
NeRFLight: Fast and Light Neural Radiance Fields using a Shared Feature Grid

Fernando Rivas-Manzaneque1,2 Jorge Sierra-Acosta1 Adrian Penate-Sanchez3

Francesc Moreno-Noguer5 Angela Ribeiro4

1 Arquimea Research Center 2 Universidad Politécnica de Madrid
3 Universidad de las Palmas de Gran Canaria, IUSIANI 4 Centre for Automation and Robotics, CSIC-UPM

5 Institut de Robòtica i Informàtica Industrial, CSIC-UPC

Abstract

While original Neural Radiance Fields (NeRF) have
shown impressive results in modeling the appearance of a
scene with compact MLP architectures, they are not able
to achieve real-time rendering. This has been recently ad-
dressed by either baking the outputs of NeRF into a data
structure or arranging trainable parameters in an explicit
feature grid. These strategies, however, significantly in-
crease the memory footprint of the model which prevents
their deployment on bandwidth-constrained applications.
In this paper, we extend the grid-based approach to achieve
real-time view synthesis at more than 150 FPS using a
lightweight model. Our main contribution is a novel ar-
chitecture in which the density field of NeRF-based repre-
sentations is split into N regions and the density is mod-
eled using N different decoders which reuse the same fea-
ture grid. This results in a smaller grid where each feature
is located in more than one spatial position, forcing them
to learn a compact representation that is valid for differ-
ent parts of the scene. We further reduce the size of the
final model by disposing of the features symmetrically on
each region, which favors feature pruning after training
while also allowing smooth gradient transitions between
neighboring voxels. An exhaustive evaluation demonstrates
that our method achieves real-time performance and quality
metrics on a pair with state-of-the-art with an improvement
of more than 2× in the FPS/MB ratio.

1. Introduction
The use of 3D objects reconstructed from real images

is becoming popular in a number of applications, such as
virtual-reality or online video-games. The increasing need
for realistic elements makes image-based reconstruction an
adequate alternative to modeling these objects from scratch
using fully manual or semi-automatic design engines. At
the same time, however, the larger the number of these as-
sets is, the higher the constrain of their size in order to meet

Figure 1. NeRFLight is able to double the FPS/MB ratio of
the second best method while obtaining similar quality metrics to
state-of-the-art.

certain bandwidth and storage requirements.
Methods based on neural rendering have arisen as a

promising approach to solve this challenge. In particu-
lar, Neural Radiance Fields (NeRF) [25] have demonstrated
outstanding potential. Instead of modeling the plenop-
tic function [1] by means of explicit geometry representa-
tions such as point clouds [2] or voxels [22], NeRF uses a
coordinate-based multi-layer perceptron (MLP) to model a
density and a color field that acts as a proxy of the plenop-
tic function. Applying this MLP in combination with posi-
tional encoding, NeRF achieves exceptional results in scene
representation, improving the quality and compactness of

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

12417



the previous methods [22, 24] and resulting in an explosion
of variants [4,30,55]. However, one of the major limitations
of NeRF-based methods is their low rendering speed, being
a barrier to being used in applications that require real-time.

This limitation has been addressed in different works,
by either “baking” the outputs of NeRF in a data structure
[10,11,54] or using additional features located in an explicit
grid [26, 48]. Nevertheless, all these real-time NeRF ren-
dering methods sacrifice the compactness of the representa-
tion and require relatively large models, resulting in a poor
render-time performance vs storage-cost ratio (FPS/MB).
This prevents these models from being deployed in applica-
tions that, besides requiring real-time, have memory storage
constraints.

In this work, we introduce NeRFLight, a new approach
to reduce the size of grid-based NeRF models while achiev-
ing real-time view synthesis and retaining the rendering
quality of slower and computationally expensive models.
Our key idea consists in splitting the volume of the den-
sity field used in NeRF into eight different regions, each
with a different decoder, but sharing a common feature grid.
This allows an 8× reduction in the number of total features.
We also propose a novel configuration of the features that
exploits the symmetry of neighboring voxel grids and fa-
vors a seamless reconstruction throughout all regions. This
not only increases the rendering quality but also results in a
more compact model. In addition, we also leverage the de-
terministic volume integration introduced in [48] to obtain
a better representation than using Monte Carlo integration.

We perform an exhaustive evaluation on both synthetic
and real data in terms of the FPS/MB ratio1.

The NeRFLight architecture we propose achieves ren-
dering speeds of up do 181 FPS with models of only 14MB.
As shown in Fig. 1 this yields an FPS/MB metric that is 2×
larger than the closest approach in the state-of-the-art, while
achieving a rendering quality (measured using PSNR and
SSIM) on pair with much larger models.

To summarize, our main contributions are the following:
1) We introduce a NeRF architecture based on several den-
sity fields and a shared feature grid that provides a light and
fast representation; 2) We devise an approach that enforces
symmetry of neighboring voxels that favors a seamless re-
construction, increases the model accuracy and further re-
duces its size; 3) All this results in the Neural Radiance
Field implementation with the highest frame rate vs. stor-
age cost ratio of the current state of the art.

2. Related work
Neural Volume Reconstruction: Novel view synthesis
of 3D scenes is a well-known field in computer vision. In

1In a similar way as done in [10], where an evaluation metric of
FPS/Watts was used to measure the compromise of speed vs power con-
sumption.

the last years, research has turned towards the use of neu-
ral network representations [2, 22, 24] in what has been
called Neural Rendering or Neural Volume Reconstruction.
Such neural networks are applied using intermediary ex-
plicit geometry representations like point clouds [2, 46],
meshes [35, 36, 45], voxel grids using CNNs [22, 33, 38] or
multi-plane images [24, 41, 57].

Recently, the use of neural fields has become popular
in this task. Neural fields apply coordinate-based networks
to encode the relation between spatiotemporal coordinates
and a given physical magnitude (see [51] for a detailed
review). To achieve novel view synthesis, different types
of fields (magnitudes) have been used to act as proxies of
the plenoptic function [1] of a given scene. For exam-
ple, [13, 39, 53] apply signed distance fields and an appear-
ance field (color). [27,37] replace signed distance fields by
occupancy fields. Neural Radiance Fields (NeRF) [25] pro-
posed a simple yet accurate approach that achieved unprece-
dented results using density and color fields. Thus, most of
the subsequent works have built upon this strategy, aiming
to extend original NeRF to different situations, such as un-
bounded scene reconstruction [3, 34, 44, 50], scene relight-
ing [4, 5, 40, 56], scene composition [16, 21, 52], dynamic
scenes [8,17,18,28,30,47,49] or fast convergence [9,26,42].

Baking NeRF: Several approaches have addressed the
problem of speeding up NeRF at inference. The first strat-
egy consists in “baking” the output of a pre-trained NeRF.
For instance, KiloNeRF [32] uses a pretrained NeRF to train
a uniform spatial grid of small MLPs in a teacher-student
manner. The original NeRF is then baked into a grid of tiny
NeRFs that accelerate rendering, although the use of a large
number of MLPs is very memory-demanding. [54] learns
first a NeRF that predicts the factors of a spherical harmonic
that are embedded into a PlenOctree structure capable of
modeling the view-dependent effects, so no MLP evalu-
ation is needed at inference. However, explicitly storing
spherical harmonic coefficients for the whole scene is not
memory efficient. Efficient-NeRF [11] achieves the fastest
rendering speed by storing the density output of NeRF and
generating an octree-based structure (NeRFTree). Despite
the acceleration they provide, the large memory footprint of
this structure and the density grid results in a low render-
ing frame rate vs storage ratio. SNeRG [10] directly tackles
the reduction of memory footprint. For this purpose, this
method bakes the alpha composition and color along the
ray together with view-based features that are decoded by a
small MLP at inference. The baked information is stored in
a texture atlas, where image compression algorithms such
as PNG or H264 are applied. However, this compression
leads to relatively low-quality metrics.

Explicit feature grids: The last strategy, and possibly the
most popular, consists in arranging a set of trainable pa-

12418



rameters as an explicit feature grid, reducing the number
of required operations at each model inference. These fea-
tures are linearly interpolated to serve as an input to small
and efficient MLPs. [48] leverages this interpolation to
introduce a deterministic volume integration that leads to
an accurate and fast-rendering model. Nevertheless, feature
storage lowers the resulting FPS/MB metric. To reduce fea-
ture memory footprint, Instant-NGP [26] uses each feature
at several spatial locations using a hash-grid and applies a
multiresolution representation to deal with feature collision.
It also applies half-precision for feature storage, improving
the compactness of the model. However, the multiple linear
interpolations needed due to the multiresolution hash-grid
lead to a reduction in rendering speed. Finally, methods
such as TensoRF [6], or VQAD [43] apply more elaborated
feature transformations like tensor decomposition or vec-
tor quantization, respectively. These strategies produce very
compact models, however, they also make feature retrieval
more complex which prevents real-time rendering.

NeRFLight also relies on explicit feature grids. As
in [48] we also apply deterministic integration to accelerate
rendering and improve the accuracy of the reconstruction.
On the other hand, we also apply features located at differ-
ent regions of the space. However, instead of using a multi-
resolution scheme, we apply multiple density decoders (like
[31,32]) to deal with feature collisions, avoiding the render-
ing speed loss of [26]. We do not make use of a hash grid.
Instead, we have devised a more optimal symmetric config-
uration for the features that leads to high-quality seamless
reconstruction and even faster and lighter models.

3. Background
NeRF [25] and its variants represent 3D scenes by ap-

proximating the plenoptic function as a density field σ(x)
and a color field c(x,d), which vary depending on the spa-
tial position x and viewing direction d. These fields are en-
coded using a coordinate-based MLP with weights w. Ra-
diance is accumulated along a ray r(t) = o + dt using the
volume rendering equation [12]:

ĉ(r) =

∫ ∞

0

e−
∫ t
0
σ(r(τ))dτσ(r(t))c(r(t),d)dt , (1)

to obtain the final color of a given pixel. Eq. (1) is ap-
proximated using Monte Carlo integration on a set of col-
ors and densities coming from the inference of the MLP
at n randomly sampled points along the ray (ci, σi =
MLPw(xi,di)). Radiance and density are assumed to be
constant between samples of a single ray. Thus, Eq. (1) can
be approximated as:

ĉ(r) =

n∑
i=1

Ti (1− exp (−σiδi)) ci (2)

Ti = exp

−
i−1∑
j=1

σjδj

 , (3)

where Ti corresponds to the accumulated transmitance at
a given point and δi to the length of the interval between
points δi = ∥xi+1 − xi∥2. NeRF-like models learn to ap-
proximate the density and color fields of the scene by min-
imizing the photometric loss between the pixels rendered
using Eq. (2) and the pixels from the training images.

In order to accelerate rendering, some methods [20, 48]
arrange additional training parameters as explicit features
located at the vertices of a voxel grid that are used as in-
put for the MLP. This allows to reduce its size and, since
the number of parameters involved in each model inference
is also reduced, a faster rendering speed is obtained. To
achieve this, these features are linearly interpolated depend-
ing on the position x of the sampled point:

(σi, ci) = MLPw

(
f̂(x),d

)
, (4)

where ˆf(·) is the trilinear interpolation of the features of a
given voxel. Despite of the achieved acceleration, when us-
ing explicit feature grids, most of the compactness provided
by NeRF’s MLP is lost due to the storage required cost for
the feature grid. This has a negative impact for the FPS/MB
metric.

4. Method
As mentioned in Sec. 3, in order to reduce computa-

tional cost we represent a 3D scene as a density and a color
field. Similar to [48], we apply deterministic volume in-
tegration and implicit feature initialization. We also use
a coarse-to-fine strategy to speed up training and perform
empty space pruning to accelerate model inference. How-
ever, unlike other grid-based methods, our representation is
compact thanks to the proposed shared feature grid we de-
scribe below.

4.1. Shared Feature Grid

As shown in Fig. 2, the scene is split into N different
regions. NeRFLight makes use of a shared feature grid that
is repeated in each of them. Therefore, the features are ar-
ranged at several locations, forcing the information to be
more compact as it needs to represent more than one part
of the scene. At a given location, a region-specific den-
sity decoder θi is used to convert the corresponding fea-
tures into the density value σ and an intermediate represen-
tation h. Finally, a single-color decoder uses this interme-
diate representation to obtain the color as a function of the
viewing direction. Therefore, for a given point xj in a ray
rj(t) = oj + djt we have:

σj , hj = θi(f̂(xj)), i ∈ [1, N ] , (5a)

12419



Figure 2. NeRFLight overview. Our method represents a scene as a set of N density fields and a single color field parameterized by
N density decoders θi, a color decoder θcolor alongside an explicit feature grid. This feature grid is repeated for each of the regions, i.e,
density fields, and is shared by all the decoders. The features are placed symmetrically to the scene center on each volume, which favours
continuity between density fields and feature pruning after training.

cj = θcolor(hj , γ(dj)) , (5b)

where ˆf(·) is the integrated feature we describe later in
Sec. 4.3 and γ(dj) is the positional encoding of the view-
ing direction, as in [25]. Note that Eq. (5a) is equiva-
lent to representing the scene using eight different density
fields while, as depicted by Eq. (5b), a single color field is
used. This representation allows for reducing the number
of unique features in the voxel grid and, subsequently, the
memory needed by the feature grid, by a factor of N . As
a design choice, we consider each of the N regions to be a
cube with a size equal to half the side of the bounding box,
resulting in a total of N = 8 regions and their correspond-
ing density decoders. For all the regions, the voxel grid res-
olution is kept constant and it is chosen independently for
each dataset. The dimension of the features located at each
vertex of these grids is set to 32.

4.2. Symmetric Voxel Grid

A natural approach when arranging the features in the
voxel grid would be to simply repeat them in the same order
for each region of the scene, using a linear configuration as
shown Fig. 3a. However, this may introduce discontinuities
at the seams between regions. Some previous works using
neural fields solve this discontinuity issue by overlapping
the different regions [23]. While this might be effective in a
fully-implicit representation, doing this in an explicit grid of
n3 features would increase the number of features by 3n2+
3n+1, resulting in a growth of the model size and reducing
the effectiveness of our approach. Instead, we propose not

to modify the regions of the scene but to arrange the features
symmetrically.

Let us consider a voxel vertex v in a linear voxel grid
(Fig. 3a), located at the boundary of regions e1 and e2. Note
that in this case, the feature that will be seen by decoder θ1
and decoder θ2 at v will not be the same, discouraging the
model from producing coherent results at both sides of the
seam. In contrast, if the features are arranged symmetrically
w.r.t. the scene center (Fig. 3b), we force the feature seen by
any decoder at any boundary to be the same as the feature
seen by all its neighboring decoders.

In practice, we also initialize all the density decoders
with the same weights to improve continuity during train-
ing. The symmetric configuration also increases the proba-
bility of a feature being on empty space for all the regions
of the volume. Therefore, this approach not only avoids
increasing the number of features needed for a seamless re-
construction, but it also reduces the number of features that
have to be stored after the pruning stage, further reducing
the model size (see again Fig. 3). In Sec. 5.3, we will show
how the use of a symmetric voxel grid turns out to be very
effective to improve the model quality and reduce its size.

4.3. Deterministic Volume Integration

We apply deterministic integration to improve the quality
of our model. Intersecting a ray with the voxel grid results
in a series of intervals corresponding to the different voxels
crossed by the ray. Instead of randomly sampling a point
and then applying trilinear interpolation of the features of

12420



(a) Linear voxel grid configuration. (b) Symmetric voxel grid configuration

Figure 3. Symmetric Voxel Grid configuration. Arranging the features in a symmetric configuration within the voxel grid favours the
continuity between regions by forcing the different decoders to share the same features at the boundaries. It also reduces the number of
features needed to represent the scene, reducing the model size.

the given voxel to obtain the input feature, the trilinear inter-
polation operation is integrated along each of the intervals:

(σj , hj) = θi

(∫ tout
j

tin
j

f̂(xj)dt,d

)
, i ∈ [1, 8] , (6a)

cj = θcolor(hj , γ(dj)) , (6b)

where tin
j is the ray entry point of each voxel and tout

j is
the ray exit point of each voxel. This deterministic feature
integration produces a better estimation for Eq. (1) com-
pared with Monte Carlo since the density and color fields
are not considered to be constant between samples. Instead,
the whole interval is represented by the integration of the
features belonging to the voxel where the given interval is
defined.

4.4. Architecture and model training

The density decoders are composed of an input layer and
a hidden layer of 32 neurons and an output layer of 33 neu-
rons, while the color decoder consists only of an input layer
of 32 neurons and an output layer of three neurons. All lay-
ers are activated with ReLU except for output layers, which
have no activation in the case of density decoders and use
sigmoid for the color decoder. For the implicit MLP, we use
an architecture consisting of one input layer and eight hid-
den layers with 512 neurons, and an output layer with 32
neurons. All layers use ReLU activation except for the last
one, where no activation is used. The positional encoding
of the vertex coordinates is concatenated to the output of the
fourth hidden layer.

Before training our model, we perform coarse geometry
searching using a low-resolution voxel grid with a single
region and one single-density decoder. We train this coarse
model for five epochs and extract an occupancy mask, dis-
carding the weights and the features of the model. This
occupancy mask is obtained in a completely unsupervised

way, i.e. it is extracted from the density outputs of the
model. We use this mask to speed up our training by avoid-
ing optimizing features located in empty space.

As discussed in [48], deterministic integration is prone to
overfit at certain voxels when features are explicitly trained
(i.e. directly optimized). To overcome this issue, we adopt
the same hybrid regularization of the features proposed by
[48]. This hybrid approach is composed of two stages: in
the first one, features are implicitly optimized (i.e. an MLP
is trained to obtain the features given the vertex coordi-
nates). In the second one, the implicit MLP is discarded
and features are explicitly optimized, leading to a better fi-
nal quality. In this way, the MLP used at the implicit stage
provides a powerful initialization that avoids overfitting.

To optimize our model, besides the photometric loss, we
apply the sparsity regularization loss of [10]:

Lsparsity = λs

∑
i

log

(
1 +

σ2
i

0.5

)
, (7)

where σi represents the ith accumulated density and λs is
the regularization weight. This regularization favors the
sparsity of the voxel grid and prevents the model from pre-
dicting background color in empty space.

4.5. Model sparsification and real-time rendering

We leverage the sparsity of the voxel grid to store only
the indices and values for the features of the occupied vox-
els. We also store a binary occupancy mask and the weights
for the density and color decoders. To further optimize the
model size, we follow the same strategy as Instant-NGP
[26], and store the parameters using half precision.

At inference, we make use of an octree generated from
the occupancy mask to avoid querying empty or occluded
voxels, as in [54]. We do that by rendering the alpha maps
for all training views and recording the maximum blended
alpha for each voxel. Then, we prune the voxels with an

12421



Ground Truth Instant-NGP DIVeR TensorRF-VM NeRFLight

Figure 4. Qualitative results show that NeRFLight is able to model fine details at a similar quality than current state of the art models
while achieving a 6× increment in the frame rate vs storage ratio of Instant-NGP and DIVeR.

alpha value below a threshold τα. While rendering a ray, we
stop when the accumulated transmittance is below a certain
threshold τt. If the alpha value of a given interval, after
decoding the density value, is below τt, we do not evaluate
the color decoder in that interval.

5. Experiments

We evaluate NeRFLight and compare it with the cur-
rent state-of-the-art methods on the two most established
benchmarks for bounded 360º scenes: the NeRF-synthetic
dataset [25], consisting of 800 × 800 images of eight
synthetic scenes and a subset of the Tanks and Tem-
ples dataset [15], provided in [20], composed of five real
scenes of 1920 × 1080 images where the background has
been masked. The NeRF-synthetic dataset allows testing
the method on scenes with complex geometry and non-
Lambertian materials. On the other side, using the Tanks
and Temples dataset we can evaluate our model in real-
world scenes. We also analyze the contribution of the train-
ing strategy and the symmetric grid configuration on an ab-
lation study performed on the NeRF-synthetic dataset.

5.1. Implementation details

We implement our method using Pytorch [29] alongside
custom CUDA kernels for the ray-voxel intersection. At
inference, decoders evaluation and alpha blending are also
implemented using CUDA kernels. The voxel grid resolu-
tion is set to 2563 for the NeRF-synthetic dataset (256 vox-
els per side of the cubic voxel grid) and 3203 for the Tanks
and Temples dataset. As detailed in Sec. 4.1, the number

of voxels for each of the eight regions are 1283 and 1603

respectively. The resolution for the voxel grid at the coarse
stage is 1/4 of the resolution at the fine stage, and we also
downsample training images to 1/4 of the original resolu-
tion. We set the sparsity regularization weight to λs = 1e−5

an the alpha threshold for voxel pruning to τα = 0.01. We
prune twice, after the coarse stage and after the fine stage.
For rendering, we set τt also to 0.01.

At training, we sample rays from the training set using
a batch size of 16384 for the NeRF-synthetic dataset and
8192 for Tanks and Temples. After the coarse geometry
searching, we train NeRFLight with the implicit MLP for
1000 epochs, and, then, we train using the explicit grid for
other 1000 epochs. We use Adam [14] as optimizer with
a learning rate of 1e-3 for the coarse geometry searching
and 5e-4 for the fine stage. For our experiments, we use
an NVIDIA A100 GPU during training, and the peak mem-
ory usage is 40 GB approximately. At inference, we use an
NVIDIA RTX 3090 GPU, except for the method marked as
* in Tab. 1, whose metrics are the ones reported in [10] us-
ing an NVIDIA V100 GPU. We did not re-run these meth-
ods due to their extremely low FPS/MB metric.

5.2. Baseline Comparisons

Tab. 1 shows an exhaustive quantitative comparison of
NeRFLight and current state-of-the-art methods. The qual-
ity metrics shown for the methods marked with * for the
NeRF Synthetic dataset are the ones reported in [10] while,
for the Tanks and Temples dataset, are the ones reported in
[32]. The rest of the quality metrics are the ones reported in
the original works.

12422



NeRF Synthetic Dataset [25]

Method PSNR↑ SSIM↑ LPIPS↓ MB↓ FPS↑ FPS/MB↑

NeRF* [25] 31.00 0.947 0.081 5 0.03 0.006
JAXNeRF+* [7] 33.00 0.962 0.038 18 0.01 0.001
JAXNeRF* [7] 31.65 0.952 0.051 4.8 0.05 0.010
AutoInt* [19] 25.55 0.911 0.170 5 0.38 0.076
SNeRG(PNG) [10] 30.38 0.950 0.050 84 202 2.404
SNeRG(H264) [10] 29.86 0.938 0.065 30.2 202 6.689
Eff-NeRF [11] 31.68 0.954 0.020 648 238 0.367
KiloNeRF [32] 31.00 0.950 0.030 161 79 0.490
Plenoctrees [54] 31.71 0.958 0.053 1930 168 0.087
TensoRF-CP [6] 31.56 0.949 0.076 3.9 0.45 0.115
TensoRF-VM-192-30k [6] 33.14 0.963 0.047 71.8 0.38 0.005
Instant-NGP [26] 33.18 0.974 0.043 27 62 2.296
DIVeR [48] 32.12 0.958 0.033 68 133 1.956
NeRFLight 31.41 0.968 0.039 14 181 12.929

Tanks and Temples Dataset [15]

Method PSNR↑ SSIM↑ LPIPS↓ MB↓ FPS↑ FPS/MB↑

NeRF* [25] 28.32 0.900 0.110 5 - -
KiloNeRF [32] 28.41 0.910 0.090 - 41.3 -
Plenoctrees [54] 27.99 0.917 0.131 2629 42.22 0.016
TensoRF-CP [6] 27.59 0.897 0.181 4.23 0.27 0.064
TensoRF-VM-192-30k [6] 28.56 0.920 0.140 71.4 0.16 0.002
Instant-NGP [26] 27.50 0.935 0.076 40 29 0.725
DIVeR [48] 28.21 0.906 0.082 116 54 0.470
NeRFLight 27.85 0.939 0.084 40 78 1.950

Table 1. Quantitative results on NeRF Synthetic and Tanks and Temples shows how NeRFLight is the method with the higher frame rate
vs storage ratio while achieving competitive quality metrics. In bold we highlight the best performing model and the underlined results
indicate the second best. * indicates the metrics are reported in a NVIDIA V100 GPU.

NeRF Synthetic. The results in the NeRF synthetic
dataset show that current NeRF methods are not able
to achieve a frame rate vs storage ratio higher than
2.5 FPS/MB with high-quality metrics. Whereas
SNeRG(H264) [10] is able to achieve 6.689 FPS/MB
thanks to the texture atlas compression, its quality metrics
are substantially lower than models like Instant-NGP [26]
or TensoRF [6]. In contrast, NeRFLight achieves 12.929
FPS/MB, almost 2× the frame rate vs storage ratio of
SNeRG(H264) and more than 5× the ratio of Instant-NGP
or DIVeR [48] with comparable quality metrics, achieving
the second best result in SSIM. Fig. 4 shows qualitatively
that NeRFLight is able to render complex fine structures at
the same level of detail as the best state-of-the-art models.

Tanks and Temples. Comparisons on the Tanks and Tem-
ples dataset show that NeRFLight is not only the method
with the highest FPS/MB metric but also the most efficient
at inference. Furthermore, the quality metrics demonstrate
that NeRFLight is able to achieve accurate reconstruction,
obtaining the best SSIM result. Fig. 4 shows that NeR-
FLight is also able to model fine high-frequency details even
when applied to real-world scenes.

Instant-NGP [26] reports no results on this dataset, so
we used the implementation provided by the original work
to train the models for this experiment. Since Instant-NGP

is highly configurable, we tune its hyperparameters so that
the model size matches the size of NeRFLight. In this way,
we can compare NeRFLight with the most accurate model
in the current state of the art at the same model size. It
can be seen how NeRFLight is able to outperform Instant-
NGP in PSNR and SSIM while being able to render more
than 2× faster. See supplemental materials for more details
about Instant-NGP hyperparameters.

5.3. Ablation Study

We next conduct an ablation study of NeRFLight
through two experiments that analyze the contribution of the
symmetric grid and the implicit initialization of the features.
First, we analyze the quality and continuity of the interme-
diate representations obtained by the density decoders using
the Lego Bulldozer scene as an example. Then, we show
quantitative and qualitative results of the different configu-
rations of NeRFLight.
Decoders’ continuity. In this experiment, we analyze the
contribution of the symmetric voxel grid by inspecting the
continuity of the intermediate representations obtained by
the density decoders (hj in Eq. (5b)). To do this, we ap-
ply alpha-composition of the intermediate representation at
each point and apply PCA to reduce their dimension from
32 to 3, so they can be rendered as an image. Fig. 5 shows
the results on the Lego scene. It can be seen how applying a

12423



(a) Linear grid (b) Symmetric grid

Figure 5. PCA decomposition of density decoder’s outputs
shows that a symmetric grid is able to remove seams while a linear
grid produces discontinuities.

Grid Reg. PSNR ↑ SSIM ↑ LPIPS ↓ FPS/MB ↑

Linear Im 29.82 0.947 0.050 172/24=7.17
Im-Ex 30.98 0.956 0.046 172/24=7.17

Symm Im 30.56 0.959 0.046 181/14=12.9
Im-Ex 31.41 0.968 0.039 181/14=12.9

Table 2. Ablation of NeRFLight shows that symmetric voxel grid
configuration and implicit feature initialization not only improve
the quality of the representation, but also improve the frame rate
vs storage ratio.

symmetric grid produces not only a seamless representation
but also a better-clustered feature space. On the other side,
applying a linear grid produces discontinuities, so the color
decoder will have to struggle with this inconsistent repre-
sentation. To demonstrate that our strategy is also robust to
non-symmetric scenes, we provide another version of Fig. 5
in a rotated Lego scene in the supplemental materials.

Quality of the reconstruction. The artifacts produced at
the frontiers between neighboring regions when applying
a linear non-symmetric grid can be clearly seen in Fig. 6a.
Fig. 6b shows that a symmetric grid is able to overcome this
problem by producing smooth seamless transitions. Tab. 2
reports the quality and FPS/MB metrics for the different
configurations of NeRFLight. These results demonstrate
that applying a symmetric grid not only improves the qual-
ity of the reconstruction but also helps to achieve a higher
frame rate vs storage ratio by reducing the number of fea-
tures. This leads to a lighter model and faster access to the
features for each voxel (faster rendering). Finally, Tab. 2
also shows that by combining implicit and explicit training,
the quality of the final model is enhanced. We also pro-
vide some results applying direct optimization of the fea-
tures (i.e. fully explicit regularization) in the supplemen-
tal materials, where we show that our method also achieves
high-quality results using this training method.

6. Limitations and future work

The most important limitation of NeRFLight is the
amount of training time it requires, which is much larger

(a) Linear grid (b) Symmetric grid

Figure 6. Continuity at seams. Locating the features symmetri-
cally to the scene center in the voxel grid removes discontinuities
at the seams between regions.

than other methods like TensoRF [6] or Instant-NGP [26].
However, we believe that applying tensor decomposition as
in TensoRF would reduce the convergence time of NeR-
FLight. Another limitation of our current implementation
is that it is not able to represent unbounded or forward-
facing scenes. In future work, we aim to address these other
types of scenes by applying normalized device coordinates
(NDC) or multi-sphere images (MSI). Finally, we believe
that related research approaches might benefit from apply-
ing shared feature grids to their grid-based representations.

7. Conclusions

In this work, we have presented NeRFLight, the method
with the highest frame rate vs storage cost ratio of the state-
of-the-art. We show how, even when optimizing for re-
duced size and inference efficiency, our method provides
high-quality rendering results, on par with the most recent
NeRF models. We also introduced the concept of a shared
feature grid in NeRF, as a way to reuse features to make grid
representations more compact. Furthermore, we have pro-
posed the first approach to achieve seamless reconstructions
using symmetric voxel grids. We have shown that this strat-
egy, reduces the number of features in the grid and leads to
a faster rendering and a more accurate reconstruction. To
summarize, NeRFLight is the current NeRF-based method
with the best FPS/MB ratio, which makes it especially ad-
equate to stream and render in scenarios like social media,
online games, or for upcoming metaverse applications.

Acknowledgements

This work is partially supported by the European Union
under the project FlexiGroBots (DOI: 10.3030/101017111)
and by the Spanish government under projects MoHuCo
(PID2020-120049RB-I00) and SmartWEED-DARWEEM
(PID2020-113229RB-C43). Adrian Penate-Sanchez is sup-
ported by a Beatriz Galindo grant. The authors would like to
thank Marcos Barrios for his support in the graphic design
of the figures and videos included in the paper.

12424



References
[1] Edward H. Adelson and James R. Bergen. The plenoptic

function and the elements of early vision. In Computational
Models of Visual Processing, pages 3–20. MIT Press, 1991.
1, 2

[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry
Ulyanov, and Victor Lempitsky. Neural point-based graph-
ics. In Computer Vision – ECCV 2020, pages 696–712, 2020.
1, 2

[3] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P.
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5470–5479, June 2022. 2

[4] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T.
Barron, Ce Liu, and Hendrik P.A. Lensch. Nerd: Neu-
ral reflectance decomposition from image collections. In
2021 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 12664–12674, 2021. 2

[5] Mark Boss, Varun Jampani, Raphael Braun, Ce Liu,
Jonathan Barron, and Hendrik PA Lensch. Neural-pil: Neu-
ral pre-integrated lighting for reflectance decomposition. In
Advances in Neural Information Processing Systems, vol-
ume 34, pages 10691–10704, 2021. 2

[6] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision (ECCV), 2022. 3, 7, 8

[7] Boyang Deng, Jonathan T. Barron, and Pratul P. Srinivasan.
JaxNeRF: an efficient JAX implementation of NeRF, 2020.
7

[8] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B. Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4d view
synthesis and video processing. In 2021 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
14304–14314, 2021. 2

[9] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5501–5510, June 2022. 2

[10] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural radi-
ance fields for real-time view synthesis. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
5855–5864, 2021. 2, 5, 6, 7

[11] Tao Hu, Shu Liu, Yilun Chen, Tiancheng Shen, and Jiaya Jia.
Efficientnerf efficient neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 12902–12911, June 2022.
2, 7

[12] James T. Kajiya and Brian P Von Herzen. Ray tracing vol-
ume densities. SIGGRAPH Comput. Graph., 18(3):165–174,
jan 1984. 3

[13] Petr Kellnhofer, Lars C. Jebe, Andrew Jones, Ryan Spicer,
Kari Pulli, and Gordon Wetzstein. Neural lumigraph render-
ing. In 2021 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4285–4295, 2021. 2

[14] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. 6

[15] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Trans. Graph., 36(4), jul 2017. 6, 7

[16] Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi,
Caroline Pantofaru, Leonidas Guibas, Andrea Tagliasacchi,
Frank Dellaert, and Thomas Funkhouser. Panoptic Neural
Fields: A Semantic Object-Aware Neural Scene Representa-
tion. In CVPR, 2022. 2

[17] Tianye Li, Mira Slavcheva, Michael Zollhöfer, Simon Green,
Christoph Lassner, Changil Kim, Tanner Schmidt, Steven
Lovegrove, Michael Goesele, Richard Newcombe, and
Zhaoyang Lv. Neural 3d video synthesis from multi-view
video. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 5521–
5531, June 2022. 2

[18] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
6498–6508, June 2021. 2

[19] David B. Lindell, Julien N. P. Martel, and Gordon Wet-
zstein. Autoint: Automatic integration for fast neural vol-
ume rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
14556–14565, June 2021. 7

[20] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. NeurIPS,
2020. 3, 6

[21] Steven Liu, Xiuming Zhang, Zhoutong Zhang, Richard
Zhang, Jun-Yan Zhu, and Bryan Russell. Editing conditional
radiance fields. In Proceedings of the International Confer-
ence on Computer Vision (ICCV), 2021. 2

[22] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. Graph., 38(4), jul 2019. 1, 2

[23] Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shecht-
man, Ravi Ramamoorthi, and Manmohan Chandraker. Mod-
ulated periodic activations for generalizable local functional
representations. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), pages
14214–14223, October 2021. 4

[24] Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Trans.
Graph., 38(4), jul 2019. 2

[25] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In ECCV, 2020. 1, 2, 3, 4, 6, 7

[26] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a multires-

12425



olution hash encoding. ACM Trans. Graph., 41(4), jul 2022.
2, 3, 5, 7, 8

[27] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3501–3512, 2020. 2

[28] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 5845–5854, 2021. 2

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Proceedings of Advances in Neural Information Processing
Systems, volume 32, 2019. 6

[30] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 10313–
10322, 2021. 2

[31] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14153–14161, June 2021. 3

[32] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas
Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 14315–
14325, 2021. 2, 3, 6, 7

[33] Konstantinos Rematas and Vittorio Ferrari. Neural voxel ren-
derer: Learning an accurate and controllable rendering tool.
In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5416–5426, 2020. 2

[34] Konstantinos Rematas, Andrew Liu, Pratul P. Srinivasan,
Jonathan T. Barron, Andrea Tagliasacchi, Tom Funkhouser,
and Vittorio Ferrari. Urban radiance fields. CVPR, 2022. 2

[35] Gernot Riegler and Vladlen Koltun. Free view synthesis. In
Computer Vision – ECCV 2020, pages 623–640, 2020. 2

[36] Gernot Riegler and Vladlen Koltun. Stable view synthesis. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 12216–12225,
June 2021. 2

[37] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Hao Li, and Angjoo Kanazawa. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In 2019 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 2304–2314, 2019. 2

[38] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Niessner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3d feature embeddings. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019. 2

[39] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 32. Curran Associates, Inc., 2019. 2

[40] Pratul P. Srinivasan, Boyang Deng, Xiuming Zhang,
Matthew Tancik, Ben Mildenhall, and Jonathan T. Barron.
Nerv: Neural reflectance and visibility fields for relighting
and view synthesis. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7491–
7500, 2021. 2

[41] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2019. 2

[42] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5459–5469, June 2022. 2

[43] Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas
Müller, Morgan McGuire, Alec Jacobson, and Sanja Fidler.
Variable bitrate neural fields. In ACM SIGGRAPH 2022 Con-
ference Proceedings. Association for Computing Machinery,
2022. 3

[44] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-
han, Ben Mildenhall, Pratul Srinivasan, Jonathan T. Barron,
and Henrik Kretzschmar. Block-NeRF: Scalable large scene
neural view synthesis. arXiv, 2022. 2

[45] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: Image synthesis using neural tex-
tures. ACM Trans. Graph., 38(4), jul 2019. 2

[46] Cen Wang, Minye Wu, Ziyu Wang, Liao Wang, Hao
Sheng, and Jingyi Yu. Neural opacity point cloud. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
42(7):1570–1581, 2020. 2

[47] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yan-
shun Zhang, Yingliang Zhang, Minye Wu, Jingyi Yu, and
Lan Xu. Fourier plenoctrees for dynamic radiance field ren-
dering in real-time. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 13524–13534, June 2022. 2

[48] Liwen Wu, Jae Yong Lee, Anand Bhattad, Yu-Xiong Wang,
and David Forsyth. Diver: Real-time and accurate neural ra-
diance fields with deterministic integration for volume ren-
dering. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
16200–16209, June 2022. 2, 3, 5, 7

[49] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 9421–
9431, 2021. 2

12426



[50] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao,
Anyi Rao, Christian Theobalt, Bo Dai, and Dahua Lin.
Bungeenerf: Progressive neural radiance field for extreme
multi-scale scene rendering. In The European Conference
on Computer Vision (ECCV), 2022. 2

[51] Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany,
Shiqin Yan, Numair Khan, Federico Tombari, James Tomp-
kin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in
visual computing and beyond. Computer Graphics Forum,
2022. 2

[52] Bangbang Yang, Yinda Zhang, Yinghao Xu, Yijin Li, Han
Zhou, Hujun Bao, Guofeng Zhang, and Zhaopeng Cui.
Learning object-compositional neural radiance field for ed-
itable scene rendering. In International Conference on Com-
puter Vision (ICCV), October 2021. 2

[53] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. In H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 2492–2502. Curran
Associates, Inc., 2020. 2

[54] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,
and Angjoo Kanazawa. Plenoctrees for real-time rendering
of neural radiance fields. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5732–5741,
2021. 2, 5, 7

[55] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv:2010.07492, 2020. 2

[56] Xiuming Zhang, Pratul P. Srinivasan, Boyang Deng, Paul
Debevec, William T. Freeman, and Jonathan T. Barron. Ner-
factor: Neural factorization of shape and reflectance under
an unknown illumination. ACM Trans. Graph., 40(6), dec
2021. 2

[57] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view syn-
thesis using multiplane images. ACM Trans. Graph., 37(4),
jul 2018. 2

12427


