18, 47], medical images [45]
and OCR [5, 39, 41]. Recent datasets like LVIS, Open-
Images and Objects365 have focused on building larger
object-level vocabulary without specific focus on parts or
attributes. In particular, LVIS introduced the idea of feder-
ated annotations, making it possible to scale to larger vo-
cabularies without drastically increasing annotation costs.
We adopt this in our dataset construction as well.
Part datasets
Pixel-level part annotations for common objects are pro-
vided by multiple datasets such as PartImageNet [15],
PASCAL-Part [2], ADE20K [49, 50] and Cityscapes-
Panoptic-Parts [33]. PASCAL provides part annotations for
20 object classes and PartImageNet provides parts for ani-
mals, vehicles and bottle. Cityscapes has parts defined for
9 object classes. In contrast we focus on a larger set of 75
common objects from LVIS vocabulary. Our dataset has
ten times larger number of object boxes annotated with part
masks compared to PartImageNet. ADE20K is a 28K im-
age dataset for scene parsing which includes part masks.
While it provides an instance segmentation benchmark for
100 object categories, part segmentation is benchmarked
only for 8 object categories due to limited annotations. We
provide a part segmentation benchmark for all 75 object
classes. More detailed comparison of above datasets are
provided in Tab. 1. Apart from common objects, part seg-
mentation has also been studied for specific domains like
human part segmentation: LIP [10], CIHP [46], MHP [26],
birds: CUB-200 [42], fashion: ModaNet [47], Fashionope-
dia and cars: CarFusion [6], ApolloCar3D [40].
Attribute datasets
Attributes have long been viewed as a fundamental way
to describe objects. In particular, domain-specific attribute
datasets have become more prevalent for fashion, animals,
people, faces and scenes [12,22,27,31,48,50]. A motivation
of our work is to extend such rich descriptions to common
objects and object parts as well. More recently, Pham et
al. [35] introduced the Visual Attributes in the Wild (VAW)
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PartsIN Pascal City.-PP VAW COCO att. FashionPedia ADE PACO-LVIS PACO-EGO4D PACO

object domain comm. comm. comm. comm. comm. fashion comm. comm. comm. comm.
# obj cats 158 20 5 2260 29 27 2693 75 75 75

# img with obj mask 24K 20K 3.5K 72.3K 84K 48.8K 27.6K 57.6K 23.9K 81.5K
# obj mask 24K 50k 56k 260.9K 180K 167.7K 434.8K 274K 58.4K 332.3K

# obj-part cats 609 193 23 - - - 476 456 456 456
# obj-agn. part cats 13 127 9 - - 19 - 200 194 200

# img with part mask 24K 19K 3.5K - - 48.8K 12.6K 52.7K 24K 76.7K
# part mask 112K 363.5k 100k - - 174.4K 193.2K 502K 139.3K 641.4K

# obj with part mask 24K 40k 31k - - NA 59K 209.4K 50.9K 260.3K
# att cats - - - 620 196 294 1314 55 55 55

# img with att - - - 72.3K 84K 48.8K 16.3K 48.6K 26.3K 74.9K
# obj with att - - - 260.9K 180K 78.9K 74.6K 74.4K 49.6K 124K
# part with att - - - - - 132.8K 31.4K 186K 110.6K 296.6K
avg # att / img - - - 3.6 41 8.4 24.7 22.2 25.8 23.4
neg. att labels - - - TRUE TRUE TRUE FALSE TRUE TRUE TRUE

Table 1. Comparison of publicly available parts and attributes datasets. PartsIN refers to PartsImageNet, City.-PP refers to Cityscape
PanopticParts. Salient features of our dataset are shown in bold.

dataset constructed from two source datasets: VGPhrase-
Cut [43] and GQA [17]. VAW expanded and cleaned the at-
tributes in the source datasets, and adds explicit negative at-
tribute annotations to provide a rigorous benchmark for ob-
ject attribute classification. VAW solely focused on attribute
classification, and assumed the object box and label to be
known apriori. VAW is not benchmarked for joint end-to-
end object/part localization and attribute recognition, which
is the focus of our work.
Part and attribute datasets
Fashionpedia [18] is a popular dataset for fashion providing
both part and attribute annotations in an image. It is the
closest line of work that also provides part localization and
attribute recognition benchmarks. PACO aims to generalize
this to common object categories.
Instance recognition with queries
Attributes have been long used for zero-shot object recogni-
tion [36, 44]. We use this observation to build an instance-
level retrieval benchmark for retrieving a specific instance
of an object from a collection of images using part and
attribute queries. Recently, Cops-Ref [3] also introduced
a challenging benchmark for object retrieval in the nat-
ural language setting with a focus on referring expres-
sions [21, 32] that involve spatial relationships between ob-
jects. PACO is aimed at benchmarking part and attribute
based queries at varying levels of compositions.

2. Dataset construction

2.1. Image sources

PACO is constructed from LVIS [13] in the image do-
main and Ego4D [11] in the video domain. We chose LVIS
due to its large object vocabulary and federated dataset con-
struction. Ego4D has temporally aligned narrations, making
it easy to source frames corresponding to specific objects.

2.2. Object vocabulary selection

We first mined all object categories mentioned in the nar-
rations accompanying Ego4D and took the intersection with
common and frequent categories in LVIS. We then chose
categories with at-least 20 instances in Ego4D, resulting in
75 categories commonly found in both LVIS and Ego4D.

2.3. Parts vocabulary selection

Excluding specific domains like fashion [18], there
is no exhaustive ontology of parts for common objects.
We mined part names from web-images obtained through
queries like “parts of a car”. These images list part-names
along with illustrations and pointers to the parts in the ob-
ject. We manually curate such mined part names for an
object category to only retain parts that are visible in ma-
jority of the object instances and clearly distinguishable.
More details in the appendix. This resulted in a total of 200
part classes shared across all 75 objects. When expanded to
object-specific parts this results in 456 object-part classes.

2.4. Attribute vocabulary selection

Attributes are particularly useful in distinguishing differ-
ent instances of the same object type. Motivated by this, we
conducted an in-depth user study (details in appendix) to
identify the sufficient set of attributes that can separate all
object instances in our dataset. This led to the final vocab-
ulary of 29 colors, 10 patterns and markings, 13 materials
and 3 levels of reflectance.

2.5. Annotation pipeline

Our overall data annotation pipeline consists of: a) Ob-
ject bounding box and mask annotation (only for Ego4D)
b) part mask annotation, c) object and part attributes anno-
tation and d) instance IDs annotation (only for Ego4D).
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2.5.1 Object annotation

Bounding boxes and masks are already available for the 75
object classes in LVIS, but not in Ego4D. For Ego4D, we
use the provided narrations to identify timestamps in videos
for specific object classes. We sampled 100 frames around
these timestamps and asked annotators to choose at most
5 diverse (in lighting, viewpoint, etc.) frames that depict
an instance of the object class. These frames are annotated
with bounding boxes and object masks. A frame annotated
with a specific object class is exhaustively annotated with
every bounding box of the object class. For each object
class in the evaluation splits we annotate negative images
that are guaranteed to not contain the object.

2.5.2 Part mask annotation

We provide part masks for all annotated object boxes in both
LVIS and Ego4D. A fraction of the object boxes were re-
jected by annotators due to low resolution, motion blur or
significant occlusion. This resulted in a total of 209K, 43K
object boxes with parts in LVIS, Ego4D respectively. For an
object box to be annotated, we listed all the potential parts
for the object class and asked annotators to annotate masks
for the visible parts. Note that parts can be overlapping (for
example, door and handle). We do not distinguish between
different instances of a part in an object instance, but pro-
vide a single mask covering all pixels of a part class in the
object (e.g., all car wheels are covered by a single mask).

2.5.3 Attributes annotation

Every bounding box in Ego4D is annotated with object and
part-level attributes, unless rejected by annotators due to
lack of resolution or blur. Obtaining exhaustive attribute
annotations for all object and part instances in LVIS dataset
for the 75 categories is very expensive. Hence, we ran-
domly selected one medium or large1 bounding box per im-
age, per object class for attribute annotations. We annotate
a box with both object-level and part-level attributes for all
55 attributes in a single annotation job. This ensures con-
sistency between object and part attributes and helped us
annotate attributes for a diverse set of images with limited
expense. This resulted in 74K (50K) object instances and
186K (111K) part instances annotated with attributes for
LVIS (Ego4D) respectively.

2.5.4 Instance annotation

We also introduce a zero-shot instance detection task with
our dataset. To do this we need unique instance IDs for each
object box in the dataset. For LVIS data, we assume each
individual object box to be a separate instance. However,

1Decided based on box area as defined in COCO [41].

(a) (b)

(c)

Figure 2. Dataset Statistics. Fig. (a) shows the distribution of
instances across the 456 object-part categories. Fig. (b) shows the
size distribution of object and part masks in PACO-LVIS. Fig. (c)
shows the distribution of the 55 attribute classes across instances
in PACO-LVIS

this is not true for Ego4D. Different bounding boxes of an
object could correspond to the same instance. Also, differ-
ent videos in Ego4D could have the same object instance.
We underwent a rigorous multi-stage process to annotate
instance IDs, explained in the appendix. This resulted in
16908 unique object instances among the 49955 annotated
object boxes in Ego4D.

2.5.5 Managing annotation quality

Each stage in the annotation pipeline had multiple asso-
ciated quality control methods such as use of gold stan-
dard and annotation audits. We had 10 − 50 instances of
each object annotated by expert annotators and set aside
as gold annotations. For part mask annotations, we mea-
sured mIoU with gold images for each object class and re-
annotated object classes with mIoU < 50% on gold anno-
tations. Eventually, 90% of the object classes have mIoU
≥ 0.75 with the gold-annotated masks (shown in appendix).
For all attribute annotations we were checking quality by
randomly sampling annotations, finding patterns in annota-
tion errors, updating guidelines to correct clear biases, and
re-annotating erroneous examples. This eventually drove
accuracy to more than 85% on the gold annotations pro-
vided by expert annotators.

3. Dataset statistics
Part statistics: Fig. 2a shows the number of part masks
annotated for each object-part category in PACO-LVIS and
PACO-EGO4D. We observe the typical long-tail distribu-
tion with certain categories like ‘book-cover’, ‘chair-back’
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and ‘box-side’ having greater than 6500 instances, and,
categories like ‘fan-logo’ and ‘kettle-cable’ having fewer
than 5 instances. Fig. 2b shows the distribution of num-
ber of large, medium and small parts in PACO-LVIS. We
observe that larger fraction of part masks belong to small
and medium size, compared to object masks.
Attribute statistics: Fig. 2c shows number of annotations
per attribute and attribute type in PACO-LVIS. We again
observe a long-tail distribution with common attributes like
colors having many annotations, while uncommon ones like
‘translucent’ having fewer annotations.
Comparison with other datasets: We also provide an
overview of different parts and/or attributes datasets in
Tab. 1. Among the datasets with part annotations, PACO
provides 641K part mask annotations in the joint dataset,
which is 3× bigger than other datasets like ADE20K
(176K), PartImageNet (112K) and Fashionpedia (175K).
While ADE20K has sizeable number of part masks over-
all, it doesn’t provide a well defined instance-level bench-
mark for parts due to limited test annotations. PACO has
10× more object instances with parts (260K) compared to
the next closest parts benchmark dataset for common ob-
jects: PartsImageNet (25K). In terms of attributes, the joint
dataset has 124K object and 297K part masks with attribute
annotations. While VAW has 261K object masks with at-
tributes, the combined set of attribute annotations for part
and object masks (421K) in PACO is still larger. VAW has
a larger vocabulary of attributes 620 vs 55. However, in
PACO, every object/part mask annotated with attributes is
exhaustively annotated with all attributes in the vocabulary
unlike VAW. This makes the density of attributes per im-
age 23.4 much larger than VAW 3.6. COCO-attributes pro-
vides attribute annotations for COCO images as well, but
for much smaller set of object classes (29).

4. Tasks and evaluation benchmark

We now introduce three evaluation tasks. Our first two
tasks directly evaluate the quality of parts segmentation and
attributes prediction. The other task aims to leverage parts
and attributes for zero-shot object instance detection.

4.1. Dataset splits

We split both PACO-LVIS and PACO-EGO4D datasets
into train, val and test sets. The test split of PACO-
LVIS is a strict subset of the LVIS-v1 val split and con-
tains 9443 images. The train and val splits of PACO-
LVIS are obtained by randomly splitting LVIS-v1 train
subset for 75 classes, and contain 45790 and 2410 images
respectively. Ego4D is split into 15667 train, 825 val
and 9892 test images. The set of object instance IDs in
Ego4D train and test sets are disjoint.

4.2. Federated dataset for object categories

We briefly review the concept of federated dataset from
LVIS [13], where every image in the evaluation set is not
annotated exhaustively with all object categories. However,
every object category has (a) a set of negative images that
are guaranteed to not contain any instance of the object, (b)
a set of exhaustive positive images where all instances of the
object are annotated and (c) a set of non-exhaustive positive
images with at-least one instance of the object annotated.
Non-exhaustive positive images are not guaranteed to have
all instances of the object annotated. Only these three types
of images are used to evaluate AP for the category.

4.3. Part segmentation

Our part segmentation task requires an algorithm to de-
tect and segment the part-masks of different object instances
in an unseen image and assign an (object, part) label with a
confidence score to the part-mask. The (object, part) pairs
are from a fixed known set. This is similar to the object
instance segmentation task, but uses object-part labels in-
stead of only object labels. We consider parts of different
instances of the object in an image to be different object-
part instances.

We choose to evaluate the task for (object, part) labels
instead of only part labels, since the appearance and def-
inition of the same semantic part can be very different de-
pending on the object it appears in. We expect the models to
produce both an object and a part label, with a single joint
score. This leaves us with 4562 object-parts in the dataset.

We use mask and box Average Precision (AP) metrics
defined in COCO [41]. AP is averaged over different thresh-
olds of intersection over union (IoU)3.
AP calculation in federated setup
Given a set of predicted masks with a combined score for
(object category o, part category p), we compute AP for
the object-part (o, p) at a given IoU threshold. We use all
positive and negative images of o to do this. We treat each
predicted mask as a true positive, false positive or ignore it
based on the following criteria.
Negative images: We treat all predicted masks in nega-
tive images of object o as false positives for the object-part
(o, p). This is a valid choice, since an object-part cannot be
present without the object.
Non-exhaustive positive images: We treat images marked
as non-exhaustive for the object category as non-exhaustive
for the object-part as well. There is also a subset of images
exhaustively annotated for the object, but not for the object-
part. We provide an explicit flag to identify such additional
non-exhaustive images for every object-part in our datasets.

2Similar to LVIS, a small number of valid (object, part) pairs in
train do not have any annotated instances in the val and test splits.
We ignore these object-parts for evaluation.

3Mask IoU is used for mask AP and box IoU is used for box AP [41]
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mask AP box AP
Model AP obj AP opart AP obj AP opart

R50 FPN 31.5 ± 0.3 12.3 ± 0.1 34.6 ± 0.3 16.0 ± 0.1
+ cascade 32.6 ± 1.3 12.5 ± 0.7 37.4 ± 1.6 16.3 ± 1.1
R101 FPN 31.5 ± 0.6 12.3 ± 0.3 34.8 ± 0.8 16.1 ± 0.3
+ cascade 35.1 ± 0.1 13.7 ± 0.1 40.2 ± 0.1 17.9 ± 0.2

ViT-B FPN 33.6 ± 0.3 13.5 ± 0.1 38.7 ± 0.4 17.5 ± 0.0
+ cascade 33.6 ± 0.3 13.5 ± 0.1 38.7 ± 0.4 17.5 ± 0.0

ViT-L FPN 42.8 ± 0.3 17.3 ± 0.1 47.3 ± 0.2 22.0 ± 0.1
+ cascade 43.4 ± 0.3 17.7 ± 0.0 49.7 ± 0.2 22.9 ± 0.0

Table 2. Object and object-part segmentation results for mask-
RCNN and ViT-det models trained and evaluated on PACO-LVIS

In both cases of non-exhaustive images, we consider pre-
dicted masks overlapping (above the IoU threshold) with an
annotated ground-truth object-part mask as true positives.
We ignore other predicted masks in the images.
Exhaustive positive images: On the subset of positive im-
ages, where every instance of the object-part is exhaustively
annotated, we treat predicted masks as true positives if they
overlap (above the threshold) with a ground-truth annotated
part mask, otherwise they are treated as false positives.

The true and false positive masks along with their pre-
dicted scores are used to calculate AP at a given threshold
as defined in COCO [41]. We report mean Average Preci-
sion across all object-part categories (AP opart).

4.4. Instance-level attributes prediction

In PACO, this is the task that requires an algorithm to
produce masks and/or boxes along with both a category la-
bel (object or object-part) as well as an attribute label and
a single joint confidence score for the category with the at-
tribute (eg.: score for “red car”, “red car-wheel”).

Since multiple aspects are being evaluated together, we
need to be meticulous in designing the evaluation metric.
In particular, we need to be careful in our consideration of
object and object-part masks with missing attribute annota-
tions as we show next.
AP calculation in federated setup
We continue with AP as our evaluation metric. Given a set
of predicted masks with scores for a category c (can be an
object o or object-part (o, p)) and attribute a combination,
we compute AP for (c, a). We use all positive or negative
images of object o to compute the AP for (c, a). We com-
pute AP at different IoU thresholds and report the average.
At a given threshold, we identify true positives, false posi-
tives or ignored masks as described below.
Negative images: We treat all predicted masks in negative
images of the object o as false positives for (c, a).
Positive images: In both exhaustive and non-exhaustive
positive images, we do the following. We treat masks over-
lapping with ground-truth masks of the category that are
also annotated positively for the attribute a as true positives.

Masks overlapping with ground truth masks of the cate-
gory c, but annotated negatively for attribute a are treated
as false positives. We ignore mask predictions that overlap
with ground-truth masks of category c with un-annotated
attribute labels. We treat mask predictions not overlapping
with any ground-truth mask differently in exhaustive and
non-exhaustive positive images. In non-exhaustive images,
we ignore such predictions, while in exhaustive images we
treat such predictions as false positives.

We use the true and false positives along with their pre-
dicted confidence scores to calculate AP for (c, a). We only
compute AP for (c, a) if at-least one instance of c is posi-
tively annotated with attribute a in test set and at-least 40
other instances of c are negatively annotated for a.

We observe that some (c, a) combinations can be “rare”
in the evaluation set with few positive occurrences only. As
observed in LVIS [13] such “rare” combinations can have
a higher variance in the metric and it helps to average the
metric across categories to reduce variance. Hence, we ag-
gregate AP at an attribute level for a, by averaging the AP
across all categories that are evaluated with a. We aggregate
over object categories and object-part categories separately,
leading to object AP (AP obj

a ) and object-part AP (AP opart
a )

for each attribute a. In our experiments, we report the mean
value of AP obj

a across all attributes: AP obj
att , as well as the

mean values across attributes belonging to color (AP obj
col ),

pattern & markings (AP obj
pat ), material (AP obj

mat) and re-
flectance (AP obj

ref ). We do the same for object-parts and
report AP opart

att , AP opart
col , AP opart

pat , AP opart
mat and AP opart

ref .

4.5. Zero-shot instance detection

Zero-shot instance detection requires an algorithm to re-
trieve the bounding box of a specific instance of an object
based on a “query” describing the instance. No sample im-
ages of the instance are previously seen by the algorithm.
This has similarity to referring expression tasks [3, 21, 32]
that localize a specific object instance in an image based on
attribute and spatial relation queries. However, we intro-
duce a more fine-grained evaluation benchmark, where the
queries are composed of both object and part attributes at
different levels of composition.

We construct the evaluation dataset for both LVIS and
Ego4D from their corresponding test splits. We first de-
fine level-k (Lk) query as describing an object instance in
terms of k attributes of the object and/or parts. For exam-
ple, ”blue mug” or “mug with a blue handle” are sample L1
queries, “blue striped mug” is a L2 query and “blue striped
mug with white handle” is a L3 query. Each query is as-
sociated with 1 positive image with a bounding box and a
distractor set of up to 100 images, see Fig 1.

To ensure pracitcal utility, we avoid queries with unin-
formative attributes like “car with a black wheel” since all
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Model AP obj
att AP obj

col AP obj
pat AP obj

mat AP obj
ref AP opart

att AP opart
col AP opart

pat AP opart
mat AP opart

ref

R50 FPN 13.5 ± 0.3 10.8 ± 0.1 14.1 ± 0.6 9.9 ± 0.4 19.1 ± 0.7 9.7 ± 0.2 10.7 ± 0.2 10.6 ± 0.5 6.9 ± 0.0 10.7 ± 0.2
+ cascade 15.0 ± 1.0 12.4 ± 0.7 16.1 ± 0.7 11.0 ± 0.9 20.6 ± 1.6 10.5 ± 0.7 11.6 ± 0.8 11.6 ± 0.8 7.6 ± 0.7 11.2 ± 0.7
R101 FPN 13.5 ± 0.3 11.0 ± 0.2 13.9 ± 0.3 9.9 ± 0.4 19.1 ± 0.6 9.9 ± 0.1 11.0 ± 0.4 10.8 ± 0.4 7.1 ± 0.2 10.9 ± 0.3
+ cascade 16.0 ± 0.1 13.4 ± 0.2 16.7 ± 0.2 12.3 ± 0.1 21.5 ± 0.4 11.5 ± 0.2 12.6 ± 0.1 12.5 ± 0.3 8.5 ± 0.3 12.6 ± 0.3

ViT-B FPN 15.0 ± 0.2 11.9 ± 0.1 14.9 ± 0.5 12.8 ± 0.4 20.4 ± 0.8 10.9 ± 0.2 11.3 ± 0.3 11.4 ± 0.6 9.0 ± 0.1 11.8 ± 0.3
+ cascade 15.7 ± 0.2 12.6 ± 0.1 16.0 ± 0.5 13.2 ± 0.4 20.9 ± 0.5 11.0 ± 0.2 11.6 ± 0.2 11.7 ± 0.4 9.0 ± 0.2 11.5 ± 0.3

ViT-L FPN 18.8 ± 0.3 14.9 ± 0.2 18.9 ± 1.0 16.0 ± 0.7 25.4 ± 0.7 13.5 ± 0.2 14.0 ± 0.2 14.0 ± 0.4 11.7 ± 0.4 14.3 ± 0.6
+ cascade 19.5 ± 0.3 15.6 ± 0.3 19.1 ± 0.5 16.3 ± 0.3 27.0 ± 0.4 13.8 ± 0.1 14.4 ± 0.3 15.1 ± 0.0 11.5 ± 0.2 14.5 ± 0.4

Table 3. Attribute prediction results for mask R-CNN and ViT-det models trained and evaluated on PACO-LVIS. Box AP results are shown
for both object attributes and object-part attributes prediction.

Model LB-no attribute Original UB-perfect attribute

R-50 FPN 8.6 ± 0.3 13.5 ± 0.3 61.4 ± 0.3
R-101 FPN 8.6 ± 0.3 13.5 ± 0.3 63.0 ± 0.3
ViT-B FPN 9.0 ± 0.1 15.0 ± 0.2 60.5 ± 0.1
ViT-L FPN 10.6 ± 0.2 18.8 ± 0.3 72.6 ± 0.3

Table 4. Bounds for AP obj
att keeping detection quality fixed and

changing attribute scores. For lower bound (LB), we neglect at-
tribute scores and for upper bound (UB), we assume perfect at-
tribute scores.

cars have black wheel and eliminate part names that are in-
frequently used in large multimodal datasets (PMD [38]).
The distractor images for each query contain hard-negatives
corresponding to other instances of the same object cate-
gory, but differing by at-least one attribute from the query.
Queries have more than 40% hard negatives on average.
PACO-LVIS has 931/2348/2000 and PACO-EGO4D has
793/1437/2115 L1/L2/L3 queries respectively.

We measure performance of an algorithm through aver-
age recall metrics AR@k where k = 1, 5 denotes the top-k
boxes returned by the method for a query. We compute AR
at different IoU thresholds and report the average over all
thresholds, as defined in COCO [41].

5. Benchmarking experiments
5.1. Part segmentation

We train two mask R-CNN and two ViT-det [28] models
with 531 classes comprising both 75 object categories and
456 object-part categories. We use the standard 100-epoch
schedule recommended for LVIS with federated loss [52]
and LSJ [9] augmentation. For all experiments on part
segmentation and attribute detection, we train on train,
search for hyper-parameters on val and report results on
test splits. More implementation details are in the ap-
pendix. We trained with Cascade [1] as well as Fea-
ture Pyramid Network (FPN) [29]. The results for mod-
els trained and evaluated on PACO-LVIS are summarized
in Tab. 2. We also provide results for models trained on
joint image + video PACO dataset in the appendix.

We observed that object-parts in general have a smaller
AP compared to objects. This is due to the typically smaller

size of parts compared to objects (Fig. 2b). Nevertheless
larger and better backbones like ViT-L are seen to improve
performance for the part segmentation task.

5.2. Instance-level attributes prediction

We train a simple extensions of mask R-CNN and ViT-
det models with an additional attribute head on the shared
backbone. The attribute head uses the same ROI-pooled
features as the detection head to predict object and object-
part attributes. We use a separate cross-entropy loss for
each attribute type. The model is shown in more detail in
the appendix. We report box AP values for models trained
on PACO-LVIS in Tab. 3. We also provide results for the
joint dataset in the appendix. During inference, we rank
the detected boxes for a specific object-attribute combina-
tion by the product of the corresponding object and attribute
scores. For parts, we rank boxes by product of correspond-
ing object-part score and attribute score.

Attribute prediction is a harder task than object detec-
tion, as witnessed by the lower AP values for both object-
attributes and object-part-attributes, compared to AP values
in Tab. 2. Larger models fair better for this task as well.

Since we measures multiple factors together, we ana-
lyze the sensitivity of AP obj

attr only to attribute prediction
in Tab. 4. To do so, we keep detections from the trained
models fixed and get (a) lower bounds by ignoring attribute
scores and (b) upper bounds by assuming perfect attribute
scores (details in appendix). We observe a huge gap be-
tween lower and upper bounds, with our original models
only partially bridging it. This shows scope for future im-
provements in the attribute prediction ability of the models.

5.3. Zero-shot instance detection

We generate benchmark numbers for this task by directly
leveraging the models trained in Sec. 5.2. For a given query,
we use the scores corresponding to the object, part, object
attributes, and part attributes mentioned in the query to rank
object bounding boxes returned by the different joint mod-
els. We use a simple scoring function that combines these
scores using geometric mean to get one final score for each
box (explained in appendix). The results for FPN models
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L1 queries L2 queries L3 queries all queries
Model AR@1 AR@5 AR@1 AR@5 AR@1 AR@5 AR@1 AR@5

R50 FPN 22.5 ± 0.7 39.2 ± 0.5 20.1 ± 0.4 38.5 ± 0.1 22.3 ± 0.9 44.5 ± 1.1 21.4 ± 0.6 40.9 ± 0.3
R101 FPN 23.1 ± 0.7 40.5 ± 1.4 20.0 ± 0.6 39.3 ± 1.0 23.1 ± 0.7 45.2 ± 0.6 21.7 ± 0.6 41.8 ± 0.8
ViT-B FPN 26.8 ± 0.2 45.8 ± 0.2 22.7 ± 0.5 40.0 ± 0.7 24.1 ± 0.5 42.5 ± 1.5 23.9 ± 0.4 42.0 ± 0.9
ViT-L FPN 35.3 ± 0.7 57.3 ± 0.6 29.7 ± 0.6 50.1 ± 0.2 31.1 ± 0.8 52.3 ± 0.9 31.2 ± 0.4 52.2 ± 0.5

Table 5. Zero-shot instance detection results for different query levels for FPN models from Sec. 5.2 trained and evaluated on PACO-LVIS.

Model L1obj L1part L1

MDETR R101 4.1 ± 0.6 5.3 ± 0.6 4.9 ± 0.3
R101 FPN (Ours) 20.3 ± 0.9 24.4 ± 1.0 23.1 ± 0.7

Detic Swin-B 5.2 ± 0.7 6.2 ± 0.3 5.9 ± 0.2
ViT-B FPN (Ours) 22.6 ± 0.8 28.9 ± 0.6 26.8 ± 0.2

Table 6. Zero-shot instance detection performance of open-
vocabulary detectors on PACO-LVIS. This is a difficult task for
existing methods. We compare AR@1 on a subset of queries, clos-
est to the detection task: L1 queries additionally split into subsets
with only object (L1obj) and only part (L1part) attributes. We in-
clude our results from comparable backbones not for direct com-
parison (we acknowledge that object/part/attribute detection task is
more transferable to zero-shot instance detection than open-world
detection) but merely as an indication of what is achievable.

trained and evaluated on PACO-LVIS are shown in Tab. 5
(see appendix for cascade model results). We notice an in-
teresting trend. For all models, L1 > L3 > L2 . This is
due to the trade-off between two opposing factors: (a) more
complex queries provide more information about the object
instance, making L3 task easier than L2, but (b) complex
queries also cause errors from multiple attribute predictions
to be compounded making L1 better than L3. We also in-
clude detailed ablation studies in appendix.
Comparison with open vocabulary detectors
To understand the gap between open vocabulary detectors
and our task-specific models, we evaluate the publicly avail-
able models from Detic [51] and MDETR [20] without fur-
ther fine-tuning on PACO-LVIS and report results in Tab. 6
(details in appendix). In theory, such models can handle ar-
bitrary natural language queries describing object instances.
We show results only for L1 queries and two additional sub-
sets: L1 queries with only object attributes (L1obj) and only
part attributes (L1part). Unsurprisingly, we observe lim-
ited performance for the evaluated models. This can be
attributed to the following factors. Even in the open vo-
cabulary setting, Detic was trained specifically for nouns
with little support for attributes. Similarly, MDETR was
trained for referring expression tasks and with limited abil-
ity to handle negative images. This highlights the opportu-
nity for future research in open world detectors to handle
more descriptive object queries.
Comparison with few-shot models on PACO-EGO4D
PACO-EGO4D has multiple frames corresponding to the

same object instance. Hence, it can serve as a useful dataset

Figure 3. Comparing performance of few-shot model with our
zero-shot models on PACO-EGO4D instance detection task. Even
at 1-shot we observe a huge gap compared to all zero-shot models.

for few-shot instance detection as well. Few-shot instance
detection is the task where an algorithm is given as input
k positive frames with bounding boxes for an object in-
stance and is expected to retrieve another bounding box of
the same instance from an unseen set of images. This is
similar to our zero-shot task, but the model receives sample
object boxes instead of a part/attribute query. We compare
zero-shot and few-shot numbers on a subset of 1992 queries
in PACO-EGO4D that have 6 or more boxes for the object
instance corresponding to the query. We benchmark a naive
2-stage model: a pre-trained R50 FPN detector followed
by ROI-pooling features from a pre-trained R50 FPN for
nearest neighbor ranking (explained in appendix). We eval-
uate it for k ranging from 1-5 and compare with our zero-
shot models trained on the joint PACO dataset in Fig. 3.
We notice a 20+ point gap even between our best zero-shot
model (R101 FPN) and one-shot model (k = 1), showing
the scope for future improvements to zero-shot models.

6. Conclusion

We introduced PACO, a dataset designed to enable re-
search towards joint detection of objects, parts and at-
tributes of common objects. It provides part masks and at-
tributes for 75 common object categories spanning both im-
age and video datasets. We introduce three benchmark tasks
which showcase unique challenges in the dataset. Unlike
object detection, these tasks require algorithms to cope bet-
ter with smaller masks belonging to parts and have features
that are not invariant to instance-level attributes. For all
tasks, we provide results from extensions of existing detec-
tion models to help calibrate future research on the dataset.
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