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Abstract

Concept-based interpretability methods aim to explain a
deep neural network model’s components and predictions
using a pre-defined set of semantic concepts. These meth-
ods evaluate a trained model on a new, “probe” dataset
and correlate the model’s outputs with concepts labeled in
that dataset. Despite their popularity, they suffer from lim-
itations that are not well-understood and articulated in the
literature. In this work, we identify and analyze three com-
monly overlooked factors in concept-based explanations.
First, we find that the choice of the probe dataset has a pro-
found impact on the generated explanations. Our analysis
reveals that different probe datasets lead to very different
explanations, suggesting that the generated explanations
are not generalizable outside the probe dataset. Second, we
find that concepts in the probe dataset are often harder to
learn than the target classes they are used to explain, call-
ing into question the correctness of the explanations. We
argue that only easily learnable concepts should be used in
concept-based explanations. Finally, while existing meth-
ods use hundreds or even thousands of concepts, our human
studies reveal a much stricter upper bound of 32 concepts
or less, beyond which the explanations are much less prac-
tically useful. We discuss the implications of our findings
and provide suggestions for future development of concept-
based interpretability methods. Code for our analysis and
user interface can be found at https://github.com/
princetonvisualai/OverlookedFactors

1. Introduction

Performance and opacity are often correlated in deep
neural networks: the highly parameterized nature of these
models that enable them to achieve high task accuracy also
reduces their interpretability. However, in order to respon-
sibly use and deploy them, especially in high-risk settings
such as medical diagnoses, we need these models to be in-
terpretable, i.e., understandable by people. With the grow-

ing recognition of the importance of interpretability, many
methods have been proposed in recent years to explain some
aspects of neural networks and render them more inter-
pretable (see [4, 14, 18, 42, 44, 53] for surveys).

In this work, we dive into concept-based interpretabil-
ity methods for image classification models, which explain
model components and/or predictions using a pre-defined
set of semantic concepts [5, 16, 25, 29, 56]. Given access to
a trained model and a set of images labelled with seman-
tic concepts (i.e., a “probe” dataset), these methods produce
explanations with the provided concepts. See Fig. 1 for an
example explanation.

Concept-based methods are a particularly promising
approach for bridging the interpretability gap between
complex models and human understanding, as they ex-
plain model components and predictions with human-
interpretable units, i.e., semantic concepts. Recent work
finds that people prefer concept-based explanations over
other forms (e.g., heatmap and example-based) because
they resemble human reasoning and explanations [27]. Fur-
ther, concept-based methods uniquely provide a global,
high-level understanding of a model, e.g., how it predicts
a certain class [39, 56] and what the model (or some part of
it) has learned [5,16,25]. These insights are difficult to gain
from local explanation methods that only provide an expla-
nation for a single model prediction, such as saliency maps
that highlight relevant regions within an image.

However, existing research on concept-based inter-
pretability methods focuses heavily on new method devel-
opment, ignoring important factors such as the probe dataset
used to generate explanations or the concepts composing
the explanations. Outside the scope of concept-based meth-
ods, there have been several recent works that study the ef-
fect of different factors on explanations. These works, how-
ever, are either limited to saliency maps [1, 28, 31, 41] or a
general call for transparency, e.g., include more information
when releasing an interpretability method [47].

In this work, we conduct an in-depth study of commonly
overlooked factors in concept-based interpretability meth-
ods. Concretely, we analyze four representative methods:
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Figure 1. Concept-based interpretability methods explain model components and/or predictions using a pre-defined set of semantic
concepts. In this example, a scene classification model’s prediction bedroom is explained as a complex linear combination of 37 visual
concepts, with the final explanation score calculated based on the presence or absence of these concepts. The coefficients are learned
by evaluating the model on a new, “probe” dataset, and correlating its predictions with visual concepts labeled in that dataset. However,
concept-based explanations can (1) be noisy and heavily dependent on the probe dataset, (2) use concepts that are hard to learn (all concepts
in red are harder to learn than the class bedroom) and (3) be overwhelming to people due to the complexity of the explanation.

NetDissect [5], TCAV [25], Concept Bottleneck [29] and
IBD [56]. These are a representative and comprehensive
set of existing concept-based interpretability methods for
computer vision models. Using multiple probe datasets
(ADE20k [57, 58] and Pascal [13] for NetDissect, TCAV
and IBD; CUB-200-2011 [48] for Concept Bottleneck), we
examine the effects of (1) the choice of probe dataset, (2)
the concepts used within the explanation, and (3) the com-
plexity of the explanation. Through our analyses, we learn
a number of key insights, which we summarize below:
• The choice of the probe dataset has a profound impact

on explanations. We repeatedly find that different probe
datasets give rise to different explanations, when explain-
ing the same model with the same interpretability method.
For instance, the prediction of the arena/hockey
class is explained with concepts {grandstand, goal,
ice-rink, skate-board} with one probe dataset,
and {plaything, road} with another probe dataset.
We highlight that concept-based explanations are not
solely determined by the model or the interpretability
method. Hence, probe datasets should be chosen with
caution. Specifically, we suggest using probe datasets
whose data distribution is similar to that of the dataset
the model-being-explained was trained on.

• Concepts used in explanations are frequently harder
to learn than the classes they aim to explain. The
choice of concepts used in explanations is dependent on
the available concepts in the probe dataset. Surprisingly,
we find that learning some of these concepts is harder than
learning the target classes. For example, in one experi-
ment we find that the target class bathroom is explained
using concepts {toilet, shower, countertop,
bathtub, screen-door}, all of which are harder to
learn than bathroom. Moreover, these concepts can be
hard for people to identify, limiting the usefulness of these
explanations. We argue that learnability is a necessary
(albeit not sufficient) condition for the correctness of the
explanations, and advocate for future explanations to only

use concepts that are easily learnable.1

• Current explanations use hundreds or even thousands
of concepts, but human studies reveal a much stricter
upper bound. We conduct human studies with 125 par-
ticipants recruited from Amazon Mechanical Turk to un-
derstand how well people reason with concept-based ex-
planations with varying number of concepts. We find that
participants struggle to identify relevant concepts in im-
ages as the number of concepts increases (the percent-
age of concepts recognized per image decreases from
71.7%±27.7% with 8 concepts to 56.8%±24.9% for 32
concepts). Moreover, the majority of the participants pre-
fer that the number of concepts be limited to 32. We also
find that concept-based explanations offer little to no ad-
vantage in predicting model output compared to example-
based explanations (the participants’ mean accuracy at
predicting the model output when given access to expla-
nations with 8 concepts is 64.8% ± 23.9% whereas the
accuracy when given access to example-based explana-
tions is 60.0%± 30.2%).
These findings highlight the importance of vetting in-

tuitions when developing and using interpretability meth-
ods. We have open-sourced our analysis code and human
study user interface to aid with this process in the future:
https://github.com/princetonvisualai/
OverlookedFactors.

2. Related work

Interpretability methods for computer vision models
range from highlighting areas within an image that con-
tribute to a model’s prediction (i.e., saliency maps) [9, 15,
37, 45, 46, 51, 52, 54] to labelling model components (e.g.,
neurons) [5,16,25,56], highlighting concepts that contribute
to the model’s prediction [39,56] and designing models that
are interpretable-by-design [8, 10, 29, 34]. In this work, we

1Ideally, future methods would also include causal rather than purely
correlation-based explanations.
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focus on concept-based interpretability methods. These in-
clude post-hoc methods that label a trained model’s compo-
nents and/or predictions [5,16,25,39,56] and interpretable-
by-design methods that use pre-defined concepts [29]. We
focus on methods for image classification models where
most interpretability research has been and is being con-
ducted. Recently, concept-based methods are being devel-
oped and used for other types of models (e.g., image simi-
larity models [38], language models [7,50]), however, these
are outside the scope of this paper.

Our work is similar in spirit to a growing group of works
that propose checks and evaluation protocols to better un-
derstand the capabilities and limitations of interpretability
methods [1–3,21,23,26,28,32,41,49]. Many of these works
examine how sensitive post-hoc saliency maps are to differ-
ent factors such as input perturbations, model weights, or
the output class being explained. On the other hand, we
conduct an in-depth study of concept-based interpretability
methods. Despite their popularity, little is understood about
their interpretability and usefulness to human users, or their
sensitivity to auxiliary inputs such as the probe dataset. We
seek to fill this gap with our work and assist with future de-
velopment and use of concept-based interpretability meth-
ods. To the best of our knowledge, we are the first to in-
vestigate the effect of the probe dataset and concepts used
for concept-based explanations. There has been work in-
vestigating the effect of explanation complexity on human
understanding [30], however, it is limited to decision sets.

We also echo the call for releasing more information
when releasing datasets [17], models [12, 33] and inter-
pretability methods [47]. More concretely, we suggest that
concept-based interpretability method developers to include
results from our proposed analyses in their method release,
in addition to filling out the explainability fact sheet pro-
posed by Sokol et al. [47], to aid researchers and practition-
ers to better understand, use, and build on these methods.

3. Dataset choice: Probe dataset has a pro-
found impact on the explanations

Concept-based explanations are generated by running a
trained model on a “probe” dataset (typically not the train-
ing dataset) which has concepts labelled within it. The
choice of probe dataset has been almost entirely dictated by
which datasets have concept labels. The most commonly
used dataset is the Broden dataset [5]. It contains images
from four datasets (ADE20k [57, 58], Pascal [13], Open-
Surfaces [6], Describable Textures Dataset [11]) and labels
of over 1190 concepts, comprising of object, object parts,
color, scene and texture.

In this section, we investigate the effect of the probe
dataset by comparing explanations generated using two dif-
ferent subsets of the Broden datset: ADE20k and Pascal.
We experiment with three different methods for generating

concept-based explanations: Baseline, NetDissect [5], and
TCAV [25], and find that the generated explanations heavily
depend on the choice of probe dataset. This finding implies
that these explanations can only be used for images drawn
from the same distribution as the probe dataset.
Model explained. Following prior work [5, 25, 56], we
explain a ResNet18-based [20] scene classification model
trained on the Places365 dataset [55], which predicts one of
365 scene classes given an input image.
Probe datasets. We use two probe datasets: ADE20k [57,
58] (19733 images, license: BSD 3-Clause) and Pascal [13]
(10103 images, license: unknown).2 They are two different
subsets of the Broden dataset [5] and are labelled with ob-
jects and parts. We randomly split each dataset into training
(60%), validation (20%), and test (20%) sets, using the new
training set for learning explanations, validation set for tun-
ing hyperparameters (e.g., learning rate and regularization
parameters), and test set for reporting our findings.
Interpretability methods. We investigate the effect of the
probe dataset on three types of concept-based explanations.
First, we study a simple Baseline method that measures cor-
relations between the model’s prediction and concepts, and
generates class-level explanations as a linear combination
of concepts as in Fig. 1. Similar to Ramaswamy et al. [39],
we learn a logistic regression model that matches the model-
being-explained’s prediction, given access to ground-truth
concept labels within the image. We use an l1 penalty to
prioritize explanations with fewer concepts. Second, we
study NetDissect [5] which identifies neurons within the
model-being-explained that are highly activated by certain
concepts and generates neuron-level explanations (concept
labels).3 Finally, we study TCAV [25] which generates ex-
planations in the form of concept activation vectors, i.e.,
vectors within the model-being-explained’s feature space
that correspond to labelled concepts.
Results. For all three explanation types, we find that using
different probe datasets result in very different explanations.
To begin, we show in Tab. 1 how Baseline explanations dif-
fer when using ADE20k vs. Pascal as the probe dataset. For
example, when explaining the corn-field scene pre-
diction, the Pascal-generated explanation highlights dog
as important, whereas the ADE20k-generated explanation
does not. For the legis-chamber scene, ADE20k high-
lights chair as important, whereas Pascal does not.

We observe a similar difference for NetDissect (see
Tab. 2). We label 123 neurons separately using ADE20k
and Pascal, and find that 60 of them are given very different
concept labels (e.g., neuron 239 is labelled pool-table

2To our best knowledge, most images used don’t include personally
identifiable information or offensive content. However, some feature peo-
ple without their consent and might contain identifiable information.

3We use code provided by the authors: https://github.com/
CSAILVision/NetDissect-Lite.
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Scene class Top concepts from ADE20k-generated explanations Top concepts from Pascal-generated explanations

arena/hockey grandstand, goal, ice-rink, scoreboard plaything, road
auto-showroom car, light, trade-name, floor, wall car, stage, grandstand, baby-buggy, ground
bedroom bed, cup, tapestry, lamp, blind bed, frame, wood, sofa, bedclothes
bow-window windowpane, seat, cushion, wall, heater windowpane, tree, shelves, curtain, cup
conf-room swivel-chair, table, mic, chair, document bench, napkin, plate, candle, table
corn-field field, plant, sky, streetlight tire, sky, dog, water, signboard
garage/indoor bicycle, brush, car, tank, ladder bicycle, vending-mach, tire, motorbike, floor
hardware-store shelf, merchandise, pallet, videos, box rope, shelves, box, bottle, pole
legis-chamber seat, chair, pedestal, flag, witness-stand mic, book, paper
tree-farm tree, hedge, land, path, pole tree, tent, sheep, mountain, rock

Table 1. Impact of probe dataset on Baseline (Sec. 3). We compare Baseline explanations generated using ADE20k vs. Pascal. For
10 randomly selected scene classes, we show concepts with the largest coefficients in each explanation. In bold are concepts in one
explanation but not the other, e.g., the concept grandstand is important for explaining the arena/hockey scene prediction when
using ADE20k, but not when using Pascal. These results show that the probe dataset has a huge impact on the explanations.

Neuron ADE20k label & score Pascal label & score

9 plant 0.082 potted-plant 0.194
181 plant 0.068 potted-plant 0.140
318 computer 0.079 tv 0.251
386 autobus 0.067 bus 0.200
435 runway 0.071 airplane 0.189

185 chair 0.077 horse 0.153
239 pool-table 0.069 horse 0.171
257 tent 0.042 bus 0.279
384 washer 0.043 bicycle 0.201
446 pool-table 0.193 tv 0.086

Table 2. Impact of probe dataset on NetDissect [5] (Sec. 3). We
compare NetDissect explanations (concept labels) for 10 neurons
of the model-being-explained generated using ADE20k vs. Pascal.
We find that while some neurons correspond to the same or similar
concepts (top half), others correspond to wildly different concepts
(bottom half), highlighting the impact of the probe dataset.

by ADE20k and horse by Pascal).4 Again, this result
highlights the impact of the probe dataset on explanations.

Similarly, TCAV concept activation vectors learned using
ADE20k vs. Pascal are different, i.e., they have low cosine
similarity (see Fig. 2). We compute concept activation vec-
tors for 32 concepts which have a base rate of over 1% in
both datasets combined, then calculate the cosine similarity
of each concept vector. We also compute the ROC AUC for
each concept vector to measure how well the concept vec-
tor corresponds to the concept. We find that the similarity
is low (0.078 on average), even though the selected con-
cepts were those that can be learned reasonably well (mean
ROC AUC for these concepts is over 85%). We suspect that
the explanations are radically different due to differences in
the probe dataset distribution. For instance, some concepts
have very different base rates in the two datasets: dog has a
base rate of 12.0% in Pascal but 0.5% in ADE20k; chair
has a base rate of 16.7% in ADE20k but 13.5% in Pascal.

4It is possible that these neurons are poly-semantic, i.e., neurons that
reference multiple concepts, as noted in [16, 35]. However, as we explore
in the supp. mat., the score for the concept from the other dataset is usually
below 0.04, the threshold used in [5] to identify “highly activated neurons.”

Concept ADE20k AUC Pascal AUC Cosine sim

ceiling 96.6 93.0 0.267
box 83.0 80.1 0.086
pole 89.0 79.3 0.059
bag 79.4 75.4 0.006
rock 92.6 82.8 -0.024

mean 92.0 88.1 0.087

Figure 2. Impact of probe dataset on TCAV [25] (Sec. 3). We
compare TCAV concept activation vectors learned using ADE20k
vs. Pascal. (Top) For 5 concepts randomly selected out of 32, we
show their learnability in each dataset (AUC) and cosine similarity
between the two vectors. While these concepts can be learned
reasonably well (AUCs are high), their learned activation vectors
have low similarity (Cosine sim is low). (Bottom) The histogram
of cosine similarity scores for all 32 concepts again shows that the
two activation vectors for the same concept are not very similar.

We present more analyses in the supp. mat.

4. Concept learnability: Concepts used are less
learnable than target classes

In Sec. 3, we investigated how the choice of the probe
dataset influences the generated explanations. In this sec-
tion, we investigate the individual concepts used within ex-
planations. An implicit assumption made in concept-based
interpretability methods is that the concepts used in expla-
nations are easier to learn than the target classes being ex-
plained. For instance, when explaining the class bedroom
with the concept bed, we are assuming (and hoping) that
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Figure 3. Overall comparison of concept vs. class learnabil-
ity (Sec. 4). We compare the learnability, quantified as normal-
ized AP of concept/class predictors, of Broden concepts (top) vs.
Places365 scene classes (below). Overall, the concepts have much
lower normalized AP (i.e., are harder to learn) than the classes.

the model first learns the concept bed, then uses this con-
cept and others to predict the class bedroom. However, if
bed is harder to learn than bedroom, this would not be the
case. This assumption also aligns with works that argue that
“simpler” concepts (i.e., edges and textures) are learned in
early layers and “complex” concepts (i.e., parts and objects)
are learned in later layers [5, 16].

We thus investigate the learnability of concepts used by
different explanation methods. Somewhat surprisingly, we
find that the concepts used are frequently harder to learn
than the target classes, raising concerns about the correct-
ness of concept-based explanations.
Setup. To compare the learnability of concepts vs.
classes, we learn models for the concepts (the learnabil-
ity of the classes is already known from the model-being-
explained). Concretely, we extract features for the probe
dataset using an ImageNet [43]-pretrained ResNet18 [20]
model and train a linear model using sklearn’s [36]
LogisticRegression to predict concepts from the
ResNet18 features.5 We do so for the two most commonly
used probe datasets: Broden [5] and CUB-200-2011 [48].
Broden concepts are frequently used to explain Places365
classes (as done in NetDissect [5], Net2Vec [16], IBD [56],

5We also tried using features from a Places365 pretrained model and
did not find a significant difference.

and ELUDE [39]), while CUB concepts are used to explain
the CUB target classes (as done in Concept Bottleneck [29]
and ELUDE [39]).
Evaluation. We evaluate learnability with normalized aver-
age precision (AP) [22]. We choose normalized AP for two
reasons: first, to avoid having to set a threshold and second,
to fairly compare concepts and scenes that have very dif-
ferent base rates. In our experiments, we set the base rate
to be that of the classes: 1

365 when comparing Broden con-
cepts vs. Places365 classes and 1

200 when comparing CUB
concepts vs. CUB classes.
Results. In both settings, we find that the concepts are much
harder to learn than the target classes. The median nor-
malized AP for Broden concepts is 7.6%, much lower than
37.5% of Places365 classes. Similarly, the median normal-
ized AP for CUB concepts is 2.3%, much lower than 65.9%
of CUB classes. Histograms of normalized APs are shown
in Fig. 3 (Broden/Places365) and the supp. mat. (CUB).

However, is it possible that each class is explained by
concepts that are more learnable than the class? Our inves-
tigation with IBD [56] explanations suggests this is not the
case. IBD greedily learns a basis of concept vectors, as well
as a residual vector, and decomposes each model prediction
into a linear combination of the basis and residual vectors.6

For 10 randomly chosen scene classes, we compare the nor-
malized AP of the scene class vs. 5 concepts with the high-
est coefficients (i.e., 5 concepts that are the most important
for explaining the prediction). See Tab. 3 for the results.
We find that all 10 scene classes are explained with at least
one concept that is harder to learn than the class. For some
classes (e.g., bathroom, kitchen), all concepts used in
the explanation are harder to learn than the class.

Our experiments show that a significant fraction of the
concepts used by existing concept-based interpretability
methods are harder to learn than the target classes, issuing a
wake-up call to the field. In the following section, we show
that these concepts can also be hard for people to identify.

5. Human capability: Human studies reveal an
upper bound of 32 concepts

Existing concept-based explanations use a large number
of concepts: NetDissect [5] and Net2Vec [16] use all 1197
concepts labelled within the Broden [5] dataset; IBD [56]
uses Broden object and art concepts with at least 10 ex-
amples (660 concepts); and Concept Bottleneck [29] uses
all concepts that are predominantly present for at least 10
classes from CUB [48] (112 concepts). However, can peo-
ple actually reason with these many concepts?

In this section, we study this important yet overlooked
aspect of concept-based explanations: explanation com-

6We use code provided by the authors: https://github.com/
CSAILVision/IBD.
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Scene class Concepts
arena/perform tennis court grandstand ice rink valley stage

38.8 74.0 44.4 40.7 19.0 11.9

art-gallery binder drawing painting frame sculpture
27.4 42.6 10.8 10.5 2.5 0.7

bathroom toilet shower countertop bathtub screen door
43.3 39.9 18.8 12.6 11.1 9.6

kasbah ruins desert arch dirt track bottle rack
50.2 64.3 17.3 16.2 8.9 4.2

kitchen work surface stove cabinet refrigerator doorframe
33.9 24.8 18.2 10.3 8.8 2.8

lock-chamber water wheel dam boat embankment footbridge
36.5 47.4 43.7 16.1 4.8 4.1

pasture cow leaf valley field slope
19.2 63.7 21.1 19.0 6.8 4.1

physics-lab computer machine monitor-device bicycle sewing-machine
17.1 25.4 4.5 3.3 1.7 1.5

store/indoor shanties patty bookcase shelf cup
20.4 72.5 18.5 13.5 4.2 1.3

water-park roller coaster hot tub playground ride swimming pool
38.3 73.0 59.1 44.9 38.0 36.7

Table 3. Class-level comparison of concept vs. class learnability (Sec. 4). We report normalized AP scores (↑ indicates high learnability)
for 10 randomly chosen scene classes, along with 5 concepts with the highest IBD explanation coefficients for each. Concepts whose
normalized AP scores are lower than the scene class are shown in red, whereas concepts with higher scores are shown in blue. All scenes
are explained by at least one concept with a lower normalized AP. Some scenes are only explained by concepts with lower normalized AP.

plexity and how it relates to human capability and prefer-
ence. Specifically, we investigate: (1) How well do people
recognize concepts in images? (2) How do the (concept
recognition) task performance and time change as the num-
ber of concepts vary? (3) How well do people predict the
model output for a new image using explanations? (4) How
do people trade off simplicity and correctness of concept-
based explanations? To answer these questions, we design
and conduct a human study. We describe the study design
in Sec. 5.1 and report findings in Sec. 5.2.

5.1. Human study design

We build on the study design and user interface (UI) of
HIVE [26], and design a two-part study to understand how
understandable and useful concept-based explanations are
to human users with potentially limited knowledge about
machine learning . To the best of our knowledge, we are the
first to investigate such properties of concept-based expla-
nations for computer vision models.7

Part 1: Recognize concepts and predict the model out-
put. First, we present participants with an image and a set
of concepts and ask them to identify whether each concept
is present or absent in the image. We also show explanations
for 4 classes whose scores are calculated real-time based on

7We note that there are works examining complexity of explanations for
other types of models, for example, Lage et al. [30] investigate complexity
of explanations over decision sets, Bolubasi et al. [7] investigate this for
concept-based explanations for language models.

the concepts selected. As a final question, we ask partic-
ipants to select the class they think the model predicts for
the given image. See Fig. 4 (left) for the study UI.

To ensure that the task is doable and is only affected by
explanation complexity (number of concepts used) and not
the complexity of the model and its original prediction task
(e.g., 365 scenes classification), we generate explanations
for only 4 classes and ask participants to identify which of
the 4 classes corresponds to the model’s prediction. We only
show images where the model output matches the explana-
tion output (i.e., the model predicts the class with the high-
est explanation score, calculated with ground-truth concept
labels), since our goal is to understand how people reason
with concept-based explanations with varying complexity.
Part 2: Choose the ideal tradeoff between simplicity and
correctness. Next, we ask participants to reason about two
properties of concept-based explanations: simplicity, i.e.,
the number of concepts used in a given set of explanations,
and correctness, i.e., the percentage of model predictions
correctly explained by explanations, which is the percent-
age of times the model output class has the highest expla-
nation score. See Fig. 4 (right) for the study UI. We convey
the notion of a simplicity-correctness tradeoff through bar
plots that show the correctness of explanations of varying
simplicity/complexity (4, 8, 16, 32, 64 concepts). We then
ask participants to choose the explanation they prefer the
most and provide a short justification for their choice.
Full study design and experimental details. In summary,
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Figure 4. Human study UI (Sec. 5). We show a simplified version of the UI we developed for our human studies. In Part 1, we ask
participants to guess the model’s prediction for a given image by recognizing concepts and using the provided explanations. In Part 2, we
show participants explanations with different levels of simplicity and correctness, then ask which one they prefer the most.

our study consists of the following steps. For each par-
ticipant, we introduce the study, receive informed consent
for participation in the study, and collect information about
their demographic (optional) and machine learning experi-
ence. We then introduce concept-based explanations in sim-
ple terms, and show a preview of the concept recognition
and model output prediction task in Part 1. The participant
then completes the task for 10 images. In Part 2, the partic-
ipant indicates their preference for explanation complexity,
given simplicity and correctness information. There are no
foreseeable risks in participation in the study, and our study
design was approved by our institution’s IRB.

Using this study design, we investigate explanations that
take the form of a linear combination of concepts (e.g.,
Baseline, IBD [56], Concept Bottleneck [29]). Explana-
tions are generated using the Baseline method, which is a
logistic regression model trained to predict the model’s out-
put using concepts (see Sec. 3 for details). Note that we
are evaluating the form of explanation (linear combination
of concepts) rather than a specific explanation method. The
choice of the method does not impact the task.

Specifically, we compare four types of explanations:
concept-based explanations that use (1) 8 concepts, (2) 16
concepts, (3) 32 concepts, and (4) example-based explana-
tions that consist of 10 example images for which the model
predicts a certain class. We include (4) as a method that
doesn’t use concepts. In Jeyakumar et al. [24], this type of
explanation is shown to be preferred over saliency-type ex-
planations for image classification; here, we compare this
to concept-based explanations.

For a fair comparison, all four are evaluated on the same
set of images. In short, we conduct a between-group study
with 125 participants recruited through Amazon Mechani-
cal Turk. Participants were compensated based on the state-

level minimum wage of $12/hr. In total, ∼$800 was spent
on running human studies. See supp. mat. for more details.

5.2. Key findings from the human studies

When presented with more concepts, participants spend
more time but are worse at recognizing concepts. The
median time participants spend on each image is 17.4 sec.
for 8 concept-, 27.5 sec. for 16 concept-, and 46.2 sec.
for 32 concept-explanations. This is expected, since par-
ticipants are asked to make a judgment for each and ev-
ery concept. When given example-based explanations with
no such task, participants spend only 11.6 seconds on each
image. Interestingly, the concept recognition performance,
reported in terms of mean recall (i.e., the percentage of con-
cepts in the image that are recognized) and standard de-
viation, decreases from 71.7% ± 27.7% (8 concepts) to
61.0% ± 28.5% (16 concepts) to 56.8% ± 24.9% (32 con-
cepts). While these numbers are far from perfect recall
(100%), participants are better at judging whether concepts
are present when shown fewer number of concepts.
Concept-based explanations offer little to no advantage
in model output prediction over example-based explana-
tions. Indeed, we see that the participants’ errors in concept
recognition result in an incorrect class having the highest
explanation score. When predicting the model output as the
class with the highest explanation score, calculated based on
the participants’ concept selections, the mean accuracy and
standard deviation of model output prediction are 64.8% ±
23.9% (8 concepts), 63.2% ± 26.9% (16 concepts), 63.6%
± 22.2% (32 concepts). These are barely higher than 60.0%
± 30.2% of example-based explanations, which are simpler
and require less time to complete the task.
The majority of participants prefer explanations with 8,
16, or 32 concepts. When given options of explanations
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that use 4, 8, 16, 32, or 64 concepts, 82% of participants
prefer explanations with 8, 16, or 32 concepts (28%, 33%,
21% respectively). Only 6% prefer those with 64 concepts,
suggesting that existing explanations that use hundreds or
even thousands of concepts do not cater to human prefer-
ences. In the written responses, many favored having fewer
concepts (e.g., “the lesser, the better”) and expressed con-
cerns against having too many (e.g., “I think 32 is a lot,
but 16 is an adequate enough number that it could still pre-
dict well...”). In making the tradeoff, some valued correct-
ness above all else (e.g., “Out of all the options, 32 is the
most correct”), while others reasoned about marginal bene-
fits (e.g., “I would prefer explanations that use 16 concepts
because it seems that the difference in percentage of correct-
ness is much closer and less, than other levels of concepts”).
Overall, we find that participants actively reason about both
simplicity and correctness of explanations.

6. Discussion

Our analyses yield immediate suggestions for improv-
ing the quality and usability of concept-based explanations.
First, we suggest choosing a probe dataset whose distribu-
tion is similar to that of the dataset the model was trained
on. Second, we suggest only using concepts that are more
learnable than the target classes. Third, we suggest limiting
the number of concepts used within an explanation to under
32, so that explanations are not overwhelming to people.

The final suggestion is easy to implement. However, the
first two are easier said than done, since the number of avail-
able probe datasets (i.e., large-scale datasets with concept
labels) is minimal, forcing researchers to use the Broden
dataset [5] or the CUB dataset [48]. Hence, we argue cre-
ating diverse and high-quality probe datasets is of upmost
importance in researching concept-based explanations.

Another concern is that these methods do highlight hard-
to-learn concepts when given access to them, suggesting
that they sometimes learn correlations rather than causa-
tions. Methods by Goyal et al. [19], which output patches
within the image that need to be changed for the model’s
prediction to change, or Fong et al. [15], which find regions
within the image that maximally contribute to the model’s
prediction, are more in line with capturing causal relation-
ships. However, these only produce local explanations, i.e.,
explanations of a single model prediction, and not class-
level global explanations. One approach to capturing causal
relationships is to generate counterfactual images with or
without certain concepts using generative models [40] and
observe changes in model predictions.

7. Limitations and future work

Our findings come with a few caveats. First, due to the
lack of available probe datasets, we tested each concept-

based interpretability method in a single setting. That is, we
tested NetDissect [5], TCAV [25] and IBD [56] on a scene
classifier trained on the Places365 dataset [55], and Concept
Bottleneck [29] on the CUB dataset [48]. We plan to ex-
pand our analyses as more probe datasets become available.
Second, all participants in our human studies were recruited
from Amazon Mechanical Turk. This means that our partic-
ipants represent a population with limited ML background:
the self-reported ML experience was 2.5 ± 1.0 (on a scale
of 1 to 5), which is between “2: have heard about...” and
“3: know the basics...” We believe Part 1 results of our hu-
man studies (described in Sec. 5.1) will not vary with par-
ticipants’ ML expertise or role in the ML pipeline, as we
are only asking participants to identify concepts in images.
However, Part 2 results may vary (e.g., developers debug-
ging a ML model may be more willing to trade off explana-
tion simplicity for correctness than lay end-users). Investi-
gating differences in perceptions and uses of concept-based
explanations, is an important direction for future research.

8. Conclusion

In this work, we examined implicit assumptions made
in concept-based interpretability methods along three axes:
the choice of the probe datasets, the learnability of the used
concepts, and the complexity of explanations. We found
that the choice of the probe dataset profoundly influences
the generated explanations, implying that these explana-
tions can only be used for images from the probe dataset
distribution. We also found that a significant fraction of the
concepts used within explanations are harder for a model to
learn than the target classes they aim to explain. Finally, we
found that people struggle to identify concepts in images
when given too many concepts, and that explanations with
less than 32 concepts are preferred. We hope our proposed
analyses and findings lead to more careful use and develop-
ment of concept-based explanations.
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