
Token Turing Machines

Michael S. Ryoo, Keerthana Gopalakrishnan, Kumara Kahatapitiya, Ted Xiao,
Kanishka Rao, Austin Stone, Yao Lu, Julian Ibarz, Anurag Arnab

Google Research
mryoo@google.com

Abstract

We propose Token Turing Machines (TTM), a sequen-
tial, autoregressive Transformer model with memory for
real-world sequential visual understanding. Our model is
inspired by the seminal Neural Turing Machine, and has an
external memory consisting of a set of tokens which sum-
marise the previous history (i.e., frames). This memory is
efficiently addressed, read and written using a Transformer
as the processing unit/controller at each step. The model’s
memory module ensures that a new observation will only
be processed with the contents of the memory (and not the
entire history), meaning that it can efficiently process long
sequences with a bounded computational cost at each step.
We show that TTM outperforms other alternatives, such as
other Transformer models designed for long sequences and
recurrent neural networks, on two real-world sequential vi-
sual understanding tasks: online temporal activity detection
from videos and vision-based robot action policy learning.

Code is publicly available at: https://github.com/google-
research/scenic/tree/main/scenic/projects/token turing.

1. Introduction
Processing long, sequential visual inputs in a causal man-

ner is a problem central to numerous applications in robotics
and vision. For instance, human activity recognition mod-
els for monitoring patients and elders are required to make
real-time inference on ongoing activities from streaming
videos. As the observations grow continuously, these models
require an efficient way of summarizing and maintaining
information in their past image frames with limited com-
pute. Similarly, robots learning their action policies from
training videos, need to abstract history of past observations
and leverage it when making its action decisions in real-time.
This is even more important if the robot is required to learn
complicated tasks with longer temporal horizons.

A traditional way of handling online observations of
variable sequence lengths is to use recurrent neural net-
works (RNNs), which are sequential, auto-regressive mod-
els [13, 22, 35]. As Transformers [64] have become the de

facto model architecture for a range of perception tasks, sev-
eral works have proposed variants which can handle longer
sequence lengths [19, 61, 67]. However, in streaming, or
sequential inference problems, efficient attention operations
for handling longer sequence lengths themselves are often
not sufficient since we do not want to run our entire trans-
former model for each time step when a new observation
(e.g., a new frame) is provided. This necessitates developing
models with explicit memories, enabling a model to fuse
relevant past history with current observation to make a pre-
diction at current time step. Another desideratum for such
models, to scale to long sequence lengths, is that the compu-
tational cost at each time step should be constant, regardless
of the length of the previous history.

In this paper, we propose Token Turing Machines (TTMs),
a sequential, auto-regressive model with external memory
and constant computational time complexity at each step.
Our model is inspired by Neural Turing Machines [30]
(NTM), an influential paper that was among the first to
propose an explicit memory and differentiable addressing
mechanism. The original NTM was notorious for being a
complex architecture that was difficult to train, and it has
therefore been largely forgotten as other modelling advances
have been made in the field. However, we show how we
can formulate an external memory as well as a processing
unit that reads and writes to this memory using Transformers
(plus other operations which are common in modern Trans-
former architectures). Another key component of TTMs is a
token summarization module, which provides an inductive
bias that intuitively encourages the memory to specialise to
different parts of its history during the reading and writing
operations. Moreover, this design choice ensures that the
computational cost of our network is constant irrespective
of the sequence length, enabling scalable, real-time, online
inference.

In contrast to the original NTM, our Transformer-based
modernisation is simple to implement and train. We demon-
strate its capabilities by achieving substantial improvements
over strong baselines in two diverse and challenging tasks:
(1) online temporal action detection (i.e., localisation) from
videos and (2) vision-based robot action policy learning.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
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2. Related Work
Our TTM model is related to prior work on designing

Transformers to process long sequence lengths and temporal
context (e.g., videos), and also models to store and retrieve
relevant information from internal/external memory.

Transformers for sequences. Pairwise self-attention
mechanism proposed in Transformer [64] has been very suc-
cessful in many vision tasks, including the understanding of
image sequences. Extending ViT [23], ViViT [3] and TimeS-
former [4] represented video data, a series of space-time
tokens. Transformers have since become state-of-the-art in
video modeling, being able to handle multiple modalities
like audio/text [2, 49] and scaling efficiently [24, 47].

One of the major challenges in using Transformers for
sequential data is the well-known quadratic computation
cost of self-attention. That is, as the number of frames in a
video sequence increase, the computation grows quadrati-
cally which often soon becomes intractable. There is a wide
body of work on reducing this to enable transformers to
handle longer sequence lengths, as summarized in surveys
such as [60, 61]. Common themes include local- or sparse-
attention [11, 46, 71], pooling or reducing the number of
tokens within the network [37, 54, 56] and approximations
of the attention matrix [12, 50, 65].

However, in the sequential inference problems consid-
ered in this paper, efficient operations for handing longer
sequence lengths are often not sufficient themselves, as we
do not want to perform redundant operations at every new
time step, when new input tokens are given.

Transformers with memories. One manner of reducing
redundancy over time-steps is to leverage models with
memory. There are a number of works using Transform-
ers to retrieve relevant information from external memo-
ries/knowledge bases [5, 33, 43, 67] or historical observa-
tions [7, 45, 54]. In comparison, the memory of our model
is also based on historical observations of the model, which
informs the current and future predictions; we learn to main-
tain/read/write to the memory. Another method for reusing
computation from previous time steps is to perform causal
attention. In this case, the previous activations of the model
can be cached, as done in the original implementation of the
Transformer [64]. However, with this approach, the compu-
tation cost at each step still linearly increases over time as the
sequence length of previous tokens increase. Transformer-
XL [19] builds upon this idea, and uses relative positional
embeddings to make better use of previous history tokens.
MemViT [66] also uses token activations from previous time-
steps to increase the contextual information provided at the
current time step. However, once again, the computational
cost at each step still increases over time. [21,29] introduced
an approach to improve pairwise operations in Transformers
by interacting with (external) shared workspace, which also
could be viewed as memory read/write.

Sequential models. The classical solution for dealing with
long and variable sequence lengths are recurrent neural
networks, which share the same parameters across multi-
ple time-steps to be able to generalise to varying sequence
lengths. LSTMs [35] and GRUs [13] are the most well-
known form of these networks, as they were formulated to
handle the “vanishing and exploding gradient” problem [34].
Video representations using them also have been common,
traditionally [22]. Transformers have been adapted to recur-
rent networks as well, with models such as Block-Recurrent
Transformers [36], which is an RNN with a transformer
operating on a sequence (or block) of tokens, instead of tra-
ditional RNNs which have a single previouss state. [41] adds
an external memory module to LSTMs/GRUs.

Neural Turing Machines. Our model, however, is based
on another formulation of RNNs, the Neural Turing Ma-
chine (NTM) [30]. This model architecture is based on the
von Neumann computer architecture, and consists of a con-
troller and external memory which is read and written to
using explicit addressing operations in a differentiable man-
ner. Its memory access mechanism was further extended in
the subsequent work, DMC [31]. The original NTM was
a complex model that was notorious for being difficult to
train. Our formulation can be thought of as a modernisation
of this architecture using Transformer-based operations as
primitives. Our model is simple and easy to train, and we
have also applied it to complex problems in computer vision
(and visual robot learning) that the original NTM was never
demonstrated for.

3. Token Turing Machines
Token Turing Machines are new sequential auto-

regressive models, with core components being the (external)
memory and the processing unit, as shown in Fig. 1. The
memory at time step t, M t ∈ Rm×d, consists of a set of
m tokens of dimensionality d. In Token Turing Machines
(TTMs), the interface between the processing unit and mem-
ory are done purely in terms of “read” and “write” operations.
The result of memory “read” is fed to the processing unit.
The output from the processing unit is “written” to the mem-
ory.

As illustrated in Fig. 1, the input at time step It ∈ Rn×d,
is merged with the memory M t to retrieve relevant tokens
from both, which are then processed further to produceOt ∈
Rr×d. The outputs of this step, along with the previous
inputs and current memory are then used to write to the
memory, M t+1, which will be used at the next time step. As
many sequential decision making tasks require predictions at
each time step, we also include a linear output head at each
step.

3.1. Memory Interface
There are several principles which motivate the design

of our memory interface: Intuitively, we do not wish to
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Figure 1. TTM overview with robot examples. Each dotted rectangle shows TTM at each step.

read from (or write to) all memory tokens at each time step.
This is because although the memory should contain (sum-
marised) information from the entire past history, only some
of this information may be relevant for the processing at
the current stage. Therefore, we consider selective reading
of a smaller subset of tokens to be a good inductive bias
that will encourage the model to make use of a memory that
stores relevant information over varying time scales Such
“selective reading” is in contrast to most previous recurrent
models (e.g., RNNs) directly digesting history vectors.

Moreover, there may be redundancies in the input stream,
It, due to the information that we already have in our mem-
ory, M t, and due to the data itself (for example, videos con-
tain redundant frames; not all parts of an image are relevant
to the task at hand). Therefore, a mechanism to summarise
tokens, both from the memory and the input stream, is a
core component of our approach. We discuss this summari-
sation procedure next in Sec. 3.1.1 before describing reading
(Sec. 3.1.2), processing (Sec. 3.1.3) and writing (Sec. 3.1.4).

3.1.1 Token Summarisation

There are multiple methods of summarising a sequence of
p tokens with dimensionality d, V ∈ Rp×d, to Z ∈ Rk×d

where k � p. Examples include [14, 25, 37, 55, 56, 70]
which have been proposed in the context of more efficient
transformer backbones for processing higher-resolution im-
ages. We adopt a similar approach as a core component of
our reading and writing mechanisms. Our method is based
on [37, 56] motivated by the fact that these approaches are
simple, fully-differentiable and have achieved strong results
in a number of domains.

Concretely, we summarise a set of tokens V by computing
an importance weight vector, wi ∈ Rp which we use to
compute a weighted summation over the p tokens. Note that
we have wi for each output token, i ∈ {1, . . . , k}, and it is
computed with a learnable function taking the input V itself,
αi(V ). Here, such each importance weighting function is

Memory
(m = 96 
tokens)

Input:
n = 3076 tokens 
per step

Token Summariser
Processing Unit
(Transformer 
layers)

r = 16 
tokens

Figure 2. TTM Read. Note how it greatly reduces the computation
of the subsequent processing module by summarising the input
sequence as well.

modeled either using a MLP or using a learned query vector,
qi, computed as:

wi = αi(V ) = softmax(MLP(V )), or (1)

wi = αi(V ) = softmax(qiV >/
√
d). (2)

These weights are then used to perform a weighted summa-
tion of the inputs:

zi = si(V ) = wi · V = αi(V ) · V, (3)

where each token zi summarises all the tokens from the
complete set V , based on the dynamic weighting wi =
αi(V ). As we learn to summarize p tokens into k tokens,
it computes a matrix W = [w1, · · · , wk] of importance
weights in practice.

Overall, we denote this summarisation function as Sk :
Rp×d → Rk×d, which we use for both memory read and
write.

3.1.2 Reading from Memory

In contrast to Neural Turing Machines [30], where inputs and
memory are separately processed and merged later, we take
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a unified memory-input reading strategy. This is motivated
by the fact that some of the inputs, It, are redundant given
the information that we already have in memory.

As illustrated in Fig. 2, we concatenate the tokens in
memory, M t composed of m tokens, with the input stream,
It composed of n tokens, and summarise these tokens into a
smaller subset of r tokens. Our read operator is thus defined
as

Zt = Read(M t, It) = Sr([M
t||Xt]), (4)

where [M t||Xt] denotes the concatenation of these two ma-
trices. This essentially is a function of R(n+m)×d → Rr×d.
Thus, the read operator filters the information in the memory
and input which should be passed to the subsequent process-
ing unit. Note that by reducing the number of tokens passed
to the processing module, we also substantially reduce the
computational cost of this stage.

Memory addressing by location using positional embed-
ding In principle, the token summarisation module de-
scribed above enables content-based addressing of the mem-
ory. This was referred as “read by content” in the Neural
Turing Machines. In order to also make the model take ad-
vantage of locations of the tokens within the memory (and
also to distinguish tokens from memory vs. tokens from
inputs), we add a learnable positional embedding [23] before
each read module. This approach, fusing position informa-
tion into the tokens, has an effect of read/write by location
(+ content) without modifying the overall process.

3.1.3 Processing Unit

Our processing unit is a generic function,Ot = Process(Zt),
that operates on the r tokens obtained from the read opera-
tion, Zt. The processing function generates a set of r output
tokens, Ot, which are used in the subsequent write opera-
tion. Moreover, for tasks which require a prediction at each
time-step, we add a linear output-head Y t = Output(Ot) =
WoO

t to the output tokens.
In our experiments, we use a standard Transformer [64]

and MLPMixer [62] as our processing unit, although other
architectures are possible too.

3.1.4 Writing to Memory

We also formulate our write operation as a token summari-
sation process, which we observed to be both simple and
effective.

As illustrated in Fig. 3, our write mechanism preserves
tokens in the memory, M t, by learning to re-select them.
And it adds new tokens to the memory by selecting them
from either the output of the processing module, Ot, or from
the inputs It. Therefore, we formulate our write operations
as selecting n tokens (i.e., the size of the memory) from the

Old memory
(m = 96  
tokens)

Output:
r = 16 tokens

Token Summariser
Processing Unit
(Transformer 
layers)

New memory
(m = 96  
tokens)

m = 96 
tokens

Input:
n = 3076 
tokens

Figure 3. TTM Write, formulated as the token summarisation.

concatenation of current memory, input and output tokens,
as denoted by

M t+1 = Write(M t, Ot, It) = Sn([M
t||Ot||It]). (5)

Therefore, the tokens in memory will be erased if they are
not re-selected. Similar to the read operation, positional
embedding is used to distinguish tokens from memory, input,
and output. This essentially is a function of R(n+m+r)×d →
Rm×d.

3.2. Discussion

Our proposed Token Turing Machine can be viewed as a
modernisation of Neural Turing Machines (NTM) [30] by
using Transformer-based models for the processing unit and
its interfaces with the (external) memory.

Our reading and writing mechanisms differ to NTM in
that we use token summarisation (Sec. 3.1.1) as the core
component that unifies the two operations. NTM, on the
other hand, uses a complex range of “content” and “location”
addressing strategies to produce the indices in the memory
to read and write to, and learns a combination of matrix
additions and deletions for the memory modifications.

And whilst we use a Transformer (or a Mixer) for the pro-
cessing unit, NTM used either fully-connected feedforward
or LSTM networks for its processing unit (or controller).
The architectural choices of NTM meant that it was difficult
to train in practice. On the other hand, we have not witnessed
training instabilities with our TTM model in the experiments
that we present next.

Both TTMs and NTMs in general could be viewed as a
new form of recurrent neural networks. The operations in
TTMs can be summarised, in the recurrent network form as:

Zt = Read(It,M t) (6)

Ot = Process(Zt) (7)

M t+1 = Write(M t, Ot, It) (8)

Y t = Output(Ot) (9)

where the functions Read(), Process(), Write(), and Output()
are what we discussed in this section.
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4. Experiments
4.1. Video Activity Detection

Activity Detection in videos focus on making fine-grained
action predictions per every time step. In general, datasets for
detection [8, 32, 57, 69], contain long-range videos with mul-
tiple overlapping activities, capturing an expressive temporal
context. Hence, detection is more challenging compared
to classification, which only makes a prediction once per
video. Also, detection models often need to look at more
frames to generate good representations in temporal con-
text, which can be computationally expensive, particularly in
Transformer-based architectures due to their quadratic cost.

We focus on making online inferences, generating activity
predictions for each incoming frame. That is, the decision is
made without accessing frames in future steps.

4.1.1 Dataset and Settings

Charades dataset [57] contains ∼9.8k videos of 157 daily
household activities, separated into ∼7.9k training and
∼1.8k validation clips. Each video may include multiple
overlapping activities (w/ an average of 6.8 activity instances
per video), annotated with frame-level labels. The average
length of a video is 30 seconds. This is a challenging setting,
especially for temporal activity detection, as a model needs
to predict multiple potential activity classes per each frame,
considering the interactions between different activities and
longer temporal context.

For our evaluation, we use the standard ‘cha-
rades v1 localize’ setting, where we uniformly sample 25
frames from each video in the validation set and compute
mean average precision (mAP).

We also use AVA v2.2 [32] as the secondary dataset to
confirm the effectiveness of the TTM’s sequential modeling,
specifically in spatio-temporal activity detection. AVA is a
dataset composed of bounding box annotations of 80 atomic
visual actions in 430 15-minute movie clips. We follow
its standard setting, while using the Kinetics-400 for the
backbone pretraining.

4.1.2 Baselines and Implementation

We use ViViT [3] as our backbone. As was done in its
original work, we made ViViT represent 32 frame segments.
Given a continuous sequence of frames, ViViT converts it
into a sequence of representations where each element is
from a 32-frame segment. We use ViViT-B with its original
settings: the input frame resolution is 224-by-224, and the
video patch size is 16 × 16 × 2 (i.e., an image patch of
16 × 16 over 2 frames). It generates 14-by-14-by-16 (i.e.,
3136) tokens, and this becomes our ‘step input’ for TTMs:
n = 3136. Alternatively, we do spatial average pooling per
frame, getting 16 tokens per step: n = 16

Method Setting modality mAP

I3D + super-events [52] offline RGB + Flow 19.41
I3D + super-events + TGM [53] offline RGB + Flow 22.30
I3D + STGCN [28] offline RGB + Flow 19.09
I3D + biGRU + VS-ST-MPNN [48] offline RGB + Object 23.7
Coarse-Fine (w/ X3D) [40] offline RGB 25.1
I3D + CTRN [16] offline RGB 25.3
I3D + MS-TCT [17] offline RGB 25.4
I3D + PDAN [18] offline RGB + Flow 26.5
I3D + CTRN [16] offline RGB + Flow 27.8

I3D [10] online RGB + Flow 17.22
X3D [26] online RGB 18.87
ViViT-B [3] online RGB 23.18
ViViT-B + TTM (ours) online RGB 26.34
ViViT-L [3] online RGB 26.01
ViViT-L + TTM (ours) online RGB 28.79

Table 1. Comparison with the state-of-the-art methods on Charades
temporal activity detection.

We tested various memory sizes (m), and we use m = 96
as the default setting. The number of reads is r = 16 (or 32).
The processing unit in TTMs is implemented to have a small
overhead. In the case of using Transformers or MLPMixers,
we used the hidden size of 512 and a total of four blocks.
The training of the models was done by providing video
segments of 6 steps (i.e., 32 × 6 frames) at a time. We
include the detailed training settings in Appendix.

4.1.3 Temporal Activity Detection Results

In Table 1, we compare TTMs with prior state-of-the-art in
temporal activity detection on Charades. The previous work
we compare against include multiple backbone architectures
(e.g., I3D [10], X3D [26]) as well as different techniques
for long-term temporal modeling on top of the backbones
(e.g., super-events [52], TGM [53], Coarse-Fine [39,40], and
MS-TCT [17]).

Importantly, we grouped the approaches based on whether
they support online inference or not. While most of the
backbone models enable online inference by focusing on
recent frames at hand, some approaches require a longer
temporal window including future frames (e.g., the global
snapshot of the entire video) to make a prediction for a given
frame.

In addition, we compared TTMs with different sequen-
tial/temporal modeling architectures, applied on top of the
same backbone model we use (i.e., ViViT). These include
temporal Transformers and temporal MLPMixers [62], as
well as more traditional sequential models like a LSTM. In
addition, we implement a recurrent version of Transformers,
which takes state tokens and input tokens to predict the next
state tokens and output tokens. For temporal Transformers
and MLPMixers, a temporal window of 6 steps is used. The
models are over a fixed window, capturing 6 × 32 = 192
frames. The raw output from ViViT has 14 × 14 × 16 to-
kens per step, giving us a total of 3136× 6 = 18816 input
tokens. We used aggressive (spatial) pooling and (temporal)
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Method mAP GFLOPS

ViViT only 23.18 -

Alternative temporal models
Temporal MLPMixer (tokens=96) 24.41 0.382
Causal Transformer (tokens=96) 25.85 0.523
Temporal Transformer (tokens=96) 25.61 1.269

Temporal MLPMixer (tokens=3360) 24.26 13.317
Causal Transformer (tokens=3360) 25.88 29.695
Temporal Transformer (tokens=3360) 25.53 112.836

Alternative recurrent networks
LSTM 23.96 0.107
Recurrent Transformer (tokens=16+16) 25.97 0.410
Recurrent Transformer (tokens=3136+16) 25.97 17.10

Token Turing Machines
TTM-Mixer (n = 16) 25.83 0.089
TTM-Transformer (n = 16) 26.24 0.228
TTM-Mixer (n = 3136) 26.14 0.704
TTM-Transformer (n = 3136) 26.34 0.842

Table 2. TTM vs. different sequence modeling methods. ViViT-
B was used as the backbone. TTM-Transformer means we use
Transformer as the processing unit, and TTM-Mixer means we use
MLPMixer as the processing unit. FLOP measure is for computa-
tion in addition to the backbone.

striding to make their computational cost as low as TTMs,
and FLOPS become comparable.

Table 2 shows the results. The FLOPS described are
per-step inference time, excluding the backbone computa-
tion. We are able to confirm that TTM, due to its external
memory interactions, enables much more efficient online
inference compared to other types of sequential/temporal
models. When TTM-Transformer and causal/recurrent
Transformers are using the same number of input tokens
(i.e., n = 16), TTM spends around 1/2 FLOPS com-
pared to the causal/recurrent Transformers (TTM 0.228 vs.
causal/recurrent Transformers 0.523/0.410 GFLOPS), while
TTM still outperforms them (TTM 26.24 vs. causal/recurrent
Transformers 25.85/25.97 mAP). In addition, while other
temporal models have difficulty scaling (i.e., with a large
number of tokens) due to overfitting, TTM handles more
tokens much more reliably.

4.1.4 Ablations

Here, we conduct a number of ablations to investigate differ-
ent components of Token Turing Machines. We use ViViT-B
as the backbone. Unless specified, the models use Trans-
former processing units by default, and MLP-based token
summarisations. The number of input tokens per step is
n = 3136.

Processing units: Table 3 compares TTMs with different
processing units. The default processing unit, i.e., Trans-
former, is compared against MLPMixer and a simple MLP.

Architecture mAP GFLOPS

MLP 23.34 0.689
MLPMixer 26.14 0.704
Transformer 26.34 0.842

Table 3. Using different processing unit architectures in TTMs.

Method mAP GFLOPS

Pooling 25.75 0.206
MLP 26.34 0.842
Latent query 26.75 8.537

Table 4. Different Token Summarisation

Method mAP GFLOPS

Concatenate (Memorizing Transformer-style) 20.97 0.920
Erase and Add (NTM-style write) 25.86 0.423

TTM without memory 22.65 0.842
TTM 26.34 0.842

Table 5. TTM vs. different history/memory update. They all use
Transformer processing units, and MLP-based token summarisa-
tions. The number of input tokens per step, n = 3176.

We observe that MLPMixer-based TTM provides a good
speed-accuracy trade-off.

Token summarisation: Table 4 compares different token
summarisation methods used within TTMs. Essentially, we
are comparing different form of theαi function in Equation 1,
which influences both memory read and write in TTMs. We
compare the MLP-based α, the latent query-based α, and
a simple pooling-based summarisation (i.e., no learning)
method.

Different memory read/write: We compare memory
read/write mechanisms of TTMs with their alternatives, mo-
tivated by prior work including [30, 67]. Specifically, we
implemented the memory write of concatenating every ob-
served input tokens. We also implemented the memory write
mechanism designed in [30]: write by erase and addition.
Finally, a memory-free version of TTM was implemented to
confirm the importance of the memory. This was done by
zeroing out the memory of the TTM after each step, making
it spend exactly the same amount of computation. Table 5
shows the results.

4.1.5 Spatio-temporal Activity Detection Results

We conducted an additional experiment on AVA [32] to con-
firm the benefit of TTM. We followed the lightest setting of
pretraining the backbone with Kinetics-400. Identical to our
Charades experiments, ViViT-B was used as the backbone.
The only difference is that it was trained by providing video
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Figure 4. Example input frames from the robot task “pick pepsi can” (top) and “open top drawer” (bottom). We learn one action policy,
which needs to cover all 551 task instructions.

Model mAP +GFLOPS

MViT 26.2 -
+ memory (i.e., MeMViT [66]) 28.5 (+2.3) 1.3

ViViT-B 25.2 -
+ TTM per video 27.9 (+2.7) 0.8
+ TTM per box (# layers=1) 31.3 (+6.1) 1.0
+ TTM per box (# layers=4) 31.5 (+6.3) 2.0

Table 6. Results on AVA 2.2, with the vanilla Kinetics-400 pretrain-
ing. We show FLOPS added by the sequential modeling per step.
ViViT-B is the backbone for TTM, while MeMViT uses MViT.

segments of 4 steps (i.e., 32 × 4 frames) at a time, due to
the memory constraint. The bounding box proposals are
obtained with the SlowFast network [27], and the TTM was
responsible for computing the feature mask to be pooled per
bounding box.

Table 6 compares the TTM with its backbone. We are
able to observe the benefit of TTM, which improves the
accuracy by managing the external memory, with a little
added compute. We also provided its comparison against
MeMViT [66], which also presents a Transformer-based
memory mechanism for sequential visual data. Note that
there are various ways to further boost the accuracy num-
bers orthogonal to the proposed sequential modeling. This
includes the use of larger pretraining dataset [66], use of
bigger backbones [63, 66], and better pretraining with self-
supervised losses [63]. What we confirm in this experiment
is the relative gain over the backbone; TTM with a small
added compute, by utilizing the memory, improves AVA
activity detection.

4.2. Robot Learning
To study how TTM scales to a real-world robotic con-

trol setting, we integrate it to a real kitchen environment
described in SayCan [1]. An Everyday Robots robot, a mo-
bile manipulator with RGB observations, is placed in an
office kitchen to interact with common objects using concur-

rent [68] continuous closed-loop control from pixels. Here,
at each time step, the inputs to the model are an image from
the robot’s mounted camera and the task instruction in natu-
ral language (Fig. 4). The expected output is an action vector
for robot arm and base control. The policy was trained under
a supervised behavioral cloning (BC) setting with human
demonstrations.

4.2.1 Dataset and Settings

We use the dataset and settings as described in SayCan [1]
with the additional inclusion of controls for base motion.
We collect the dataset to train imitation learning policies:
a real-world dataset of teleoperated human demonstrations
of successful policy rollouts filtered by engineered success
detectors. Such real2real setup includes a training dataset
of 89,000 teleoperated episodes collected in a mock kitchen
across 551 tasks involving skills like picking, placing, and
manipulating furniture. Each task instruction (with different
objects) were given in the form of a text sentence, and the
robot was asked to learn a single model for all such tasks. A
policy trained on the dataset is evaluated again in the same
kitchen in real-time. The tasks are grouped into 5 different
types, Pick, Knock, Upright, Move, and Open/Close Drawer,
and we report success rate of each type.

4.2.2 Baselines and Implementation

We follow the learning framework described in SayCan [1].
Here the first baseline we benchmark against is the ResNet
based control policy network, called BC-Zero ResNet, de-
veloped in [38] and used in SayCan. A second baseline
we consider is BC-Zero with the image trunk swapped for
a pretrained EfficientNet [59], while still applying FiLM
conditioning [51] for language as described in [38] for
ResNet. We call this the BC-Zero EfficientNet. Efficient-
Net is computationally more efficient and pretraining on
ImageNet improves object understanding.

Against these baselines we benchmark the proposed TTM
architecture. TTM treats EfficientNet outputs as the input
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Figure 5. Real robot experiment; per-task success rates.

Model Success

BC ResNet 79.80
BC EfficientNet 80.08
No memory 79.26
TTM 89.26

Figure 6. Average task success rate in real-
robot evaluation.

tokens. The memory size of TTM was m = 96, the number
of reads was r = 16, and n = 48 after aggregation. A
Transformer with 8 layers was used as the processing unit by
default, and the total of 8 steps were considered at a time. We
also compare TTM against its memory-less version, which
uses the same framework and the compute to the TTM. The
only difference is that the memory has been zeroed out.

4.3. Real-robot Results
We compare TTM against the baselines discussed above

including BC-Zero used in SayCan. Inputs to the models are
images from the robot’s mounted headcam, previous actions
executed in the episode and natural language instruction for
the task. Outputs are action vectors to control the robot in
real evaluation, as discussed in Section 4.2.1.

Fig. 5 and Table 6 show the results. We observe signifi-
cant improvements with TTM in the task success rate, since
knowledge of previous history is critical for this task. Fig. 4
shows frames from the real robot in operation.

5. Conclusion
We introduce Token Turing Machines for sequential de-

cision making. Token Turing Machines could be viewed as
a modernisation of Neural Turing Machines, with memory
reads/writes designed in terms of token summarisations. It
has good perks of modern Transformer-based models while
also benefiting from having an external memory: constant
compute regardless of the length of the history. Such capa-
bility is particularly important in many sequential decision
making and online inference problems, such as robot action
policy learning. We confirmed its power on real-world tasks
with challenging visual inputs: Charades activity localiza-
tion, and vision-based robot action policy learning.

Discussions: The applicability of TTMs themselves is
broad, as they are generic sequential models designed to
digest a large number of tokens. Our intention with this

paper particularly has been to focus on computer vision
problems with sequential visual data. The problems that
we chose (i.e., spatio-temporal human action localisation
and robot policy) are challenging as they require extremely
long sequences of tokens: For our experiments on action
localisation, we have 3136 tokens per step, multiplied by 6
steps, which is a total of 18816 tokens. This sequence length
is therefore significantly larger than those in other domains
and comparable to Long Range Arena [60] (1000 to 16000
tokens), posing comparable yet different challenges.

We also emphasize that TTM is the first to show its appli-
cability to videos among the NTM-based approaches.

A. Appendix
A.1. Charades Training

For Charades [57] training, we initialize ViViT [3] back-
bones with pretrained weights (Base model: JFT [58] →
Kinetics-400 [42], Large model: JFT→ Kinetics-600 [9])
and initialize TTM-head with random weights. We finetune
models with a batch size of 32 and Adam optimizer [44]
with an initial learning rate of 1e-4 (with backbone learning
rate further scaled by 0.1) and a cosine schedule for 100
epochs on 32 TPUv3 cores. To prevent overfitting, we use
color/scale jitter, random augmentations [15] and mixup [72].
Our implementation is based on Jax [6] and the Scenic li-
brary [20]. We use sigmoid cross-entropy loss with a label
smoothing of 0.1. Our inputs contain 6 temporal steps, each
with 32 frames of 224×224 resolution, and the loss is ap-
plied to the last step only. This allows better training for the
TTM memory module.

A.2. Robot Policy Training

In our robot experiments, all architectures are trained in a
behavioral cloning setting on the real2real dataset described
in Section 4.2.1. For the training of the policy, we follow
experimental setup of SayCan [1].
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