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Figure 1. With just a few images (typically 3-5) of a subject (left), DreamBooth—our AI-powered photo booth—can generate a myriad
of images of the subject in different contexts (right), using the guidance of a text prompt. The results exhibit natural interactions with the
environment, as well as novel articulations and variation in lighting conditions, all while maintaining high fidelity to the key visual features
of the subject.

Abstract

Large text-to-image models achieved a remarkable leap
in the evolution of AI, enabling high-quality and diverse
synthesis of images from a given text prompt. However,
these models lack the ability to mimic the appearance of
subjects in a given reference set and synthesize novel rendi-
tions of them in different contexts. In this work, we present
a new approach for “personalization” of text-to-image dif-
fusion models. Given as input just a few images of a sub-
ject, we fine-tune a pretrained text-to-image model such that
it learns to bind a unique identifier with that specific sub-
ject. Once the subject is embedded in the output domain of
the model, the unique identifier can be used to synthesize
novel photorealistic images of the subject contextualized in
different scenes. By leveraging the semantic prior embed-
ded in the model with a new autogenous class-specific prior
preservation loss, our technique enables synthesizing the
subject in diverse scenes, poses, views and lighting condi-
tions that do not appear in the reference images. We ap-
ply our technique to several previously-unassailable tasks,
including subject recontextualization, text-guided view syn-
thesis, and artistic rendering, all while preserving the sub-
ject’s key features. We also provide a new dataset and eval-
uation protocol for this new task of subject-driven genera-
tion. Project page: https://dreambooth.github.io/

*This research was performed while Nataniel Ruiz was at Google.

1. Introduction
Can you imagine your own dog traveling around the

world, or your favorite bag displayed in the most exclusive
showroom in Paris? What about your parrot being the main
character of an illustrated storybook? Rendering such imag-
inary scenes is a challenging task that requires synthesizing
instances of specific subjects (e.g., objects, animals) in new
contexts such that they naturally and seamlessly blend into
the scene.

Recently developed large text-to-image models have
shown unprecedented capabilities, by enabling high-quality
and diverse synthesis of images based on a text prompt writ-
ten in natural language [51,58]. One of the main advantages
of such models is the strong semantic prior learned from a
large collection of image-caption pairs. Such a prior learns,
for instance, to bind the word “dog” with various instances
of dogs that can appear in different poses and contexts in
an image. While the synthesis capabilities of these models
are unprecedented, they lack the ability to mimic the ap-
pearance of subjects in a given reference set, and synthesize
novel renditions of the same subjects in different contexts.
The main reason is that the expressiveness of their output
domain is limited; even the most detailed textual description
of an object may yield instances with different appearances.
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Furthermore, even models whose text embedding lies in a
shared language-vision space [50] cannot accurately recon-
struct the appearance of given subjects but only create vari-
ations of the image content (Figure 2).

In this work, we present a new approach for “personal-
ization” of text-to-image diffusion models (adapting them
to user-specific image generation needs). Our goal is to ex-
pand the language-vision dictionary of the model such that
it binds new words with specific subjects the user wants
to generate. Once the new dictionary is embedded in the
model, it can use these words to synthesize novel photo-
realistic images of the subject, contextualized in different
scenes, while preserving their key identifying features. The
effect is akin to a “magic photo booth”—once a few im-
ages of the subject are taken, the booth generates photos of
the subject in different conditions and scenes, as guided by
simple and intuitive text prompts (Figure 1).

More formally, given a few images of a subject (∼3-
5), our objective is to implant the subject into the out-
put domain of the model such that it can be synthesized
with a unique identifier. To that end, we propose a tech-
nique to represent a given subject with rare token identifiers
and fine-tune a pre-trained, diffusion-based text-to-image
framework.

We fine-tune the text-to-image model with the input im-
ages and text prompts containing a unique identifier fol-
lowed by the class name of the subject (e.g., “A [V] dog”).
The latter enables the model to use its prior knowledge on
the subject class while the class-specific instance is bound
with the unique identifier. In order to prevent language
drift [32, 38] that causes the model to associate the class
name (e.g., “dog”) with the specific instance, we propose
an autogenous, class-specific prior preservation loss, which
leverages the semantic prior on the class that is embedded in
the model, and encourages it to generate diverse instances
of the same class as our subject.

We apply our approach to a myriad of text-based im-
age generation applications including recontextualization of
subjects, modification of their properties, original art rendi-
tions, and more, paving the way to a new stream of pre-
viously unassailable tasks. We highlight the contribution
of each component in our method via ablation studies, and
compare with alternative baselines and related work. We
also conduct a user study to evaluate subject and prompt
fidelity in our synthesized images, compared to alternative
approaches.

To the best of our knowledge, ours is the first technique
that tackles this new challenging problem of subject-driven
generation, allowing users, from just a few casually cap-
tured images of a subject, synthesize novel renditions of the
subject in different contexts while maintaining its distinc-
tive features.

To evaluate this new task, we also construct a new dataset

Figure 2. Subject-driven generation. Given a particular clock
(left), it is hard to generate it while maintaining high fidelity to
its key visual features (second and third columns showing DALL-
E2 [51] image-guided generation and Imagen [58] text-guided
generation; text prompt used for Imagen: “retro style yellow alarm
clock with a white clock face and a yellow number three on the
right part of the clock face in the jungle”). Our approach (right)
can synthesize the clock with high fidelity and in new contexts
(text prompt: “a [V] clock in the jungle”).

that contains various subjects captured in different contexts,
and propose a new evaluation protocol that measures the
subject fidelity and prompt fidelity of the generated results.
We make our dataset and evaluation protocol publicly avail-
able on the project webpage

2. Related work
Image Composition. Image composition techniques

[13, 36, 67] aim to clone a given subject into a new back-
ground such that the subject melds into the scene. To
consider composition in novel poses, one may apply 3D
reconstruction techniques [6, 8, 39, 47, 65] which usually
works on rigid objects and require a larger number of views.
Some drawbacks include scene integration (lighting, shad-
ows, contact) and the inability to generate novel scenes.
In contrast, our approach enable generation of subjects in
novel poses and new contexts.

Text-to-Image Editing and Synthesis. Text-driven im-
age manipulation has recently achieved significant progress
using GANs [9, 22, 27–29] combined with image-text rep-
resentations such as CLIP [50], yielding realistic manip-
ulations using text [2, 7, 21, 41, 46, 68]. These methods
work well on structured scenarios (e.g. human face edit-
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ing) and can struggle over diverse datasets where sub-
jects are varied. Crowson et al. [14] use VQ-GAN [18]
and train over more diverse data to alleviate this concern.
Other works [4, 30] exploit the recent diffusion models
[25, 25, 43, 55, 57, 59–63], which achieve state-of-the-art
generation quality over highly diverse datasets, often sur-
passing GANs [15]. While most works that require only
text are limited to global editing [14, 31], Bar-Tal et al. [5]
proposed a text-based localized editing technique without
using masks, showing impressive results. While most of
these editing approaches allow modification of global prop-
erties or local editing of a given image, none enables gener-
ating novel renditions of a given subject in new contexts.

There also exists work on text-to-image synthesis [14,
16, 19, 24, 26, 33, 34, 48, 49, 52, 55, 64, 71]. Recent large
text-to-image models such as Imagen [58], DALL-E2 [51],
Parti [69], CogView2 [17] and Stable Diffusion [55] demon-
strated unprecedented semantic generation. These models
do not provide fine-grained control over a generated image
and use text guidance only. Specifically, it is challenging or
impossible to preserve the identity of a subject consistently
across synthesized images.

Controllable Generative Models. There are various
approaches to control generative models, where some of
them might prove to be viable directions for subject-driven
prompt-guided image synthesis. Liu et al. [37] propose
a diffusion-based technique allowing for image variations
guided by reference image or text. To overcome subject
modification, several works [3, 42] assume a user-provided
mask to restrict the modified area. Inversion [12, 15, 51]
can be used to preserve a subject while modifying context.
Prompt-to-prompt [23] allows for local and global editing
without an input mask. These methods fall short of identity-
preserving novel sample generation of a subject.

In the context of GANs, Pivotal Tuning [54] allows for
real image editing by finetuning the model with an inverted
latent code anchor, and Nitzan et al. [44] extended this work
to GAN finetuning on faces to train a personalized prior,
which requires around 100 images and are limited to the
face domain. Casanova et al. [11] propose an instance con-
ditioned GAN that can generate variations of an instance,
although it can struggle with unique subjects and does not
preserve all subject details.

Finally, the concurrent work of Gal et al. [20] proposes
a method to represent visual concepts, like an object or
a style, through new tokens in the embedding space of a
frozen text-to-image model, resulting in small personalized
token embeddings. While this method is limited by the ex-
pressiveness of the frozen diffusion model, our fine-tuning
approach enables us to embed the subject within the model’s
output domain, resulting in the generation of novel images
of the subject which preserve its key visual features.

3. Method
Given only a few (typically 3-5) casually captured im-

ages of a specific subject, without any textual description,
our objective is to generate new images of the subject
with high detail fidelity and with variations guided by text
prompts. Example variations include changing the subject
location, changing subject properties such as color or shape,
modifying the subject’s pose, viewpoint, and other semantic
modifications. We do not impose any restrictions on input
image capture settings and the subject image can have vary-
ing contexts. We next provide some background on text-
to-image diffusion models (Sec. 3.1), then present our fine-
tuning technique to bind a unique identifier with a subject
described in a few images (Sec. 3.2), and finally propose a
class-specific prior-preservation loss that enables us to over-
come language drift in our fine-tuned model (Sec. 3.3).

3.1. Text-to-Image Diffusion Models

Diffusion models are probabilistic generative models
that are trained to learn a data distribution by the gradual
denoising of a variable sampled from a Gaussian distribu-
tion. Specifically, we are interested in a pre-trained text-to-
image diffusion model x̂θ that, given an initial noise map
ϵ ∼ N (0, I) and a conditioning vector c = Γ(P) generated
using a text encoder Γ and a text prompt P, generates an
image xgen = x̂θ(ϵ, c). They are trained using a squared
error loss to denoise a variably-noised image or latent code
zt := αtx+ σtϵ as follows:

Ex,c,ϵ,t

[
wt∥x̂θ(αtx+ σtϵ, c)− x∥22

]
(1)

where x is the ground-truth image, c is a conditioning
vector (e.g., obtained from a text prompt), and αt, σt, wt

are terms that control the noise schedule and sample qual-
ity, and are functions of the diffusion process time t ∼
U([0, 1]). A more detailed description is given in the sup-
plementary material.

3.2. Personalization of Text-to-Image Models

Our first task is to implant the subject instance into the
output domain of the model such that we can query the
model for varied novel images of the subject. One natu-
ral idea is to fine-tune the model using the few-shot dataset
of the subject. Careful care had to be taken when fine-
tuning generative models such as GANs in a few-shot sce-
nario as it can cause overfitting and mode-collapse - as
well as not capturing the target distribution sufficiently well.
There has been research on techniques to avoid these pit-
falls [35, 40, 45, 53, 66], although, in contrast to our work,
this line of work primarily seeks to generate images that re-
semble the target distribution but has no requirement of sub-
ject preservation. With regards to these pitfalls, we observe
the peculiar finding that, given a careful fine-tuning setup
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Figure 3. Fine-tuning. Given ∼ 3−5 images of a subject we fine-
tune a text-to-image diffusion model with the input images paired
with a text prompt containing a unique identifier and the name of
the class the subject belongs to (e.g., “A [V] dog”), in parallel, we
apply a class-specific prior preservation loss, which leverages the
semantic prior that the model has on the class and encourages it to
generate diverse instances belong to the subject’s class using the
class name in a text prompt (e.g., “A dog”).

using the diffusion loss from Eq 1, large text-to-image dif-
fusion models seem to excel at integrating new information
into their domain without forgetting the prior or overfitting
to a small set of training images.

Designing Prompts for Few-Shot Personalization Our
goal is to “implant” a new (unique identifier, subject) pair
into the diffusion model’s “dictionary” . In order to by-
pass the overhead of writing detailed image descriptions for
a given image set we opt for a simpler approach and label
all input images of the subject “a [identifier] [class noun]”,
where [identifier] is a unique identifier linked to the sub-
ject and [class noun] is a coarse class descriptor of the sub-
ject (e.g. cat, dog, watch, etc.). The class descriptor can
be provided by the user or obtained using a classifier. We
use a class descriptor in the sentence in order to tether the
prior of the class to our unique subject and find that using
a wrong class descriptor, or no class descriptor increases
training time and language drift while decreasing perfor-
mance. In essence, we seek to leverage the model’s prior
of the specific class and entangle it with the embedding of
our subject’s unique identifier so we can leverage the visual
prior to generate new poses and articulations of the subject
in different contexts.

Rare-token Identifiers We generally find existing En-
glish words (e.g. “unique”, “special”) suboptimal since the
model has to learn to disentangle them from their original
meaning and to re-entangle them to reference our subject.

This motivates the need for an identifier that has a weak
prior in both the language model and the diffusion model. A
hazardous way of doing this is to select random characters
in the English language and concatenate them to generate a
rare identifier (e.g. “xxy5syt00”). In reality, the tokenizer
might tokenize each letter separately, and the prior for the
diffusion model is strong for these letters. We often find that
these tokens incur the similar weaknesses as using common
English words. Our approach is to find rare tokens in the
vocabulary, and then invert these tokens into text space, in
order to minimize the probability of the identifier having a
strong prior. We perform a rare-token lookup in the vocab-
ulary and obtain a sequence of rare token identifiers f(V̂),
where f is a tokenizer; a function that maps character se-
quences to tokens and V̂ is the decoded text stemming from
the tokens f(V̂). The sequence can be of variable length k,
and find that relatively short sequences of k = {1, ..., 3}
work well. Then, by inverting the vocabulary using the de-
tokenizer on f(V̂) we obtain a sequence of characters that
define our unique identifier V̂. For Imagen, we find that us-
ing uniform random sampling of tokens that correspond to
3 or fewer Unicode characters (without spaces) and using
tokens in the T5-XXL tokenizer range of {5000, ..., 10000}
works well.

3.3. Class-specific Prior Preservation Loss

In our experience, the best results for maximum subject
fidelity are achieved by fine-tuning all layers of the model.
This includes fine-tuning layers that are conditioned on the
text embeddings, which gives rise to the problem of lan-
guage drift. Language drift has been an observed prob-
lem in language models [32, 38], where a model that is
pre-trained on a large text corpus and later fine-tuned for
a specific task progressively loses syntactic and semantic
knowledge of the language. To the best of our knowledge,
we are the first to find a similar phenomenon affecting diffu-
sion models, where to model slowly forgets how to generate
subjects of the same class as the target subject.

Another problem is the possibility of reduced output di-
versity. Text-to-image diffusion models naturally posses
high amounts of output diversity. When fine-tuning on a
small set of images we would like to be able to generate the
subject in novel viewpoints, poses and articulations. Yet,
there is a risk of reducing the amount of variability in the
output poses and views of the subject (e.g. snapping to the
few-shot views). We observe that this is often the case, es-
pecially when the model is trained for too long.

To mitigate the two aforementioned issues, we propose
an autogenous class-specific prior preservation loss that en-
courages diversity and counters language drift. In essence,
our method is to supervise the model with its own gener-
ated samples, in order for it to retain the prior once the
few-shot fine-tuning begins. This allows it to generate di-
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verse images of the class prior, as well as retain knowl-
edge about the class prior that it can use in conjunction
with knowledge about the subject instance. Specifically,
we generate data xpr = x̂(zt1 , cpr) by using the ancestral
sampler on the frozen pre-trained diffusion model with ran-
dom initial noise zt1 ∼ N (0, I) and conditioning vector
cpr := Γ(f(”a [class noun]”)). The loss becomes:

Ex,c,ϵ,ϵ′,t[wt∥x̂θ(αtx+ σtϵ, c)− x∥22+
λwt′∥x̂θ(αt′xpr + σt′ϵ

′, cpr)− xpr∥22], (2)

where the second term is the prior-preservation term that
supervises the model with its own generated images, and λ
controls for the relative weight of this term. Figure 3 illus-
trates the model fine-tuning with the class-generated sam-
ples and prior-preservation loss. Despite being simple, we
find this prior-preservation loss is effective in encouraging
output diversity and in overcoming language-drift. We also
find that we can train the model for more iterations with-
out risking overfitting. We find that ∼ 1000 iterations with
λ = 1 and learning rate 10−5 for Imagen [58] and 5× 10−6

for Stable Diffusion [56], and with a subject dataset size
of 3-5 images is enough to achieve good results. During
this process, ∼ 1000 “a [class noun]” samples are gener-
ated - but less can be used. The training process takes about
5 minutes on one TPUv4 for Imagen, and 5 minutes on a
NVIDIA A100 for Stable Diffusion.

4. Experiments
In this section, we show experiments and applications.

Our method enables a large expanse of text-guided semantic
modifications of our subject instances, including recontex-
tualization, modification of subject properties such as mate-
rial and species, art rendition, and viewpoint modification.
Importantly, across all of these modifications, we are able
to preserve the unique visual features that give the sub-
ject its identity and essence. If the task is recontextual-
ization, then the subject features are unmodified, but ap-
pearance (e.g., pose) may change. If the task is a stronger
semantic modification, such as crossing between our sub-
ject and another species/object, then the key features of the
subject are preserved after modification. In this section, we
reference the subject’s unique identifier using [V]. We in-
clude specific Imagen and Stable Diffusion implementation
details in the supp. material.

4.1. Dataset and Evaluation

Dataset We collected a dataset of 30 subjects, including
unique objects and pets such as backpacks, stuffed ani-
mals, dogs, cats, sunglasses, cartoons, etc. Images for this
dataset were collected by the authors or sourced from Un-
splash [1]. We also collected 25 prompts: 20 recontextu-
alization prompts and 5 property modification prompts for

Figure 4. Comparisons with Textual Inversion [20] Given 4
input images (top row), we compare: DreamBooth Imagen (2nd
row), DreamBooth Stable Diffusion (3rd row), Textual Inversion
(bottom row). Output images were created with the following
prompts (left to right): “a [V] vase in the snow”, “a [V] vase on
the beach”, “a [V] vase in the jungle”, “a [V] vase with the Eiffel
Tower in the background”. DreamBooth is stronger in both subject
and prompt fidelity.

Method DINO ↑ CLIP-I ↑ CLIP-T ↑
Real Images 0.774 0.885 N/A
DreamBooth (Imagen) 0.696 0.812 0.306
DreamBooth (Stable Diffusion) 0.668 0.803 0.305
Textual Inversion (Stable Diffusion) 0.569 0.780 0.255

Table 1. Subject fidelity (DINO, CLIP-I) and prompt fidelity
(CLIP-T, CLIP-T-L) quantitative metric comparison.

Method Subject Fidelity ↑ Prompt Fidelity ↑
DreamBooth (Stable Diffusion) 68% 81%
Textual Inversion (Stable Diffusion) 22% 12%
Undecided 10% 7%

Table 2. Subject fidelity and prompt fidelity user preference.

objects; 10 recontextualization, 10 accessorization, and 5
property modification prompts for live subjects/pets. The
full list of images and prompts can be found in the supple-
mentary material.

For the evaluation suite we generate four images per sub-
ject and per prompt, totaling 3,000 images. This allows us
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Figure 5. Encouraging diversity with prior-preservation loss.
Naive fine-tuning can result in overfitting to input image context
and subject appearance (e.g. pose). PPL acts as a regularizer that
alleviates overfitting and encourages diversity, allowing for more
pose variability and appearance diversity.

to robustly measure performances and generalization capa-
bilities of a method. We make our dataset and evaluation
protocol publicly available on the project webpage for fu-
ture use in evaluating subject-driven generation.

Evaluation Metrics One important aspect to evaluate is
subject fidelity: the preservation of subject details in gener-
ated images. For this, we compute two metrics: CLIP-I and
DINO [10]. CLIP-I is the average pairwise cosine similarity
between CLIP [50] embeddings of generated and real im-
ages. Although this metric has been used in other work [20],
it is not constructed to distinguish between different sub-
jects that could have highly similar text descriptions (e.g.
two different yellow clocks). Our proposed DINO metric
is the average pairwise cosine similarity between the ViT-
S/16 DINO embeddings of generated and real images. This
is our preferred metric, since, by construction and in con-
trast to supervised networks, DINO is not trained to ignore
differences between subjects of the same class. Instead, the
self-supervised training objective encourages distinction of
unique features of a subject or image. The second impor-
tant aspect to evaluate is prompt fidelity, measured as the
average cosine similarity between prompt and image CLIP
embeddings. We denote this as CLIP-T.

4.2. Comparisons

We compare our results with Textual Inversion, the re-
cent concurrent work of Gal et al. [20], using the hyperpa-
rameters provided in their work. We find that this work is

the only comparable work in the literature that is subject-
driven, text-guided and generates novel images. We gen-
erate images for DreamBooth using Imagen, DreamBooth
using Stable Diffusion and Textual Inversion using Stable
Diffusion. We compute DINO and CLIP-I subject fidelity
metrics and the CLIP-T prompt fidelity metric. In Table 1
we show sizeable gaps in both subject and prompt fidelity
metrics for DreamBooth over Textual Inversion. We find
that DreamBooth (Imagen) achieves higher scores for both
subject and prompt fidelity than DreamBooth (Stable Dif-
fusion), approaching the upper-bound of subject fidelity for
real images. We believe that this is due to the larger expres-
sive power and higher output quality of Imagen.

Further, we compare Textual Inversion (Stable Diffu-
sion) and DreamBooth (Stable Diffusion) by conducting a
user study. For subject fidelity, we asked 72 users to an-
swer questionnaires of 25 comparative questions (3 users
per questionnaire), totaling 1800 answers. Samples are ran-
domly selected from a large pool. Each question shows the
set of real images for a subject, and one generated image of
that subject by each method (with a random prompt). Users
are asked to answer the question: “Which of the two images
best reproduces the identity (e.g. item type and details) of
the reference item?”, and we include a “Cannot Determine
/ Both Equally” option. Similarly for prompt fidelity, we
ask “Which of the two images is best described by the ref-
erence text?”. We average results using majority voting and
present them in Table 2. We find an overwhelming prefer-
ence for DreamBooth for both subject fidelity and prompt
fidelity. This shines a light on results in Table 1, where
DINO differences of around 0.1 and CLIP-T differences of
0.05 are significant in terms of user preference. Finally, we
show qualitative comparisons in Figure 4. We observe that
DreamBooth better preserves subject identity, and is more
faithful to prompts. We show samples of the user study in
the supp. material.

4.3. Ablation Studies

Prior Preservation Loss Ablation We fine-tune Imagen
on 15 subjects from our dataset, with and without our pro-
posed prior preservation loss (PPL). The prior preservation
loss seeks to combat language drift and preserve the prior.
We compute a prior preservation metric (PRES) by comput-
ing the average pairwise DINO embeddings between gener-
ated images of random subjects of the prior class and real
images of our specific subject. The higher this metric, the
more similar random subjects of the class are to our specific
subject, indicating collapse of the prior. We report results in
Table 3 and observe that PPL substantially counteracts lan-
guage drift and helps retain the ability to generate diverse
images of the prior class. Additionally, we compute a di-
versity metric (DIV) using the average LPIPS [70] cosine
similarity between generated images of same subject with
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Figure 6. Recontextualization. We generate images of the subjects in different environments, with high preservation of subject details and
realistic scene-subject interactions. We show the prompts below each image.

Method PRES ↓ DIV ↑ DINO ↑ CLIP-I ↑ CLIP-T ↑
DreamBooth (Imagen) w/ PPL 0.493 0.391 0.684 0.815 0.308
DreamBooth (Imagen) 0.664 0.371 0.712 0.828 0.306

Table 3. Prior preservation loss (PPL) ablation displaying a prior
preservation (PRES) metric, diversity metric (DIV) and subject
and prompt fidelity metrics.

Method DINO ↑ CLIP-I ↑
Correct Class 0.744 0.853
No Class 0.303 0.607
Wrong Class 0.454 0.728

Table 4. Class name ablation with subject fidelity metrics.

same prompt. We observe that our model trained with PPL
achieves higher diversity (with slightly diminished subject
fidelity), which can also be observed qualitatively in Fig-
ure 5, where our model trained with PPL overfits less to the
environment of the reference images and can generate the
dog in more diverse poses and articulations.

Class-Prior Ablation We finetune Imagen on a subset of
our dataset subjects (5 subjects) with no class noun, a ran-
domly sampled incorrect class noun, and the correct class
noun. With the correct class noun for our subject, we are
able to faithfully fit to the subject, take advantage of the
class prior, allowing us to generate our subject in various
contexts. When an incorrect class noun (e.g. “can” for a
backpack) is used, we run into contention between our sub-
ject and and the class prior - sometimes obtaining cylindri-

cal backpacks, or otherwise misshapen subjects. If we train
with no class noun, the model does not leverage the class
prior, has difficulty learning the subject and converging, and
can generate erroneous samples. Subject fidelity results are
shown in Table 4, with substantially higher subject fidelity
for our proposed approach.

4.4. Applications

Recontextualization We can generate novel images for a
specific subject in different contexts (Figure 6) with descrip-
tive prompts (“a [V] [class noun] [context description]”).
Importantly, we are able to generate the subject in new
poses and articulations, with previously unseen scene struc-
ture and realistic integration of the subject in the scene (e.g.
contact, shadows, reflections).

Art Renditions Given a prompt “a painting of a [V] [class
noun] in the style of [famous painter]” or “a statue of a [V]
[class noun] in the style of [famous sculptor]” we are able
to generate artistic renditions of our subject. Unlike style
transfer, where the source structure is preserved and only
the style is transferred, we are able to generate meaning-
ful, novel variations depending on the artistic style, while
preserving subject identity. E.g, as shown in Figure 7,
“Michelangelo”, we generated a pose that is novel and not
seen in the input images.

Novel View Synthesis We are able to render the subject
under novel viewpoints. In Figure 7, we generate new im-
ages of the input cat (with consistent complex fur patterns)
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Figure 7. Novel view synthesis, art renditions, and property
modifications. We are able to generate novel and meaningful
images while faithfully preserving subject identity and essence.
More applications and examples in the supplementary material.

Figure 8. Failure modes. Given a rare prompted context the
model might fail at generating the correct environment (a). It is
possible for context and subject appearance to become entangled
(b). Finally, it is possible for the model to overfit and generate
images similar to the training set, especially if prompts reflect the
original environment of the training set (c).

under new viewpoints. We highlight that the model has not
seen this specific cat from behind, below, or above - yet it is
able to extrapolate knowledge from the class prior to gen-
erate these novel views given only 4 frontal images of the
subject.

Property Modification We are able to modify subject
properties. For example, we show crosses between a spe-
cific Chow Chow dog and different animal species in the
bottom row of Figure 7. We prompt the model with sen-
tences of the following structure: “a cross of a [V] dog and
a [target species]”. In particular, we can see in this exam-
ple that the identity of the dog is well preserved even when
the species changes - the face of the dog has certain unique
features that are well preserved and melded with the tar-
get species. Other property modifications are possible, such
as material modification (e.g. “a transparent [V] teapot” in
Figure 6). Some are harder than others and depend on the
prior of the base generation model.

4.5. Limitations

We illustrate some failure models of our method in Fig-
ure 8. The first is related to not being able to accurately
generate the prompted context. Possible reasons are a weak
prior for these contexts, or difficulty in generating both the
subject and specified concept together due to low proba-
bility of co-occurrence in the training set. The second is
context-appearance entanglement, where the appearance of
the subject changes due to the prompted context, exempli-
fied in Figure 8 with color changes of the backpack. Third,
we also observe overfitting to the real images that happen
when the prompt is similar to the original setting in which
the subject was seen.

Other limitations are that some subjects are easier to
learn than others (e.g. dogs and cats). Occasionally, with
subjects that are rarer, the model is unable to support as
many subject variations. Finally, there is also variability
in the fidelity of the subject and some generated images
might contain hallucinated subject features, depending on
the strength of the model prior, and the complexity of the
semantic modification.

5. Conclusions
We presented an approach for synthesizing novel rendi-

tions of a subject using a few images of the subject and the
guidance of a text prompt. Our key idea is to embed a given
subject instance in the output domain of a text-to-image dif-
fusion model by binding the subject to a unique identifier.
Remarkably - this fine-tuning process can work given only
3-5 subject images, making the technique particularly ac-
cessible. We demonstrated a variety of applications with
animals and objects in generated photorealistic scenes, in
most cases indistinguishable from real images.
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