This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Crossing the Gap: Domain Generalization for Image Captioning

Yuchen Ren'?, Zhendong Mao'? ¥ Shancheng Fang!, Yan Lu?, Tong He?,
Hao Du!, Yongdong Zhang'? and Wanli Ouyang?
!University of Science and Technology of China, Hefei, China
2Shanghai Artificial Intelligence Laboratory, Shanghai, China
3Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, China

Abstract

Existing image captioning methods are under the as-
sumption that the training and testing data are from the
same domain or that the data from the target domain (i.e.,
the domain that testing data lie in) are accessible. How-
ever, this assumption is invalid in real-world applications
where the data from the target domain is inaccessible. In
this paper, we introduce a new setting called Domain Gen-
eralization for Image Captioning (DGIC), where the data
from the target domain is unseen in the learning process.
We first construct a benchmark dataset for DGIC, which
helps us to investigate models’ domain generalization (DG)
ability on unseen domains. With the support of the new
benchmark, we further propose a new framework called
language-guided semantic metric learning (LSML) for the
DGIC setting. Experiments on multiple datasets demon-
strate the challenge of the task and the effectiveness of our
newly proposed benchmark and LSML framework.

1. Introduction

Image captioning (IC) builds a bridge between vision
and language, and it aims at understanding images [20, 28,

,37,51,69] and generating correct natural language de-
scriptions. Many novel methods [3, 13, 26, 27,45, 55, 58]
have made impressive progress under a domain-specific set-
ting; namely, they assume the training and testing data are
from the same domain. However, this assumption may not
hold in real-world applications. To relax the reliance of dif-
ferent domains, many methods [10, 19,24] are recently pro-
posed. However, these approaches also have a strong as-
sumption that the data from the target domain are available.
In real-world applications, this assumption will also be in-
valid. For example, in the medical report generation task,
the data from the target domain related to patient privacy is
hard to obtain. As a result, it is important to design an im-
age captioning approach with domain generalization ability
to different unseen domains.

*Zhendong Mao is the corresponding author.
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Table 1. Comparison of domain-related tasks for image caption-
ing. Vg p: distribution of source/target label space. prre/ar/p
: source/target/pivot domain. Pivot image captioning (PivotIC),
novel object image captioning (NOIC), and domain adaptive im-
age captioning (DAIC) are all assumed to be able to obtain the
data of the target domain. Domain generalizable image captioning
(DGIC) does not require the target domain data.

To this end, we propose a new benchmark setting called
Domain Generalization for Image Captioning (DGIC) with
multi-source domain and cross-dataset setting in this work.
Specifically, we employ existing popular datasets from five
domains: common domain sourced from MSCOCO [35],
assistive domain sourced from Vizwiz [21], social domain
sourced from Flickr30k [62], avian domain sourced from
CUB-200 [44,57], and floral domain sourced from Oxford-
102 [44,57]. To explore the DGIC, we divide these do-
mains into two parts: multiple source domains for training
and a target domain for testing, mimicking the unseen do-
main scenario and mining underlying patterns from multi-
ple datasets. The difference between our DGIC setting and
other image captioning settings is summarized in Tab. 1.

With the help of this benchmark, we analyze the exist-
ing methods for unseen domains and observe the following
limitations: (1) The model can generate fluent captions but
cannot ensure semantic correctness when meeting an un-
seen domain without target data (Fig. 1a). In other words,
the generated captions are prone to overfit domain-specific
bias and only learn the domain-specific features. We ar-
gue that this is because the existing image captioning mod-
els are trained with maximum likelihood estimation, which
will cause the model lacks discriminative semantic infor-
mation between different instances [5,25]. So it is difficult
to distinguish the relationship between unseen domain data
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and learned data. Therefore, it is desirable to introduce se-
mantic information in the learning process. (2) The exist-
ing domain generalization (DG) method designed for other
tasks [6,7,31,32,39,56] cannot be well applied directly to
image captioning because the image and label of most DG
tasks are simple. So these methods only use coarse-grained
information in the learning process. But for the DGIC task,
the image and label are often complex and contain rich tex-
tual information (Fig. 1b). Therefore, simply applying the
existing DG method to the image captioning task may not
work well, and it is beneficial to utilize the rich contextual
information in images and labels when performing feature
alignment of different domains.

To tackle the aforementioned two challenges, we pro-
pose a new framework called language-guided semantic
metric learning (LSML) for the DGIC task. To solve the
first issue (i.e., lack of semantic information), we intro-
duce both inter-domain and intra-domain metric learning to
help captioning models considers the semantic relationship
among different instances in the learning process. Specifi-
cally, we leverage contrastive learning to pull semantically
similar visual features closer and push the irrelevant visual
features far away from each other, which makes features
more discriminative, allowing the model to learn domain-
independent features that are more easily generalized to un-
seen domains. To solve the second issue (i.e., contextual
information utilization), we propose a visual word guid-
ance and sentence guidance strategy in the learning process.
Specifically, we use the visual word and sentence similar-
ity to sample discriminative triplets, allowing the model to
capture fine-grained contextual information. As a conse-
quence, our LSML framework aims to achieve promising
performance under the DGIC setting.

In a nutshell, our contributions are summarized below:
(1) We make the first attempt to conduct the task of do-
main generalization for image captioning (DGIC), which is
used to explore the generalization ability of existing mod-
els. To achieve this, we construct a benchmark from exist-
ing datasets for this task. (2) We propose a new framework
called language-guided semantic metric learning (LSML),
which uses both inter- and intra-domain metric learning to
help the model better learn discriminative semantic infor-
mation among different instances. We also introduce a lan-
guage guidance strategy in the learning process to utilize
the rich contextual information in the image and labels dur-
ing the learning process. (3) Extensive experiments demon-
strate that our language-guided semantic metric learning
framework outperforms previous state-of-the-art methods
by a large margin under the DGIC setting.

2. Related Work

Domain-related image captioning: Many novel meth-
ods [3, 13,26,45,55,58,66] have made impressive progress

Without target data: a cat is standing on a branch.

With target data: this bird has a white belly and
‘ breast with a gray crown and short pointy bill.
t 6T1: a round bird with a white belly and breast,
- 7 orange neck, and black head and wings with a
n short beak.

6T2: a small bird with a white belly and pointed beak.
(a) Results on CUB-200 without target data.
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Figure 1. (a) Without using the target data, the model will over-
fit the domain-specific bias. (b) DGIC often has more complex
images and labels compared to the general DG task.

under a domain-specific setting, i.e., training and testing on
the same domain. A few works attempt to relax the reliance
on new domain image-caption data of different domains.
Gu et al. [19] proposed the pivot image captioning task to
generate captions in a pivot language and then translate the
pivot language to a target language. Some works [1, 24]
aim to describe novel objects not appearing in image cap-
tioning training data but existing in image recognition train-
ing datasets, which is referred to as novel object caption-
ing. [10,61,67,68] proposed to transfer the knowledge to a
new domain under a domain adaption setting [49,59,60,65],
assuming that unpaired target domain data is available in
training. Despite the improved performance, the methods
mentioned above assume that the target domain is seen,
which is impractical as new domain data is often unavail-
able in real-world scenarios for image captioning systems.
Therefore, it is necessary to explore a method with a good
generalization ability for unseen domains.

Domain generalization: Recently, some DG methods
show impressive generalization ability for object recogni-
tion [6,7,31,32,38,39,56]. Li et al. [32] proposed to use
Maximum Mean Discrepancy (MMD) measure to align la-
tent features among different domains based on adversarial
auto-encoder. Several methods [0, 560] attempted to intro-
duce self-supervised learning to learn generic features and
hence less over-fitting to domain-specific biases. Carlucci et
al. [6] predicted relative positions of image patches to solve
the Jigsaw puzzles problem, which can learn more gener-
alizable semantic features among different domains. Sim-
ilarly, Wang et al. [56] combined intrinsic self-supervision
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F 0.0002 0.0004 - 0.1050  0.1506 Var
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O 00133 0.0100 0.0133 0.0067 - 0.1290

Table 2. Measuring the domain gaps of the DGIC benchmark with
MMD. Orange is visual domain gaps over 2048-D ResNet [23]
embedding, and green is linguistic domain gaps over 768-D
BERT [16] embeddings.

and extrinsic relationship supervision using metric learning.
There are also some methods that are specific to particular
vision tasks, such as semantic segmentation [ 1, 12,42, 63]
and person Re-Identification [29,33,48,70]. However, to the
best of our knowledge, no previous work has explored do-
main generalization for image captioning, so the rich con-
textual information is not well exploited in these works.

3. DGIC Benchmark

Dataset construction: To better analyze the domain gener-
alization ability of different image captioning models, we
propose a new benchmark called Domain Generalization
for Image Captioning (DGIC). We propose this DGIC
benchmark because most domain generalization bench-
marks focus on the image-based task without related tex-
tual information. Specifically, we employ existing popular
datasets from five domains: common domain sourced from
MSCOCO [35], assistive domain sourced from Vizwiz [21],
social domain sourced from Flickr30k [62], avian domain
sourced from CUB-200 [44,57], and floral domain sourced
from Oxford-102 [44,57]. To explore the DGIC, we divide
these five datasets into two parts: four domains as source
domains for training and the other one as target domain for
testing. More detailed information of each domain can be
seen in the supplementary material.
Measuring the domain gaps: The current mainstream ob-
ject recognition domain generalization task aims to target
images of different styles, such as normal-style images,
cartoon-style images, sketch-style images, and artistic-style
images. However, our task targets different image-language
scenarios, and their image-language semantics have respec-
tive focus scenarios. So we employ them as benchmarks. To
analyze the domain gaps among different domains in our
DGIC benchmark dataset, we follow many works [8, 64]
to measure the domain gaps by using the Maximum Mean
Discrepancy (MMD) [18]. The MMD distance between do-
mains D° and DT can be measured according to the fol-
lowing equation:

MMD(D®, DT)? = |z, — iz, I, (1)

where jip, = Eq.ps[d(s)] and pip, = Eqpr[6(t)] are
the samples projected in a reproducing kernel Hilbert space
(RKHS) H, and ¢(-) : R — # represents a mapping op-
eration. We study the MMD distance on the DGIC bench-
mark and report the results in Tab. 2. Also, we visualize the

(a) Visual domain gaps (b) Linguistic domain gaps
Figure 2. The t-SNE [52] visualization of the DGIC benchmark.
Results reflect large visual domain gaps (a) and linguistic domain
gaps (b) of cross-dataset settings.

data and label from different domains by using t-SNE [52]
in Fig. 2, from which we can see there are significant do-
main gaps. We also see that the label distributions of dif-
ferent domains are very diverse, and it is difficult to learn
domain-independent features through representation learn-
ing of samples with the same label. Therefore, we propose
a generalization framework to learn the model with better
domain generalization ability.

4. Language-guided Semantic Metric Learning
4.1. Generalization for IC models

Formulation: For the domain generalizable image cap-
tioning, we consider a set of source domains DS =
{Dy,... ,Djs, .. ,Df,s}, with the j-th domain D}g having
Njj image-caption pairs {If , Cf }, where Iz is the i-th image
in Djs and C/ is the corresponding caption describing I7.
In the test stage, we aim to evaluate the model directly on a
given unseen domain DT, The goal is to construct a model
with the source domains which is able to generalize for the
unseen target domain captioning.
Challenges: Given an input image I and model parameters
6, an image captioning model with maximum likelihood es-
timation factors the distribution over possible output token
sequence C = {wy,...,w:} into a chain of conditional
probabilities can be formtulated as:

po (C 1) =[] po (wn | won—1,1,0). @)

n=1
Given a target caption C* = {w7, ..., w;}, Equation 2
can be modified with a cross-entropy loss the Lx g:
t

To accelerate trainiﬂlg_,lexisting image captioning meth-
ods [13,26] generate the text at time ¢ based on the ground-
truth label of previous ¢t — 1 steps. However, when test-
ing, the ground-truth label is unavailable. Therefore, we
need to generate the text at time ¢ based on the predicted
text of the previous ¢t — 1 steps. So the error will accumu-
late with the time step. This phenomenon is severer for un-
seen domains, because it is difficult to distinguish whether
the generated text is semantically meaningful on the unseen
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Figure 3. Our language-guided semantic metric learning framework.

domain. Therefore, the potential solution is to design new
objectives that can improve discriminative semantically ca-
pability, such as metric/contrastive learning.

The second challenge is that most existing domain gener-
alization methods cannot be directly applied to image cap-
tioning, because they are flawed for exploiting labels that
are rich in continuous linguistic information. So we need
to make reasonable use of fine-grained visual-linguistic in-
formation (e.g., object, attribute and relation) to improve
semantic metric learning from the source domain without
using target data.

To cope with the challenges, we propose our Language-
guided semantic metric learning (LSML) framework based
on language-guided semantic metric learning (Fig. 3).

4.2. Bridging domain gaps

The overall framework is shown in Fig. 3. We first store
the features obtained by encoding multiple source domain
images in a memory bank, then sample the positive and neg-
ative samples of multiple domains using semantic text guid-
ance, and then use metric learning to constrain positive and
negative samples among intra and inter domains, allowing
the model to better learn discriminative information to im-
prove generalization.

4.2.1 Semantic metric learning

Inter-domain learning: In order to better learn domain-
independent visual components, we design inter-domain
metric learning to improve model generalization with the
triplet loss among multiple source domains. The triplet loss
measures the similarity of samples and ensures that the dis-
tance between similar sample pairs is closer, and the nega-
tive samples are far away from the anchor sample, so as to
learn a discriminative feature representation. In most cases,

we can first choose a feature obtained from an encoder or
decoder from a multi-source domain as the anchor sample
vg- Then, following [56], we choose other samples from
the same category as the positive samples v,, while sam-
ples from different categories as the negative samples v,,.
Finally, these samples constitute the triplet that can be used
for metric learning as:
Tri = {(Va, vp, vn)Ya = Yp, Ya # Yn}- Q)
Unfortunately, unlike the classification task [17,56], the
DGIC task has different label spaces across datasets. We
can simply use the cosine similarity of the image features
to approximate whether the categories are the same or not
here. The objective of the inter-domain metric learning can

be formulated as:
Np N,

N ZZ v“’vpr

i=1 j=1
where Np and N,, are the numbers of positive samples and
negative samples, respectively, d(-, -) denotes the Euclidean
distance between two samples, [-]; represents max(0,-),
and ¢ is the margin of triplet loss.

Linter = d(Uavvnj)2+6]+, (5)

Intra-domain learning: To ensure each domain has
smooth representations for semantically related instances,
we design intra-domain metric learning to assist inter-
domain metric learning. Intra-domain metric learning treats
each domain as a training task and aligns the features with
multi-stream metric learning tasks. We can ensure seman-
tically relevant samples from different domains share the
similar embedding space, where different domain streams

share the same backbone
Np N,

2{7722 (Va, p; )° d(va,unj)2

Nn i=1 j=1 (6)
+0]+, Vas Up; s Un EDJS}.

zntra -

Discussion: For captioning models designed with the se-
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mantic discriminative objective, the naive idea could be to
use image data augmentation as positive samples and oth-
ers as negative samples as the popular contrastive learn-
ing [9,22]. But image data augmentation such as flip-
ping or color jittering would cause the corresponding cap-
tion to change as well, and would not learn the semantic
relationships between instances. Alternatively, like [15],
matched image-caption pairs are used as positive samples
and the unmatched pairs are used as negative samples,
which only increase the uniqueness and cannot learn the
similarity among instances to apply to unseen domains. Dif-
ferent from these methods, we focus on modeling the rela-
tion between instances among domains. In this way, we can
capture domain-independent features for generalization.

4.2.2 Semantic text guidance

Visual word guidance: Intuitively, when humans describe
an image, the words of the visually obvious parts first ap-
pear in the mind, such as objects, actions, and attributes.
Based on this inspiration, we employ the nouns, verbs, and
adjectives in the caption to determine the degree of similar-
ity between the two instances in the multi-source domain,
and divide them into the anchor-positive sample pair or the
anchor-negative sample pair. First, we parse the ground-
truth caption C* = {wf,...,w;} of the source domain
visual features v, and obtain the visual words group cor-
responding to each image through the part-of-speech:
Groupyw = {w;,| POS(wy,) € { noun, verb, adj },

n € {0,...,t}}, M
where POS(-) represents the part-of-speech of a word, the
part-of-speech types of objects, actions and attributes are
identified such as VB, "VBG, 'NN,” 'NNS., etc., also
placing some words restrictions such as excluding ’is,” ’are,’
etc. Next, we design the intersection of a visual word over
union (IoU) vwlIoU to compute the distance between two
samples v® and v7, judge whether it is an anchor-positive
sample pair or an anchor-negative sample pair according to
the degree of visual words overlap:

vwloU(v',v’) = \Group?,w A GTOUP{’“" . (8)

|Groupi,, U Groupl.,|

Sentence guidance: With fine-grained text-guided align-
ment, we also design sentence-level guidance from a
coarse-grained level. Sentence-level guidance can comple-
ment word temporal order and synonymy (e.g., car and ve-
hicle). We use the sentence BERT embedding for cosine
similarity calculation to get the sentence similarity, com-
bine with the visual word similarity to get a total semantic
similarity, and together to decide the triplet sampling:

simy(v*,v7) = maz(vwloU(v*,v7), s  sim,), )
where s is the scaling factor. After obtaining the total se-
mantic similarity sim; between the two samples, we can
compare it with a threshold p;;. Those larger than the
threshold are considered similar samples, and those smaller

than the threshold are considered dissimilar samples. Then
we propose the triplet selector can be formulated as:
Tri = {(Va, Vp, vn)|sims (v, 07) >= pu, (10)
simg(v", ™) < pn}e
Discussion: It is worth mentioning that we use text as the
guidance of the triple sampling instead of using images.
The reasons are the following: (1) Not only language is
ground truth at training and contains accurate object infor-
mation, but also language contains rich knowledge that is
easier to be measured than images. So, even for the text-
to-image generation task where images are ground-truth at
training time, the text is used as the guidance of the triple
sampling. (2) By measuring modalities’ domain gap, we
find that the overall domain gap of languages is relatively
smaller than that of images (see Fig. 2). By introducing the
guidance from the text, we can effectively use the rich lin-
guistic information to improve semantic metric learning.

4.2.3 Good-hard negative samples mining

Moreover, [41,46,47,50,56] shows that mining hard neg-
ative samples in metric learning can effectively help the
model correct its mistakes more quickly. There are some
selection strategies such as semi-hard [47] and K-hard [56]
negative selection. So the critical problem is: what is a good
and hard negative sample for DGIC? We consider that for
good-hard samples, visual words contained in the caption of
the negative sample and the anchor do not overlap as much
as possible. Because we hope that the image is more irrele-
vant to the content of the anchor image, which will increase
the discriminative information of the model and allow the
model to quickly learn more useful information. Therefore,
we choose the good-hard negative samples with the smaller
stm, of the anchor sample as the good-hard negative sam-
ple, and our language guidance can easily implement this
strategy. We only need to set an upper bound n,, and a lower
bound n; for the negative samples sim;. The new selection
of the triplet can be formulated as:
Tri = {(Va, Vp, vn)|sim: (v, 0") >= pu,

an

ny <= sim(v*,v") < ny},

where n,, <= py, our proposed metric learning equipped
with the good-hard negative samples mining can select
more informative hard negatives for each anchor, thus guid-
ing the model to learn more discriminative features.

4.2.4 Memory bank and momentum update

Due to the limitation of computational resources on batch
size, insufficient positive and negative samples in a batch
may lead to poor metric learning performance. We build
a vision-language memory bank and momentum encoder
to improve the efficiency of metric learning through bet-
ter negative example mining (more details in the appendix).
Moreover, unlike most existing contrastive learning meth-
ods that only sample negative instances, we also use the
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Method Source— Target ~ BLEUIL BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE
Up-Down [3] 29.00 15.26 8.12 4.47 11.42 27.78 38.63 12.12
AoANet [26] 29.55 15.38 8.22 4.69 11.71 28.21 41.19 13.51

M2 Transformer [ 13] F+V+C+0O— M 30.29 15.70 8.47 4.89 11.38 27.65 41.76 12.96
EISNet [56] 29.12 15.10 8.14 4.61 11.95 27.88 42.39 13.42
LSML (Ours) 32.22 17.31 9.66 5.53 1291 29.63 53.24 16.08
Method Source— Target  BLEUI BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE
Up-Down [3] 20.64 9.31 4.11 1.99 6.16 20.07 13.75 3.65

AoANet [26] 21.39 10.04 4.71 2.37 6.68 20.83 17.32 4.67

M?2Transformer [13] M+F+C+0— V 21.15 9.79 4.76 2.52 6.81 20.54 18.37 5.43

EISNet [56] 20.70 9.91 4.73 2.28 6.79 20.52 17.89 4.78

LSML (Ours) 21.93 10.42 5.21 2.78 7.41 21.09 21.25 6.14

Method Source— Target ~ BLEUI BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE
Up-Down [3] 25.60 13.54 7.09 3.85 11.36 26.41 36.04 14.13
AoANet [26] 24.95 13.35 7.11 4.06 11.44 26.14 37.37 13.37
M2Transformer [13] M+V+C+O— F 25.85 13.95 7.49 4.12 11.86 26.87 39.98 14.16
EISNet [56] 27.15 14.70 791 4.36 13.04 28.62 45.99 15.64
LSML (Ours) 28.08 15.80 8.76 4.69 14.03 30.03 53.51 17.01
Method Source— Target ~ BLEUI BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE
Up-Down [3] 16.57 5.14 0.85 0.27 7.99 20.18 3.70 14.56
AoANet [26] 18.53 6.01 1.94 0.79 8.58 20.78 4.84 15.47
M2 Transformer [ 13] M+V+F+O— C 18.46 6.22 2.14 0.82 8.68 20.61 7.78 15.17
EISNet [56] 19.47 6.38 2.44 1.07 8.82 21.16 6.83 15.20
LSML (Ours) 20.39 8.01 3.19 1.31 10.24 20.93 9.60 15.72
Method Source— Target  BLEUIL BLEU2 BLEU3 BLEU4 METEOR ROUGE CIDEr SPICE
Up-Down [3] 19.01 6.07 1.57 0.33 8.07 17.34 9.04 12.38
AoANet [26] 17.34 4.74 1.31 0.13 7.61 16.99 10.29 11.92
M2 Transformer [ 13] M+V+F+C— O 17.12 4.86 1.23 0.37 8.28 16.93 11.12 13.95
EISNet [56] 17.70 5.13 1.57 0.63 8.62 17.44 11.38 12.52
LSML (Ours) 19.41 5.90 217 0.85 9.72 17.95 14.35 15.23

Table 3. Comparison with state-of-the-arts image captioning and domain generalization methods on five settings in DGIC benchmark.

memory bank to sample positive instances, which con-
strains the semantics intra and inter domains to increase the
diversity of domain samples.

4.2.5 Objective function

We consider training our LSML framework with the objec-
tive function formulated as follows:

Lrotal = a* Lxg + B * Linter + 77 * Lintra (12)
where «,fand - are hyper-parameters to balance the
weights of the caption generation supervision, the visual
words metric learning for inter domain, and the visual
words metric learning for intro domain, respectively. Af-
ter the training process, we obtain our LSML model.

5. Experiments and analysis
5.1. The DGIC benchmark

Datasets: The DGIC benchmark consists of 253K im-
ages and 1,365K captions, sourced from MSCOCO [35],
VizWiz [21], Flickr30K [62], CUB-200 [44, 57] and
Oxford-102 [40, 44]. For exploring the DGIC, we divide
these five datasets into two parts: four domains as source
domains for training and the other one as target domain for
testing. After permutation and combination, we can obtain
five settings for experiments, and we follow the data split
provided by Karpathy et al. [30]. Due to space limitations,
more details can be found in the supplementary materials.

Evaluation: Following the standard evaluation protocol,
we employ the full set of captioning metrics: BLEU [43],
METEOR [4], ROUGE [34], CIDEr [54], and SPICE [2].

Source MSCOCO Source Oxford-102
CIDEr  SPICE CIDEr  SPICE
V+C 24.12 8.56 M+V 10.37 12.62
F+C 44.68 13.7 M+F 12.10 13.32
F+V+0 51.43 15.62 M+F+C 12.71 13.82
F+V+C 51.91 15.68 M+F+V 14.13 14.87
F+V+C+0O 53.24 16.08 M+F+V+C 14.35 15.23

Table 4. Comparison of training with different source domains.
Experiments are conducted with our method.

Method BLEU4 METEOR ROUGE CIDEr _ SPICE
CCSA 8] 452 11.57 2772 4048 13.03
MMD-AAE [32] 4.46 11.62 27.74 4174 1322
EISNet [56] 4.61 11.95 27.88 4239 1342
Table 5. Different DG methods on the MSCOCO target doamin.
Method CIDEr  SPICE  Object  Relation  Attribute
EISNet [50] 4239 1342 2523 1.60 3.60
CL[15] 4204 1338 2432 1.54 4.04
CompCap [14] | 43.51 1328 23.90 1.60 347
LSML (Ours) 5324 16.08 2837 1.96 5.25

Table 6. CIDEr and breakdown of SPICE metrics.
5.2. Empirical studies and observations

We conduct extensive studies on DGIC and try to answer
the following questions: Q1: What is the property of the
DGIC benchmark? Q2: How about existing methods’ gen-
eralization performance on DGIC? Q3: How is our LSML
framework performed on DGIC? Q4: How is the effective-
ness of different components in our LSML framework?

5.2.1 DGIC benchmark properties (Q1)

Domain gaps between different datasets: Tab. 2 and
Fig. 2 respectively show the visual and linguistic domain
gaps of benchmarks across datasets from the perspectives
of objective quantification and subjective visualization. In
Tab. 2, we use Maximum Mean Discrepancy (MMD) to cal-
culate the difference between the two distributions. The
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EISNet: a white and black cat is standing on the sidewalk.
Ours: a small yellow bird is sitting on a rock.

GTI: a small yellow bird, with black primaries and head,

with a pointed bill.

GT2: this is a yellow bird with a black wing and a black head.
GT3: a bird with a yellow belly and body, black wings with
yellow converts and wingbars, black head and an orange bill.

EISNet: a small brown and white dog with a large ears of a
triangle shaped head.

Ours: a white and black bird with a red beak.

GT1: a large bird with a white breast, throat, and head with
black eye rings and a large pointed beak.

GT2: alarge white bird with a long curved bill. an all white
body, black eye rings, and black wing feathers.

GT3: alarger sized bird with a glowing white body and a
large orange beak.

EISNet: a close up of a flower in a vase.

Ours: a white flower with red and orange leaves.

GT1: this flower is white and red in color, with petals that
are red near the center.

GT2: this flower has a white anther filament, yellow
stamen, red ovule and white petals.

GT3: this flower has petals that are white with red center
and white stigma.

EISNet: a close up of a flower with many leaves.

Ours: a pink flower with a green leaves and a pink center.
GT1: this flower has large pink petals and a pink stigma.
GT2: this flower is pink in color, and has petals that are
darker near the center.

GT3: the flower shown has petals which are bright pink
with a pink stamen.

i

Figure 4. Examples of image captioning results by EISNet and our
method, coupled with the corresponding ground-truth sentences.

greater the difference, the greater the value. In the or-
ange triangle, we observe that the MMD values between
MSCOCO, Flickr30k, and VizWiz are the smallest, which
means that they are visually similar. However, from the
visualization results, VizWiz still has a large discrepancy
with MSCOCO and Flickr30k. Because Vizwiz’s images
come from low-quality photos taken by the phones of vi-
sually impaired people. The dataset with the biggest gap
with other domains is Oxford-102 and then CUB-200. It
can also be seen from the visualization results that they are
obviously far away from other domains. In terms of lin-
guistic domain gaps, MSCOCO and Flickr30k are similar,
as expected, because they are both more generic. However,
VizWiz also has a relatively small gap with them. We argue
because although the images of VizWiz are blurry, many
images are concerned with everyday activities, so the cap-
tions are closer to MSCOCO and Flickr30k covering daily
life. CUB-200 and Oxford-102 still have a certain language
gap with other datasets because there are all descriptions of
birds or flowers. However, in general, we can see from the
visualization and normalized variance that the gap of the
language is still slightly smaller than that of the image, be-
cause the image is filled with a lot of complex scene noise
in different domains.

Analysis on the number of source domains: Tab. 4 shows
that more source domains can improve the generalization
ability of the model. Especially, the improvement is very
significant for generic domains such as MSCOCO, and
there is also a small improvement for specific domains such
as Oxford-102. It indicates multiple source domains have
the potential to provide diverse patterns to facilitate model

generalization. Therefore, we include multiple domains
when constructing our DGIC benchmark.

5.2.2 Existing methods’ generalization on DGIC (Q2)

In Tab. 3, we report the results of different state-of-the-
art image captioning and domain generalization methods
on DGIC. We evaluate several most popular SOTA image
captioning methods, including Up-Down [3], AoANet [26],
M?2Transformer [13]. We see an unsatisfactory performance
in all settings for these methods, where the model is trained
without any target domain data or even images. This veri-
fies that most existing image captioning models lack gener-
alization capabilities on unseen domains. We note that the
Transformer method generalizes the best due to modeling
strong relationships by self-attention, achieving the best re-
sults under all five different settings of DGIC.

In Tab. 5, we also analyze some different classic DG
methods: (1) Alignment-based methods (CCSA [38]);
(2) Maximum Mean Discrepancy-based methods (MMD-
AAE [32]); (3) Metric learning methods (EISNet [56]). To
cope with the challenge of applying domain adaptation over
image captioning, we employ the vanilla Transformer as the
encoder-decoder backbone, combined with these DG meth-
ods. Experiments show that better generalization perfor-
mance can be achieved by metric learning, which approxi-
mates semantically similar features for image captioning.

5.2.3 Performance of LSML (Q3)

Quantitative analysis: To verify that our framework is
more suitable for DGIC than existing methods, we com-
pare our LSML method with the representative method EIS-
Net [56] on all settings. EISNet [56] uses simple image
category labels to guide metric learning for a better gener-
alization. For a fair comparison, both methods use a basic
Transformer [53] as the backbone. In Tab. 3, we observe
that the performance of our method is better than other ex-
isting methods across the five settings. Specifically, our
method outperforms prior methods by a considerable mar-
gin on CIDEr and SPICE, such as 10.85% on CIDEr and
3.56% on SPICE under MSCOCO target domain setting,
which are specially designed metrics for image captioning
and can more accurately evaluate sentence generation in the
multimodal task.

Under the setting when the target domain is CUB-200
or Oxford-102, the domain gaps between these two datasets
and other datasets are very large (see 5.2.1), where other
datasets rarely contain captions that specifically describe
the appearance of birds and flowers. So it is relatively diffi-
cult to generate such specific domain words for the chal-
lenging domains. However, our LSML method still sur-
passes existing methods by a considerable margin, which
demonstrates the effectiveness of our LSML framework.
Qualitative analysis: Because CUB-200 and Oxford-102
are very challenging specific domains, we show some
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Linter | Lintra | B@4 M R C S
X X 4.46 12.23 2719 4347 13.77
v X 5.53 12.65 29.34 5125 15.13
X v 4.86 12.55 28.62  47.36 14.55
v v 5.53 1291  29.63 5324  16.08
Table 7. Comparison of loss function components.
Method Bleu@4 ~ Meteor ROUGE  CIDEr  SPICE
w/ image 4.46 12.23 27.79 43.47 13.77
w/ sentence 5.41 12.58 29.39 50.88 15.39
w/ visual word 5.44 12.90 29.41 51.55 15.85
w/word & sent 5.53 12.91 29.63 53.24 16.08
Table 8. Comparison of guidance components.
Method [ Ours w/oMB ~ w/oMU  w/o MB&MU

CIDEr [ 53.24 49.33 51.55 48.10
Table 9. Ablation analyes on the memory bank (MB) and momen-
tum update (MU).

cases on the settings that target domains are CUB-200 and
Oxford-102 to prove the better performance of our partial
method in Fig. 4. In the top two images, the two captions
generated by our model contain ”a small yellow bird” and
”a white and black bird” respectively, while the object de-
tector cannot provide the appearance and color attributes of
the object. This can reflect that our method can sufficiently
mine the domain-independent features corresponding to the
objects, actions, and attributes in the source domain to im-
prove the generalization of unseen domains.

Analysis on semantic improvement: To better under-
stand the improved fine-grained semantic performance, we
show the breakdown of SPICE metric that evaluates ob-
jects, attributes and relations with several methods that
have the most potential to apply to DGIC. CL [15] focus
on matched or unmatched image-caption pairs, and Comp-
Cap [14] learns to predict compositional phrases. As shown
in Tab. 6, LSML can better capture fine-grained semantics
including complex attributes and relations of objects from
semantic text guidance.

5.2.4 Effectiveness of model’s components (Q4)

We take MSCOCO as the target domain and conduct de-
tailed studies on the effectiveness of different components.

Loss function components: We investigate the contri-
butions of different components in Tab. 7. Inter-domain
learning plays the most important role, capturing discrim-
inative relationships between instances and providing the
model with the ability to learn domain invariant features for
captioning. Intra-domain learning can complement inter-
domain learning by making features smoother across do-
mains to enhance the robustness of discriminative learning.
Memory bank and momentum update: We also list the
gains of the memory bank (MB) and the momentum up-
date (MU) in Tab. 9. The results demonstrate that these two
modules can significantly improve the efficiency of metric
learning and the diversity of triplet sampling.

Semantic guidance: We explore the effectiveness of dif-
ferent semantic guidance approaches. Tab. 8 shows that
the text guidance is able to sample more relevant samples

soss [N o1s I 1530
4895 [N - o-1s - 451
4728 [ o+ - 1447
az07 [ o2 - 5o+

Positive

cioer [N threshold spice [
Figure 5. Comparison of different positive sampling thresholds.

Range of | ypp gpreg | Rangeof |\ oippr gpice
Bounds Bounds

0-0.02 5324 1608 | 002006 | 51.02 1495

0.02-0.04 | 5262 1570 | 0.06-0.1 4978 1576
0-0.2 4863 1497 | 0-0.1 4996  14.61

Table 10. Comparison of different negative sampling’ ranges of
lower and upper bounds. When lower-upper bounds are 0-0.2, it
means that the negative sample is randomly selected in the case
of sim¢(v®,v™) < pin. Other lower and upper bounds indicate
good-hard negative sample mining.

than the image guidance, facilitating the mining of truly dis-
criminative triples in multiple domains. We observe that vi-
sual word guidance has the best results through fine-grained
alignment, which is not susceptible to the syntactic style
and word position because high-level sentence guidance can
help word guidance to complement synonymy.

Triplet sampling: We show the performance of different
positive and negative sampling thresholds for triplet sam-
pling in Fig. 5 and Tab. 10. The larger the sampling thresh-
old p;p of the positive sample, the better the model effect.
Nonetheless, we need to make a trade-off because too large
the threshold may lead to selecting no anchor-positive pair.
When performing good-hard negative sample mining, the
smaller the good-hard negative sampling range of the lower
n; and upper n,, bounds, the easier it is for the model to
learn the discriminative information.

6. Conclusion

In this work, we propose a novel setting called domain

generalizable image captioning (DGIC), where the data
from the target domain is inaccessible. We first construct
a benchmark dataset under this setting and analyze the limi-
tations of existing methods for DGIC. With the analysis, we
introduce the improved language-guided semantic metric
learning framework called LSML, which can better gener-
alize to the unseen image captioning domain. We can make
better generalizations in the future through large-scale pre-
trained models with some techniques such as prompt tuning,
and our benchmarks can have a good role in facilitating and
evaluating these models.
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