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Abstract

Weakly-supervised temporal action localization aims to
localize and recognize actions in untrimmed videos with
only video-level category labels during training. Without
instance-level annotations, most existing methods follow the
Segment-based Multiple Instance Learning (S-MIL) frame-
work, where the predictions of segments are supervised by
the labels of videos. However, the objective for acquiring
segment-level scores during training is not consistent with
the target for acquiring proposal-level scores during test-
ing, leading to suboptimal results. To deal with this prob-
lem, we propose a novel Proposal-based Multiple Instance
Learning (P-MIL) framework that directly classifies the
candidate proposals in both the training and testing stages,
which includes three key designs: 1) a surrounding con-
trastive feature extraction module to suppress the discrimi-
native short proposals by considering the surrounding con-
trastive information, 2) a proposal completeness evaluation
module to inhibit the low-quality proposals with the guid-
ance of the completeness pseudo labels, and 3) an instance-
level rank consistency loss to achieve robust detection by
leveraging the complementarity of RGB and FLOW modal-
ities. Extensive experimental results on two challenging
benchmarks including THUMOS14 and ActivityNet demon-
strate the superior performance of our method. Our code is
available at github.com/RenHuan1999/CVPR2023 P-MIL.

1. Introduction
Temporal Action Localization (TAL) is one of the es-

sential tasks in video understanding, which aims to simul-
taneously discover action instances and identify their cat-
egories in untrimmed videos [9, 18]. TAL has recently
received increasing attention from the research commu-
nity due to its broad application potentials, such as intel-
ligent surveillance [44], video summarization [22], high-
light detection [49], and visual question answering [23].
Most existing methods handle this task in a fully-supervised
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Figure 1. Drawbacks of the Segment-based Multiple Instance
Learning framework. (a) The objectives of the training and testing
stages are inconsistent. (b) By watching a single running segment
in the red box, it is difficult to tell which category it belongs to.

setting [7, 25, 42, 51, 63], which requires instance-level
annotations. Despite their success, the requirements for
such massive instance-level annotations limit their applica-
tion in real-world scenarios. To overcome this limitation,
Weakly-supervised Temporal Action Localization (WTAL)
has been widely studied because it only requires video-level
labels [13, 26, 36, 45, 55], which are much easier to collect.

Most existing WTAL methods follow the Segment-based
Multiple Instance Learning (S-MIL) framework [16,32,45],
where the predictions of segments are supervised by the
labels of videos. In particular, a class-agnostic attention
branch is used to calculate the attention sequence, which in-
dicates the foreground probability of each segment. Mean-
while, a classification branch is used to calculate the Class
Activation Sequence (CAS), which indicates the category
probability of each segment. In the training stage, the video-
level classification scores can be derived by aggregating
CAS with the attention sequence, which are then supervised
by the video-level category labels. In the testing stage, the
candidate proposals are generated by thresholding the atten-
tion sequence, and the segment-level CAS corresponding to
each proposal is aggregated to score each proposal.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Despite the considerable progress achieved by these
methods, the S-MIL framework has two drawbacks. Firstly,
the objectives of the training and testing stages are inconsis-
tent. As shown in Figure 1 (a), the target is to score the ac-
tion proposals as a whole in the testing stage, but the classi-
fier is trained to score the segments in the training stage. The
inconsistent scoring approach can lead to suboptimal results
as shown in other weakly-supervised tasks [1,34,43,52,56].
Secondly, it is difficult to classify each segment alone in
many cases. As shown in Figure 1 (b), by watching a single
running segment, it is difficult to tell whether it belongs to
high jump, long jump, or triple jump. Only by watching the
entire action instance and using of the contextual informa-
tion, we can determine which category it belongs to.

Inspired by the above discussions, we propose a novel
Proposal-based Multiple Instance Learning (P-MIL) frame-
work, which employs a two-stage training pipeline. In the
first stage, an S-MIL model is trained and the candidate pro-
posals are generated by thresholding the attention sequence.
In the second stage, the candidate proposals are classified
and aggregated into video-level classification scores, which
are supervised by video-level category labels. Since the
candidate proposals are directly classified in both the train-
ing and testing stages, the proposed method can effectively
handle the drawbacks of the S-MIL framework. However,
there are three issues that need to be considered within
the P-MIL framework. First, the model tends to focus on
discriminative short proposals. Since the training stage is
mainly guided by the video-level classification, the classi-
fier tends to focus on the most discriminative proposals to
minimize the classification loss. To solve this problem, we
propose a Surrounding Contrastive Feature Extraction mod-
ule. Specifically, we extend the boundaries of the candidate
proposals and then calculate the outer-inner contrastive fea-
tures of the proposals. By taking surrounding contrastive
information into consideration, those discriminative short
proposals can be effectively suppressed. Second, the candi-
date proposals generated by the S-MIL approach may be
over-complete, which include irrelevant background seg-
ments. In this regard, we present a Proposal Completeness
Evaluation module. Concretely speaking, we treat the high-
confidence proposals as pseudo instances, and then acquire
the completeness pseudo label of each proposal by com-
puting the Intersection over Union (IoU) with these pseudo
instances. Under the guidance of the completeness pseudo
labels, the activation of low-quality proposals can be inhib-
ited. Third, due to the Non-Maximum Suppression (NMS)
process in the testing stage, the relative scores of propos-
als belonging to the same action instance have substantial
influences on the detection results. To learn robust rela-
tive scores, we design an Instance-level Rank Consistency
loss by leveraging the complementarity of RGB and FLOW
modalities [55, 60]. Those proposals that overlap with a

given candidate proposal are considered as a cluster. By
constraining the normalized relative scores within the clus-
ter between RGB and FLOW modalities to be consistent,
we can achieve reliable detection by discarding proposals
with low relative scores in the NMS process.

To sum up, the main contributions of this paper are
as follows: (1) We propose a novel Proposal-based Mul-
tiple Instance Learning (P-MIL) framework for weakly-
supervised temporal action localization, which can handle
the drawbacks of the S-MIL framework by directly classi-
fying the candidate proposals in both the training and test-
ing stages. (2) We propose three key designs (Surrounding
Contrastive Feature Extraction module, Proposal Complete-
ness Evaluation module, Instance-level Rank Consistency
loss), which can deal with the challenges in different stages
of the P-MIL framework. (3) Extensive experimental re-
sults on THUMOS14 and ActivityNet datasets demonstrate
the superior performance of the proposed framework over
state-of-the-art methods.

2. Related Work
In this section, we briefly overview methods relevant to

fully-supervised and weakly-supervised temporal action lo-
calization.

Fully-supervised Temporal Action Localization.
Temporal Action Localization (TAL) aims to simul-
taneously localize and identify action instances in
untrimmed videos. Similar to the development of object
detection [5, 11, 27, 39], existing fully-supervised ap-
proaches can be divided into two categories: two-stage
methods [7, 42, 50, 59, 63, 65] and one-stage meth-
ods [3, 8, 27, 30, 47, 53, 62]. Two-stage methods first
generate the candidate proposals and then feed them into
action classifiers, by improving either the quality of pro-
posals [7,42,59,65] or the robustness of classifiers [50,63].
One-stage methods can instead generate the candidate
proposals and classify them simultaneously, which have
achieved remarkable performance recently by introducing
Transformer architecture [8, 47, 62]. Despite their success,
the requirements for massive and expensive instance-level
annotations limit their application in real-world scenarios.

Weakly-supervised Temporal Action Localization. To
solve the above issue, Weakly-supervised Temporal Action
Localization (WTAL) has been widely studied [13, 26, 31,
36, 45, 54, 57, 60], which requires only video-level category
labels. UntrimmedNet [45] is the first to introduce a Multi-
ple Instance Learning (MIL) framework [33] to handle the
WTAL task by classifying segments and using a selection
module to generate the action proposals. However, due
to the discrepancy between the classification and localiza-
tion tasks, the model tends to focus on the most discrim-
inative segments. Step-by-step [64] allows the model to
learn more complete localization by gradually erasing the
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most discriminative segments during training. WTALC [38]
learns compact intra-class feature representations by pulling
features of the same category to be closer while pushing
those of different categories away. By introducing a class-
agnostic attention branch for foreground-background sepa-
ration, the attention-based approaches [15,21,26,31,36] be-
come mainstream due to their superior performance and the
flexibility of the model architectures. STPN [36] presents
a sparsity loss on the attention sequence to capture the key
foreground segments. CMCS [26] adopts a multi-branch
architecture to discover distinctive action parts with a well-
designed diversity loss. BaS-Net [21] and WSAL-BM [37]
introduce an additional background category for explicit
background modeling. CO2-Net [15] designs a cross-modal
attention mechanism to enhance features by filtering out
task-irrelevant redundant information. More recently, there
are some researches [17, 32, 55, 60] that attempt to generate
pseudo labels to guide the model training. In [32], the class-
agnostic attention sequence and class activation sequence
provide pseudo labels for each other in an expectation-
maximization framework. TSCN [60] fuses the attention se-
quence of RGB and FLOW modalities to generate segment-
level pseudo labels, while UGCT [55] uses the RGB and
FLOW modalities to generate pseudo labels for each other
by leveraging their complementarity. Differently, ASM-
Loc [13] uses pseudo labels not only to supervise the model
training but also to enhance the segment features by lever-
aging the action proposals for segment-level temporal mod-
eling. Despite the considerable progress achieved by pre-
vious methods, they almost all follow the Segment-based
MIL framework to achieve temporal action localization,
with inconsistent objectives between the training and testing
stages. To deal with this issue, we instead propose a novel
Proposal-based MIL framework to directly classify the can-
didate proposals in both the training and testing stages.

3. Our Method
In this section, we elaborate on the proposed Proposal-

based Multiple Instance Learning framework (P-MIL) for
Weakly-supervised Temporal Action Localization (WTAL),
as illustrated in Figure 2. Given a video V, the
goal of WTAL is to predict a set of action instances
{(ci, si, ei, qi)}

Mp

i=1, where si and ei denote the start time
and end time of the i-th action, ci and qi represent the ac-
tion category and the confidence score, respectively. Dur-
ing training, each video V has its ground-truth video-level
category label y ∈ RC , where C represents the number
of action classes. y(j) = 1 if the j-th action presents in
the video and y(j) = 0 otherwise. The proposed P-MIL
framework consists of three steps, including candidate pro-
posal generation (Sec. 3.1), proposal feature extraction and
classification (Sec. 3.2), proposal refinement (Sec. 3.3). The
details are as follows.

3.1. Candidate Proposal Generation

In order to generate the candidate proposals, an S-MIL
model [15] is trained. We first divide each untrimmed
video into non-overlapping 16-frame segments, and then
apply the pretrained feature extractor (e.g. I3D [6]) to ex-
tract segment-wise features XS ∈ RT×D for both RGB
and FLOW modalities, where T indicates the number of
segments in the video and D is the feature dimension.
Following the typical two-branch architecture, a category-
agnostic attention branch is utilized to calculate the atten-
tion sequence A ∈ RT×1 and a classification branch is
used to predict the base Class Activation Sequence (CAS)
Sbase ∈ RT×(C+1), where the (C + 1)-th class indicates
the background [21, 37]. By multiplying Sbase with A in
the temporal dimension, we can obtain the background sup-
pressed CAS Ssupp ∈ RT×(C+1). After that, the predicted
video-level classification scores ŷbase, ŷsupp ∈ RC+1 are
derived by applying a temporal top-k aggregation strat-
egy [13, 19, 21] to Sbase and Ssupp, respectively, followed
by a softmax operation.

Guided by the video-level category label y, the classifi-
cation loss is formulated as

Lcls = −
C+1∑
c=1

(
ybase(c) log ŷbase(c)

+ysupp(c) log ŷsupp(c)
)
,

(1)

where ybase = [y, 1] ∈ RC+1 and ysupp = [y, 0] ∈ RC+1,
based on the assumption that background is present in all
videos but filtered out by the attention sequence A. Fur-
thermore, a sparsity loss [36] Lnorm = 1

T

∑T
t=1 |A(t)| is

also employed on the attention sequence A to focus on the
key foreground segments. Overall, the training objectives
are as follows:

Ltotal = Lcls + λnormLnorm, (2)

where λnorm is a balancing factor.
With the trained S-MIL model, we apply multiple thresh-

olds θact on the attention sequence A to generate the can-
didate action proposals Pact = {(si, ei)}M1

i=1. To enable our
P-MIL model to learn better foreground-background sep-
aration in the training stage, we also apply extra thresh-
olds θbkg to generate the background proposals Pbkg =

{(si, ei)}M2
i=1, where the attention sequence A is below θbkg .

Thus, the final candidate proposals for training are formu-
lated as

P = Pact + Pbkg = {(si, ei)}Mi=1, (3)

whereM =M1+M2 indicates the total number of the can-
didate proposals. Note that we only use the action proposals
Pact for inference.
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Figure 2. (a) Overview of the proposed Proposal-based Multiple Instance Learning framework, which consists of candidate proposal
generation, proposal feature extraction, proposal classification and refinement. (b) The Surrounding Contrastive Feature Extraction (SCFE)
module extends the boundaries of the candidate proposals and then calculates the outer-inner contrastive features of the candidate proposals.
(c) The Proposal Completeness Evaluation (PCE) module generates the completeness pseudo label by computing the IoU with the selected
pseudo instances. (d) The Instance-level Rank Consistency (IRC) loss constrains the normalized relative classification scores within the
cluster between RGB and FLOW modalities to be consistent.

3.2. Proposal Feature Extraction and Classification

Given the candidate proposals P , previous S-MIL meth-
ods use the CAS to calculate the confidence score (e.g.
Outer-Inner Score [41]) of each proposal. However, these
indirect scoring approaches can lead to suboptimal results.
To address this problem, we propose to directly classify
the candidate proposals and aggregate them into video-level
classification scores, which are supervised by video-level
category labels.

Surrounding Contrastive Feature Extraction. For the
given candidate proposals P , we first extract correspond-
ing proposal features XP ∈ RM×D. Since the training
stage is mainly guided by the video-level classification, the
classifier tends to focus on discriminative short proposals
to minimize the classification loss. To address this issue,
we propose a Surrounding Contrastive Feature Extraction
(SCFE) module. Specifically, given a candidate proposal
Pi = (si, ei), we first extend the boundary by α of its
length on both the left and right sides, yielding three re-
gions: left, inner, and right. For each region, we then em-
ploy RoIAlign [14] followed by max-pooling on the seg-
ment features XS to extract an associated D-dimensional
feature vector, indicated by Xl

i, X
n
i and Xr

i , respectively.
An intuitive way to obtain the proposal feature is to directly
concatenate the three feature vectors and feed them into a
fully connected layer. However, inspired by AutoLoc [41],

we take a more effective approach that calculates the outer-
inner contrastive features of the proposal followed by a fully
connected layer, which is written as:

Xi = FC
(
Cat(Xn

i −Xl
i,X

n
i ,X

n
i −Xr

i )
)
, (4)

where Cat denotes the concatenate operation. By taking
the surrounding contrastive information into consideration,
those discriminative short proposals can be effectively sup-
pressed.

Classification Head. Similar to the pipeline of the
S-MIL framework, given the proposal features XP , a
category-agnostic attention branch is then used to predict
the attention weights A ∈ RM×1, which indicate the fore-
ground probability of each proposal. Meanwhile, a classifi-
cation branch is used to predict the base classification scores
Sbase ∈ RM×(C+1) of the proposals. By multiplying Sbase

with A, we obtain the background suppressed classification
scores Ssupp ∈ RM×(C+1). Finally, the predicted video-
level classification scores ŷbase, ŷsupp ∈ RC+1 are derived
by applying a top-k pooling followed by softmax to Sbase

and Ssupp, respectively, which are supervised by the video-
level category labels.

3.3. Proposal Refinement

Proposal Completeness Evaluation. The candidate
proposals generated by the S-MIL method may be over-
complete, which include irrelevant background segments.
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In this regard, we present a Proposal Completeness Evalua-
tion (PCE) module. Given the candidate proposals, we use
the attention weights to select the high-confidence propos-
als as pseudo instances, and then obtain the completeness
pseudo label of each proposal by computing the Intersec-
tion over Union (IoU) with these pseudo instances. For-
mally, we first apply a threshold γ · max(A) (γ is set to
0.8 in our case) to the attention weights A of proposals to
select a set of high-confidence proposals Q. Then, follow-
ing the Non-Maximum Suppression (NMS) process, we se-
lect the proposal with the highest attention weight as the
pseudo instance, remove the proposals that overlap with it
from Q, and repeat the process until Q is empty. After that,
we acquire a set of pseudo instances G = {(si, ei)}Ni=1.
By computing the IoU between the candidate proposals P
and the pseudo instances G, we can obtain an IoU matrix
of M ×N dimensions. We assign the pseudo instance with
the largest IoU to each proposal via taking maximum for the
N dimension, and then we obtain the completeness pseudo
labels q ∈ RM for the candidate proposals. Under the guid-
ance of q, a completeness branch is introduced to predict
the completeness scores q̂ ∈ RM in parallel with the atten-
tion branch and the classification branch, which can help to
inhibit the activation of low-quality proposals.

Instance-level Rank Consistency. Due to the NMS pro-
cess in the testing stage, the relative scores of the candidate
proposals belonging to the same action instance have a sig-
nificant impact on the detection results. In order to learn
robust relative scores, we design an Instance-level Rank
Consistency (IRC) loss by leveraging the complementarity
of RGB and FLOW modalities. In detail, we first apply a
threshold mean(A) to the attention sequence A to elimi-
nate the low-confidence proposals, and the remaining pro-
posals are denoted as R. For each proposal r in R, those
candidate proposals that overlap with it are considered as
a cluster Ωr, where |Ωr| = Nr. The classification scores
Sbase corresponding to this cluster are indexed from the
RGB and FLOW modalities, given as pRGB

r,c and pFLOW
r,c ,

respectively, where c indicates one of the ground truth cate-
gories. Then the normalized relative scores within the clus-
ter are formulated as

D∗r,c = softmax(p∗r,c),∀∗ ∈ {RGB,FLOW}. (5)

The Kullback-Leibler (KL) divergence is used to constrain
the consistency between RGB and FLOW modalities, de-
fined as:

LIRC =
1

|R|
∑
r∈R

(
KL(DFLOW

r,c ||DRGB
r,c )

+KL(DRGB
r,c ||DFLOW

r,c )
)
,

(6)

KL(Dt
r,c||Ds

r,c) = −
Nr∑
i=1

Dt
r,c(i) log

Ds
r,c(i)

Dt
r,c(i)

. (7)

With the IRC loss, we can achieve reliable detection by dis-
carding proposals with low relative scores in the NMS pro-
cess.

3.4. Network Training and Inference

Network Training. In the training stage, guided by the
video-level category label y, the main classification loss is
formulated as

Lcls = −
C+1∑
c=1

(
ybase(c) log ŷbase(c)

+ysupp(c) log ŷsupp(c)
)
,

(8)

where ybase = [y, 1] ∈ RC+1 and ysupp = [y, 0] ∈ RC+1.
Moreover, with the PCE module, a completeness loss is de-
fined as the Mean Square Error (MSE) between the com-
pleteness pseudo labels q and the predicted completeness
scores q̂:

Lcomp =
1

M

M∑
i=1

(
q(i)− q̂(i)

)2
. (9)

Overall, the training objective of our model is

Ltotal = Lcls + λcompLcomp + λIRCLIRC , (10)

where λcomp and λIRC are balancing hyper-parameters.
Inference. In the testing stage, we first apply the thresh-

old θcls to the video-level classification scores ŷsupp and
neglect those categories below θcls. For each remaining cat-
egory c, we score the i-th candidate proposal as

s(i) = Ssupp(i, c) ∗ q̂(i). (11)

Finally, the class-wise soft-NMS [2] is employed to remove
the duplicate proposals.

3.5. Discussions

In this section, we discuss the differences between the
proposed method and several relevant methods, including
AutoLoc [41] and CleanNet [29]. To deal with the incon-
sistency between the localization objective of the testing
stage and the classification objective of the training stage,
AutoLoc and CleanNet propose to directly predict the tem-
poral boundaries of action instances, with the supervision
provided by the Outer-Inner-Contrastive loss and the tem-
poral contrast loss, respectively. Different from these ap-
proaches, we concentrate on another inconsistency in the
S-MIL framework about what to score between the train-
ing and testing stages. The candidate proposals need to
be scored in the testing stage, while the S-MIL classifier is
trained to score the segments during training. To resolve this
inconsistency, we propose a novel Proposal-based Multi-
ple Instance Learning framework that directly classifies the
candidate proposals in both the training and testing stages.
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Table 1. Detection performance comparison with state-of-the-art methods on the THUMOS14 test set. TSN, UNT and I3D represent
TSN [46], UntrimmedNet [45] and I3D [6] features, respectively. ∗ means fusing the detection results of the S-MIL and our P-MIL model.

Supervision Methods Feature
mAP@IoU (%) AVG mAP (%)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.5 0.3:0.7 0.1:0.7

Fully

TAL-Net [7], CVPR2018 I3D 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3 39.8 45.1
BMN [25], ICCV2019 TSN - - 56.0 47.4 38.8 29.7 20.5 - 38.5 -

GTAD [51], CVPR2020 TSN - - 54.5 47.6 40.3 30.8 23.4 - 39.8 -
ContextLoc [65], ICCV2021 I3D - - 68.3 63.8 54.3 41.8 26.2 - 50.9 -
RefactorNet [48], CVPR2022 I3D - - 70.7 65.4 58.6 47.0 32.1 - 54.8 -

Weakly

AutoLoc [41], ECCV2018 UNT - - 35.8 29.0 21.2 13.4 5.8 - 21.0 -
CleanNet [29], ICCV2019 UNT - - 37.0 30.9 23.9 13.9 7.1 - 22.6 -

STPN [36], CVPR2018 I3D 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0 18.5 27.0
WTALC [38], ECCV2018 I3D 55.2 49.6 40.1 31.1 22.8 - 7.6 39.8 - -
CMCS [26], CVPR2019 I3D 57.4 50.8 41.2 32.1 23.1 15.0 7.0 40.9 23.7 32.4

WSAL-BM [37], ICCV2019 I3D 60.4 56.0 46.6 37.5 26.8 19.6 9.0 45.5 27.9 36.6
DGAM [40], CVPR2020 I3D 60.0 54.2 46.8 38.2 28.8 19.8 11.4 45.6 29.0 37.0

EM-MIL [32], ECCV2020 I3D 59.1 52.7 45.5 36.8 30.5 22.7 16.4 44.9 30.4 37.7
TSCN [60], ECCV2020 I3D 63.4 57.6 47.8 37.7 28.7 19.4 10.2 47.0 28.8 37.8
CoLA [61], CVPR2021 I3D 66.2 59.5 51.5 41.9 32.2 22.0 13.1 50.3 32.1 40.9
AUMN [31], CVPR2021 I3D 66.2 61.9 54.9 44.4 33.3 20.5 9.0 52.1 32.4 41.5
UGCT [55], CVPR2021 I3D 69.2 62.9 55.5 46.5 35.9 23.8 11.4 54.0 34.6 43.6
CO2-Net [15], MM2021 I3D 70.1 63.6 54.5 45.7 38.3 26.4 13.4 54.4 35.7 44.6
D2-Net [35], ICCV2021 I3D 65.7 60.2 52.3 43.4 36.0 - - 51.5 - -

FAC-Net [16], ICCV2021 I3D 67.6 62.1 52.6 44.3 33.4 22.5 12.7 52.0 33.1 42.2
FTCL [10], CVPR2022 I3D 69.6 63.4 55.2 45.2 35.6 23.7 12.2 53.8 34.4 43.6
RSKP [17], CVPR2022 I3D 71.3 65.3 55.8 47.5 38.2 25.4 12.5 55.6 35.9 45.1

ASM-Loc [13], CVPR2022 I3D 71.2 65.5 57.1 46.8 36.6 25.2 13.4 55.4 35.8 45.1
DCC [24], CVPR2022 I3D 69.0 63.8 55.9 45.9 35.7 24.3 13.7 54.1 35.1 44.0

ours I3D 70.9 66.6 57.8 48.6 39.8 27.1 14.4 56.8 37.5 46.5
ours∗ I3D 71.8 67.5 58.9 49.0 40.0 27.1 15.1 57.4 38.0 47.0

4. Experiment
4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our method on two benchmark
datasets including THUMOS14 [18] and ActivityNet [4].
THUMOS14 dataset contains 200 validation videos and
213 testing videos from 20 categories. Following previ-
ous works [21, 36, 38], we use the validation set for train-
ing and the testing set for evaluation. ActivityNet dataset
includes two versions, ActivityNet1.2 and ActivityNet1.3,
with 9,682 videos from 100 categories and 19,994 videos
from 200 categories, respectively. The training, validation
and testing sets are divided from ActivityNet dataset by the
ratio of 2:1:1. Following previous works [29, 31, 55], we
use the training set for training and the validation set for
evaluation.

Evaluation Metrics. In this work, we evaluate the lo-
calization performance with the mean Average Precision
(mAP) values at different Intersection over Union (IoU)
thresholds, following the standard evaluation protocol 1.

4.2. Implementation Details

Network Architecture. We employ the I3D [6] net-
works pretrained on Kinetics-400 [6] for feature extraction.

1http://github.com/activitynet/ActivityNet

The dimension D of the extracted segment-wise features is
1024. Optical flow frames are extracted from RGB frames
using the TV-L1 [58] algorithm. The category-agnostic at-
tention branch is implemented by two fully-connected lay-
ers followed by a sigmoid activation function, which is the
same as the completeness branch. The classification branch
consists of two fully-connected layers.

Hyper-parameters Setting. Our method is trained us-
ing the Adam [20] optimizer with the learning rate of
5× 10−5 and the mini-batch size of 10. The extended ratio
α is set to 0.25. The RoI size of RoIAlign [14] is 2, 8, 2 for
the left, inner and right region, respectively. The loss func-
tion weights λcomp = 20, λIRC = 2 in Equation (10). Since
the attention weights are less reliable in the early training
stage, we multiply the loss function Lcomp and LIRC with a
time-varying parameter as employed in UGCT [55], which
is gradually increased to 1. For the candidate proposal
generation, the thresholds θact = [0.1:0.1:0.9] and θbkg =
[0.3:0.2:0.7]. During inference, the video-level classifica-
tion threshold θcls is set to 0.2.

4.3. Comparison with State-of-the-art Methods

Results on THUMOS14. Table 1 shows the comparison
of our method with weakly-supervised and several fully-
supervised methods on the THUMOS14 dataset. From the
results we can see that our method outperforms the prior
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Table 2. Detection performance comparison with state-of-the-art
methods on the ActivityNet1.2 validation set. AVG represents the
average mAP at IoU thresholds 0.5:0.05:0.95. ∗ means fusing the
detection results of the S-MIL model and our P-MIL model.

Methods
mAP@IoU (%)

0.5 0.75 0.95 AVG

WTALC [38], ECCV2018 37.0 14.6 - 18.0
CMCS [26], CVPR2019 36.8 22.0 5.6 22.4

BaS-Net [21], AAAI2020 38.5 24.2 5.6 24.3
TCAM [12] CVPR2020 40.0 25.0 4.6 24.6
DGAM [40], CVPR2020 41.0 23.5 5.3 24.4

EM-MIL [32], ECCV2020 37.4 23.1 2.0 20.3
TSCN [60], ECCV2020 37.6 23.7 5.7 23.6
CoLA [61], CVPR2021 42.7 25.7 5.8 26.1

AUMN [31], CVPR2021 42.0 25.0 5.6 25.5
UGCT [55], CVPR2021 41.8 25.3 5.9 25.8
CO2-Net [15], MM2021 43.3 26.3 5.2 26.4
D2-Net [35], ICCV2021 42.3 25.5 5.8 26.0

ours 42.2 25.0 4.9 25.5
ours∗ 44.2 26.1 5.3 26.5

Table 3. Detection performance comparison with state-of-the-art
methods on the ActivityNet1.3 validation set. AVG represents the
average mAP at IoU thresholds 0.5:0.05:0.95. ∗ means fusing the
detection results of the S-MIL model and our P-MIL model.

Methods
mAP@IoU (%)

0.5 0.75 0.95 AVG

STPN [36], CVPR2018 29.3 16.9 2.6 16.3
CMCS [26], CVPR2019 34.0 20.9 5.7 21.2

WSAL-BM [37], ICCV2019 36.4 19.2 2.9 19.5
TSCN [60], ECCV2020 35.3 21.4 5.3 21.7

TS-PCA [28], CVPR2021 37.4 23.5 5.9 23.7
AUMN [31], CVPR2021 38.3 23.5 5.2 23.5
UGCT [55], CVPR2021 39.1 22.4 5.8 23.8

FAC-Net [16], ICCV2021 37.6 24.2 6.0 24.0
FTCL [10], CVPR2022 40.0 24.3 6.4 24.8
RSKP [17], CVPR2022 40.6 24.6 5.9 25.0

ASM-Loc [13], CVPR2022 41.0 24.9 6.2 25.1
DCC [24], CVPR2022 38.8 24.2 5.7 24.3

ours 39.5 23.6 4.9 23.9
ours∗ 41.8 25.4 5.2 25.5

state-of-the-art weakly-supervised methods, and by fusing
the detection results of the S-MIL model and our P-MIL
model, we can even achieve better performance. Specifi-
cally, our method surpasses the previous best performance
by 1.5% and 1.4% in terms of the mAP@0.5 and the av-
erage mAP@0.1:0.7, respectively, and further widens the
gap to 1.7% and 1.9% after fusion. Even when compared
to certain fully-supervised methods (e.g. BMN [25] and
GTAD [51]), our model can achieve comparable results at
low IoU thresholds.

Results on ActivityNet. Table 2 and Table 3 show the
performance comparison on the larger ActivityNet1.2 and
ActivityNet1.3 datasets, respectively. The experimental re-
sults are consistent with those on the THUMOS14 dataset
and we achieve state-of-the-art performance. Specifically,
after fusion, we achieve 26.5% on the ActivityNet1.2
dataset and 25.5% on the ActivityNet1.3 dataset in terms
of the average mAP.

4.4. Ablation Studies

To analyze the impact of each design, we conduct a se-
ries of ablation studies on the THUMOS14 dataset, as de-
tailed below.

Proposal Generation. Table 4 shows the impact of
different candidate proposal generation methods on the fi-
nal detection performance. To enable our P-MIL model to
learn better foreground-background separation during train-
ing, we generate additional background proposals to fill the
candidate proposals in Equation (3). In order to validate
the effectiveness of introducing the background proposals
in the training stage, we keep the candidate proposals used
for testing to be consistent, which consist of only the action
proposals. From Table 4, we can see that when only the
action proposals are used for training, the average mAP is

41.2%. After incorporating the background proposals into
the training stage, the average mAP increases by 5.3% to
46.5%, which significantly demonstrates the effectiveness
of this design.

Proposal Scoring. Table 5 shows the impact of different
proposal scoring approaches on the detection performance.
To evaluate the upper bound of the detection performance,
we use the IoU with the ground truth to score the candidate
proposals. The results indicate that the localization quality
of the candidate proposals is already high enough and the
bottleneck of the detection performance lies in the scoring
of the candidate proposals. To evaluate the effectiveness
of our P-MIL method compared to the S-MIL method, we
apply different scoring approaches to the same set of can-
didate proposals. It can be observed that when the S-MIL
method is used to score the candidate proposals, the aver-
age mAP is 43.6%. When we utilize our P-MIL method to
score the candidate proposals, the average mAP increases
by 2.9%. The results show that the direct scoring of propos-
als by our P-MIL method is better than the indirect scoring
of proposals by the S-MIL method. Note that after fusing
the detection results of the S-MIL model and our P-MIL
model, the performance can be further improved to 47.0%
in terms of the average mAP, indicating that the two meth-
ods can complement each other.

Proposal Feature Extraction. Table 6 shows the im-
pact of different variants of proposal feature extraction on
the detection performance. From the experimental results,
it can be seen that the average mAP is only 41.0% when the
boundaries of the candidate proposals are not extended. Af-
ter extending the left and right boundaries of the candidate
proposals, we can obtain the feature vectors of the three re-
gions. However, simply concatenating these three feature
vectors increases the average mAP by just 0.9%. When
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Table 4. Ablation studies about the candidate proposal generation
methods. Action and background indicate that the candidate pro-
posals are generated by θact and θbkg , respectively.

Proposal Generation
mAP@IoU (%)

0.1 0.3 0.5 0.7 AVG

action 62.6 51.1 34.9 12.7 41.2
action + background 70.9 57.8 39.8 14.4 46.5

Table 5. Ablation studies about different proposal scoring ap-
proaches. GT denotes using the IoU with the ground truth to score
the candidate proposals. And FUSE means fusing the detection re-
sults of the S-MIL model and our P-MIL model.

Proposal Scoring
mAP@IoU (%)

0.1 0.3 0.5 0.7 AVG

GT 83.3 76.3 64.7 41.7 67.4
S-MIL 68.1 54.1 37.2 12.4 43.6
P-MIL 70.9 57.8 39.8 14.4 46.5
FUSE 71.8 58.9 40.0 15.1 47.0

Table 6. Ablation studies about different variants of proposal fea-
ture extraction. The results demonstrate the effectiveness of the
Surrounding Contrastive Feature Extraction module.

Proposal Feature
Extraction

mAP@IoU (%)

0.1 0.3 0.5 0.7 AVG

w/o extending 64.5 52.0 34.3 11.1 41.0
simply concatenate 65.8 53.1 35.1 11.2 41.9
outer-inner contrast 70.9 57.8 39.8 14.4 46.5

Table 7. Ablation studies about the two designs of proposal refine-
ment. PCE and IRC denote the Proposal Completeness Evaluation
module and the Instance-level Rank Consistency loss, respectively.

Proposal Refinement mAP@IoU (%)

PCE IRC 0.1 0.3 0.5 0.7 AVG

70.2 57.1 37.7 13.4 45.2
X 70.4 57.6 38.7 14.5 45.9

X 70.6 58.0 39.0 13.8 46.0
X X 70.9 57.8 39.8 14.4 46.5

1.0 2.0 5.0 10.0 20.0 50.0 100.0 200.0 500.0

comp

10
.0

5.
0

2.
0

1.
0

0.
5

0.
2

0.
1

IR
C

38.8 39.0 39.4 39.5 39.6 39.9 39.8 39.3 39.3

39.4 39.4 39.5 39.7 39.6 39.9 39.8 39.3 39.4

39.0 39.3 39.5 39.5 39.8 39.6 39.8 39.8 39.5

39.0 39.3 39.4 39.2 39.3 39.7 39.6 39.6 39.5

38.9 39.1 39.1 39.2 39.8 40.0 39.6 39.9 39.4

38.6 38.6 38.9 38.8 39.3 39.5 39.8 39.9 39.5

38.6 38.3 38.7 38.9 39.0 39.6 39.6 39.5 39.5 38.4

38.6

38.8

39.0

39.2

39.4

39.6

39.8

40.0

Figure 3. The affection of the coefficients for the completeness
loss and the Instance-level Rank Consistency (IRC) loss. We show
the mAP at the IoU threshold 0.5.

calculating the outer-inner contrastive features in Equa-
tion (4), the performance is significantly improved by 5.5%
to 46.5%. These results validate the effectiveness of the Sur-
rounding Contrastive Feature Extraction (SCFE) module.

Proposal Refinement. Table 7 shows the impact of
the two designs of proposal refinement on the detection
performance, including the Proposal Completeness Evalua-
tion (PCE) module and the Instance-level Rank Consistency
(IRC) loss. It can be observed that both designs can bring
performance gain. Specifically, the PCE module and the
IRC loss boost performance by 0.7% and 0.8% in terms of
the average mAP, respectively, and when used together, the
performance increases by 1.3%. The experimental results
demonstrate the effectiveness of both designs.

Hyper-parameters Sensitivity Analysis. There are
two hyper-parameters in our P-MIL method, including
the coefficients λcomp and λIRC of the loss function in
Equation (10). To analyse the sensitivity of these hyper-
parameters, we evaluate the performance change in terms
of the mAP@0.5 for different combinations of λcomp and
λIRC . As shown in Figure 3, our model is not very sen-
sitive to these two hyper-parameters, and the performance
fluctuations in terms of mAP@0.5 are less than 2%. We
set a moderate value for each of these two hyperparame-
ters. Specificly, with λcomp = 20 and λIRC = 2, our method
achieves 39.8% in terms of the mAP@0.5.

5. Conclusion

In this paper, we propose a novel Proposal-based Mul-
tiple Instance Learning (P-MIL) framework for weakly-
supervised temporal action localization, which can achieve
the unified objectives of the training and testing stages by
directly classifying the candidate proposals. We introduce
three key designs to deal with the challenges in different
stages of the P-MIL framework, including the surrounding
contrastive feature extraction module, the proposal com-
pleteness evaluation module and the instance-level rank
consistency loss. Extensive experimental results on two
challenging benchmarks demonstrate the effectiveness of
our method.
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