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Abstract

Class-incremental semantic segmentation aims to incre-
mentally learn new classes while maintaining the capabil-
ity to segment old ones, and suffers catastrophic forgetting
since the old-class labels are unavailable. Most existing
methods are based on convolutional networks and prevent
forgetting through knowledge distillation, which (1) need to
add additional convolutional layers to predict new classes,
and (2) ignore to distinguish different regions correspond-
ing to old and new classes during knowledge distillation
and roughly distill all the features, thus limiting the learning
of new classes. Based on the above observations, we pro-
pose a new transformer framework for class-incremental
semantic segmentation, dubbed Incrementer, which only
needs to add new class tokens to the transformer decoder
for new-class learning. Based on the Incrementer, we pro-
pose a new knowledge distillation scheme that focuses on
the distillation in the old-class regions, which reduces the
constraints of the old model on the new-class learning, thus
improving the plasticity. Moreover, we propose a class de-
confusion strategy to alleviate the overfitting to new classes
and the confusion of similar classes. Our method is sim-
ple and effective, and extensive experiments show that our
method outperforms the SOTAs by a large margin (5∼15
absolute points boosts on both Pascal VOC and ADE20k).
We hope that our Incrementer can serve as a new strong
pipeline for class-incremental semantic segmentation.

1. Introduction
Semantic segmentation [4, 5, 36, 41] is one of the fun-

damental tasks in the field of computer vision, which aims
to classify each pixel in an image and assign a class label.
Traditional semantic segmentation networks are trained on
datasets where labels for all classes are available simulta-
neously. However, in practical applications, a more realis-
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Figure 1. Class-incremental learning process based on trans-
former, assuming that each step contains one new class, so each
step adds one new class token to the decoder.

tic situation is that the network needs to continuously learn
new classes, while the data containing labels of old classes
is not available due to privacy or legal reasons. If the old
model is fine-tuned directly on the new data, the network
will fit the new data and forget the old knowledge learned
before, resulting in catastrophic forgetting [14, 24]. Thus,
this problem leads to a challenging task referred as Class-
Incremental Semantic Segmentation [2, 8, 28]. The exist-
ing methods [2, 8, 32, 48] for this task typically use fully-
convolutional network [4, 5] as the basic framework, which
uses a CNN backbone as an encoder to extract image fea-
tures, and then generates segmentation predictions through
a convolutional decoder. To prevent catastrophic forgetting,
most existing methods [8, 32, 45, 48] preserve the learned
old knowledge through knowledge distillation.

Although these methods [8, 25, 48] have achieved re-
markable performance, there are still some limitations.
Firstly, global context information is critical for accurate se-
mantic segmentation, while convolution kernel with the lo-
cal view is difficult to capture global information. More, in
the incremental learning, existing convolution-based meth-
ods need to add additional convolution layers into the de-
coder to predict new classes, and generate segmentations of
classes in different steps through different decoding layers,
which is inefficient with the increasing number of learning
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tasks. Secondly, for knowledge distillation, existing meth-
ods [8,25,28,45] regard the features generated by the model
as a whole and neglect to distinguish the different regions
corresponding to the old and new classes. The old model
has no ability to discriminate the new-class regions, so it
classifies the new classes as background. If the features
of all regions are distilled using the old model without dis-
crimination, it will be difficult for the current model to learn
more discriminative feature representations for new classes,
thus limiting the plasticity of the model.

To address the above problems, we propose a new
transformer-based framework for class-incremental seman-
tic segmentation, dubbed Incrementer, which is a new struc-
tural paradigm with both high performance and high ef-
ficiency. Specifically, we first adopt a vision transformer
[7, 39] as the encoder to extract visual features that cap-
ture more global contextual information based on the self-
attention mechanism. Next, for the decoder, inspired by
[36], we assign a class token to each class, and then input
the class tokens into a transformer decoder jointly with the
patch-wise visual features generated from the encoder, so as
to generate corresponding visual embeddings and class em-
beddings for final segmentation predictions. In incremental
learning, our method only needs to add new class tokens
for the new classes to the transformer decoder. As shown
in Fig. 1, assuming that each step of incremental learning
contains one new class, we add a new class token in each
step, and the segmentation predictions of both old and new
classes can be output in parallel, without adding additional
network structures like the CNN-based methods, which im-
proves the efficiency of incremental learning.

Based on the above transformer framework, we propose
a new knowledge distillation scheme that only focuses on
old classes (FOD). Different from the previous distillation
methods that do not distinguish different regions of old and
new classes, we separate the image into old and new class
regions, and only distill the features corresponding to the
old-class regions at both local and global levels. Our distil-
lation scheme not only preserves the capability of the model
on the old classes, but also reduces the constraints of the
old model on the current model to learn new-class features,
thereby improving both the stability and plasticity.

Moreover, we observe that the model overfits new
classes when the incremental data contains a small number
of new classes and confuses similar old and new classes.
Therefore, we further propose a class deconfusion strategy
(CDS) to balance the learning of the old and new classes,
which reduces the learning weight of the new class, and
uses an old-new binary mask to aggregate the scattered old
classes in the process of learning new classes, thus alleviat-
ing the overfitting to new classes and improving the model’s
ability to distinguish similar classes.

Our contributions are summarized as follows:

• Structurally, we propose a new transformer-based
pipeline for class-incremental semantic segmentation
named Incrementer, which is a simple and efficient
framework that not only achieves higher accuracy, but
also is convenient to implement incremental learning.

• Methodologically, we propose a novel knowledge dis-
tillation scheme FOD that focuses on the distillation
of the old-class features to improve both stability and
plasticity. And we further propose a class deconfusion
strategy CDS to alleviate the model’s overfitting to new
classes and the confusion of similar classes.

• We conduct extensive experiments on Pascal VOC and
ADE20k, and the results show that our Incrementer
significantly outperforms the state-of-the-art methods.

2. Related Works
Incremental Learning. Deep neural networks suffer

from catastrophic forgetting [14, 24] in the process of in-
crementally learning new classes, and numerous researchers
spare no efforts to address this problem in a variety of ways:
Replay-based methods either store a small number of old
samples [16, 33, 37, 47] or use an additional generator to
synthesize fake samples [15, 26, 35] with a similar distribu-
tion to the old data, and then train them jointly with the cur-
rent data. Architectural-based methods [13, 17, 22, 34, 42]
dynamically create new architecture branches or provide
a subnet for new tasks. Regularization-based methods
[3,18,20] measure the importance of parameters to old tasks
and design losses to avoid the shift of important parameters.
Distillation-based methods [9, 19, 24, 33, 46, 51] utilize the
old model from the last step to supervise the current model,
such as the supervision of logits [24,33] or intermediate fea-
tures [9, 50]. Recently, incremental learning is extended to
more vision tasks, like object detection [12, 43, 44], seman-
tic segmentation [2, 8, 21, 28], instance segmentation [31].

Class-Incremental Semantic Segmentation. Class-
incremental semantic segmentation is also known as con-
tinual semantic segmentation, which is first proposed by
ILT [28] and builds the method on the fully-convolutional
network Deeplab [4], while most subsequent methods fol-
low this framework. MiB [2] further raises the issue of
background shift and proposes unbiased knowledge distil-
lation. SDR [29] improves the model’s ability to learn new
classes by learning discriminative prototypes for different
classes. Replay-based RECALL [27] obtains more addi-
tional data via GAN or web. For Distillation-based meth-
ods, PLOP [8] alleviates forgetting of old knowledge by dis-
tilling multi-scale features, and REMINDER [32] assigns
different weights to distillation based on class similarities.
Architectural-based RC [45] utilizes two parallel networks
to store old knowledge and learn new classes respectively.
More recently, RBC [48] proposes the effect of context
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on incremental learning segmentation and decouples differ-
ent classes through context-rectified image-duplet learning.
SPPA [25] preserves the class structure and reduces forget-
ting by constraining inter and intra class relationships.

Transformers. [39] first proposes transformers for nat-
ural language processing (NLP). Since the transformer can
obtain more global information by capturing long-distance
dependencies, which is also required in computer vision. In
recent years, the transformer has been widely used in com-
puter vision tasks, such as image classification [7, 23, 38],
semantic segmentation [36, 41], object detection [1], and
achieved remarkable improvement. Further, transformers
are also used in incremental learning [10, 40]. However, in
the field of class-incremental semantic segmentation, exist-
ing methods [8, 25, 48] are still based on CNN, which lim-
its the overall performance of this task. In this paper, we
apply transformer to class-incremental semantic segmenta-
tion, which significantly improves performance while sim-
plifying the structural paradigm of incremental learning.

3. Method
3.1. Problem Formulation

The task of class-incremental semantic segmentation is
to perform semantic segmentation in multiple steps, and we
assume that there are T steps. In step t, the model is trained
on data Dt that only has labels for new classes Ct, where
data Dt contains a set of samples and each sample contains
an image Xt ∈ R3×H×W and corresponding ground truth
Y t. Y t only contains the labels of Ct, and does not contain
labels of old class C1:t−1. The number of new classes is de-
noted as |Ct|. If any old classes C1:t−1 appear in the image
Xt, they are classified as background class c0 in the ground
truth Y t. Each class is only learned once by the model (i.e.
C1:t−1 ∩ Ct = ∅), so the model needs to keep the ability
to segment the old classes C1:t−1 while learning to segment
the new ones Ct. However, in the process of learning new
classes, the model will forget the old classes C1:t−1 and fit
the new classes Ct due to the lack of the old class labels in
the new data, resulting in catastrophic forgetting. And we
propose Incrementer to address this problem.

3.2. Incrementer Structure

We present an overview of our proposed Incrementer in
Fig. 2. In this section, we first introduce the overall trans-
former framework employed in our method, and then elab-
orate the incremental learning process of Incrementer.

Framework. The network of our method can be divided
into an encoder and a decoder, both composed of transform-
ers. Given an input image X ∈ R3×H×W , we first split the
image into a series of patches with size P × P , the number
of patches is N = HW/P 2. Then we flatten each patch
and project it into a D-dimensional feature vector, and ob-

tain a feature sequence f = {f1, f2, ..., fN} ∈ RN×D with
length N , each f i represents the feature of the correspond-
ing image patch. Next, f added with the spatial embeddings
is input into a vision transformer encoder, through multiple
layers of transformers with self-attention, each patch feature
in the feature sequence captures rich long-range contextual
information, and outputs the final visual feature sequence
fv = {f1v , f2v , ..., fNv } ∈ RN×D for subsequent decoding.

For the decoder, to achieve that the decoder can cope
with future incremental classes without adding additional
network structure, inspired by Segmenter [36], we as-
sign each class to be predicted a learnable class token
and get class token sequence τ = {τ0, τ1, τ2, ..., τM} ∈
R(M+1)×D, where τ i represents the learnable token vec-
tor corresponding to class ci, M represents the number of
classes, in incremental learning, M = |C1:t|, and τ0 de-
notes the token of background c0. Then we concatenate the
tokens τ with the patch-wise visual features fv ∈ RN×D

from the encoder, and input the concatenated sequence into
a transformer decoder to generate the corresponding visual
embeddings ev = {e1v, e2v, ..., eNv } ∈ RN×D and class em-
beddings ec = {e0c , e1c , ..., eMc } ∈ R(M+1)×D.

Finally, the segmentation mask of each class ci is ob-
tained by calculating the similarity between each class em-
bedding eic and the visual embeddings ev . In incremen-
tal learning, to prevent the similarity scores from being bi-
ased towards new classes, we use cosine similarity for mask
generation. So we first l2-normalize each embedding in
ev and ec, and get ēv = { e1v

||e1v||2
,

e2v
||e2v||2

, ...,
eNv
||eNv ||2

} and

ēc = { e0c
||e0c||2

,
e1c
||e1c||2

, ...,
eMc
||eMc ||2

} and then generate the seg-
mentation masks S′ by:

S′ = γ ēcē
T
v (1)

where S′ ∈ R(M+1)×N , γ is a hyperparameter used to
amplify the peak value after softmax due to cosine simi-
larity in the range of [−1, 1] [16]. We reshape S′ back to
(M + 1) × H/P × W/P , and then upsample to the size
of the input image and use the softmax operation to get the
final segmentation prediction S ∈ R(M+1)×H×W .

Class-incremental learning. Based on the above trans-
former framework, we can flexibly add new class tokens
to predict new classes in the incremental learning, and the
old and new classes can be predicted in parallel, which is
simpler and more efficient and does not need to add addi-
tional network structure for new classes like the previous
convolution-based methods. In incremental learning step t,
for new classes Ct to be predicted, we fix the old class to-
kens τ 1:t−1 as shown in the bottom of Fig. 2 and assign
a new class token to each class in Ct, we denote τ t =
{τ |C0:t−1|+1, τ |C

0:t−1|+2, ..., τ |C
0:t|} ∈ R|Ct|×D as the new

class tokens, where C0:t−1 includes learned classes C1:t−1

and a background class c0. Then feed τ t into the decoder
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Figure 2. The overview of the proposed Incrementer. At each step t, the model only needs to feed the new class tokens into the transformer
decoder to generate segmentation predictions for the new classes. The image is first fed into the old model of the last step t− 1 to generate
the pseudo label of the old classes and combined with the current ground truth, and use LWCE to supervise the current segmentation
masks. Then use LV is FOD and LCls FOD to perform knowledge distillation (FOD) on the visual and class embeddings corresponding to
the old classes, respectively. Finally, use ground truth to generate the old-new binary mask to deconfuse similar old and new classes.

jointly with the previous token τ 0:t−1 and visual feature fv ,
and generate segmentation prediction St ∈ R(|C0:t|)×H×W .

Since the dataset Dt in step t only contains the labels
of the new classes Ct, if the model is fine-tuned directly on
Dt, the model will forget the segmentation ability of the old
classes, resulting in catastrophic forgetting. Moreover, the
learned old classes are treated as background in Dt, which
shifts the semantics of the background [2], thus aggravating
catastrophic forgetting. Therefore, to address this problem,
we adopt the pseudo-labeling [8] w/o entropy thresholds.
Specifically, given a sample pair (Xt, Y t), we first generate
the segmentation prediction St−1 for the learned old classes
through the old model in the last step. Then, we re-label the
background area in the ground truth of current sample Y t

according to the predicted foreground classes in St−1, and
obtain the combined label Ŷ t. We use Ŷ t to supervise the
current prediction St with the weighted cross-entropy loss:

LWCE =
1

HW

HW∑
i=1

∑
c∈C0:t

ωiŶ
t
c,ilogS

t
c,i (2)

where St
c,i represents the probability score that the model

predicts the pixel at position i as class c, and ωi is a weight
used to alleviate model overfitting to new classes, which
will be introduced in Section 3.4. Based on the transformer
framework, we improve the performance and simplify the
network structure paradigm of incremental learning.

3.3. Knowledge Distillation Focusing on Old Class

To further alleviate catastrophic forgetting, existing
works propose a variety of knowledge distillation meth-

ods [2, 8, 25, 28] to preserve learned knowledge. However,
existing feature distillation methods, whether coarse [8, 9]
or fine-grained [25, 28], treat the feature map as a whole
and neglect to distinguish different class regions. While in
semantic segmentation, the old and new classes are corre-
sponding to different regions, and the old model lacks the
ability to recognize the new classes and regards the new
classes as the background. If all features are distilled by
the old model, the new-class features generated by the cur-
rent model will also be constrained to be similar to the old
model, which makes it difficult for the current model to gen-
erate more discriminative feature representation for the new
classes, thus limiting the plasticity of the model.

Therefore, we argue that not all features in the current
model must be distilled by the old model, and we propose
a novel knowledge distillation scheme (FOD) that only fo-
cuses on distilling the features in the old-class (non-new-
class) regions. Specifically, we first perform FOD on the
visual embedding features et

v . As shown in Fig. 2, we get
the old-class regions through the current ground truth and
perform knowledge distillation only on the features in the
old-class regions (features with blue borders). Since we are
using cosine similarity in segmentation generation, we still
use cosine similarity as a constraint in the distillation loss
to maintain the consistency of similarity measurement and
avoid sacrificing plasticity by using hard knowledge distil-
lation loss such as l2-distance. The knowledge distillation
loss of visual embedding based FOD is formulated as:

LV is FOD =
1

N

N∑
i=1

αi(1−
〈
etvi, e

t−1
vi

〉
) (3)
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where

αi =


0, if argmax Ŷ t

i ∈ Ct

1, if argmax Ŷ t
i ∈ C1:t−1

|C0:t−1|
|C0:t| , if argmax Ŷ t

i = c0
(4)

That is, we set the distillation loss weight α to 0 in the new-
class regions, set the weight to 1 in the old-class regions ob-
tained according to the refined label Ŷ t, and set the weight
of the background class to |C

0:t−1|
|C0:t| due to the semantics of

the background are not completely consistent in the old and
new data. 〈, 〉 denotes cosine similarity.

Each embedding etvi in et
v ∈ RN×D represents the vi-

sual feature of a local patch, so the distillation LV is FOD

on et
v is the local-level distillation. While class embeddings

et
c ∈ R|C0:t|×D captures the global features of each class

through the transformer decoder. Thus we further perform
knowledge distillation on et

c. As shown in Fig. 2, we also
only focus on the old classes in et

c (in the red dashed box),
and the distillation loss of class embedding based FOD is:

LCls FOD =
1

|C0:t−1|

|C0:t−1|∑
i=0

βi(1−
〈
etci, e

t−1
ci

〉
) (5)

where we set the weight of the background class β0 to
|C0:t−1|
|C0:t| , and set the weight of other old classes C1:t−1 to

1. Our total distillation loss of our proposed FOD is:

LFOD = LV is FOD + LCls FOD (6)

With the above distillation method at the local and global
levels, we preserve the stability of the model for old classes,
while reducing the constraints on plasticity for new ones.

3.4. Class Deconfusion Strategy

In the process of incremental learning, we observed that
when the new data contains a small number of samples
or new classes, especially when learning multiple steps
and only one new class per step, which leads to a small
number of new classes with a high probability of occur-
rence and a high concentration, while a large number of old
classes has a low probability of occurrence and is scattered.
The imbalance between the old and new classes causes the
model to overfit the new classes and incorrectly predict non-
new-class regions as new class, resulting in false positives.
Moreover, if the new data contains similar classes to the old
classes, the model will confuse them. We will demonstrate
the above phenomenon in Section 4.3.

We propose a class deconfusion strategy (CDS) for this
problem. First, when training on data with only a small
number of new classes, the new classes occupy a large pro-
portion of the segmentation loss, which reduces the net-
work’s attention to the old classes. Thus we reduce the

weight of the segmentation loss for the new classes to allevi-
ate overfitting. As shown in Eq. 2, we set the segmentation

loss weight ωi = λ
√
|Ct|
|C0:t| for new-class (argmax Ŷ t

i ∈
Ct), and otherwise to 1, and λ is a hyperparameter.

Second, to solve the confusion of similar new and old
classes, we need to improve the network’s ability to dis-
criminate between old and new classes, and treat the old and
new classes more balanced in the training process. There-
fore, we propose to classify all the old classes into one class
to improve the concentration of the old classes, and generate
an old-new binary mask Bt:

Bt
i =

{
1, if argmax Ŷ t

i ∈ Ct

0, otherwise
(7)

And we sum the masks of the new and old classes in the seg-
mentation prediction St ∈ R|C0:t|×H×W respectively along
the channel dimension, and obtain two masks predicted for
the old St

O ∈ R1×H×W and new St
N ∈ R1×H×W class:

St
Oi =

∑|C0:t−1|

c=0
St
c,i ; St

N i =
∑|Ct|

c=|C0:t−1|+1
St
c,i (8)

Then, we add a new loss to use the binary mask Bt as
the supervision for the old and new class masks St

O and
St
N . We use Dice loss as the objective function, where Dice

loss is proposed by [30] to solve the imbalance of the fore-
ground and background in binary segmentation, and our bi-
nary mask loss is formulated as:

LBM = (1−
2
∑HW

i=1 B
t
iS

t
N i∑HW

i=1 B
t
i
2
+
∑HW

i=1 S
t
N i

2 )

+(1−
2
∑HW

i=1 B̃
t
iS

t
Oi∑HW

i=1 B̃
t
i

2
+
∑HW

i=1 S
t
Oi

2
)

(9)

where B̃t
i is the non of Bt

i . More effectiveness analyses of
our deconfusion strategy will be demonstrated in Section
4.3. The total loss of our method is:

L = LWCE + LFOD + LBM (10)

4. Experiments
4.1. Experimental Setup

Datasets. We conduct extensive experiments on Pascal
VOC [11] and ADE20k [49]. Pascal VOC contains 20 fore-
ground classes with 10,582 images for training and 1,449
images for testing. ADE20k contains 150 classes with
20,210 images for training and 2,000 images for testing.

Incremental Protocols. To evaluate the incremental
learning ability, the dataset is divided into different subsets
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Table 1. Comparison of class-incremental semantic segmentation results on Pascal VOC under different settings. † denotes results from
[8, 48], and ∗ denotes the results re-implemented on our transformer framework.

19-1 (2 steps) 15-5 (2 steps) 15-1 (6 steps)
Disjoint Overlapped Disjoint Overlapped Disjoint OverlappedMethod Frame

1-19 20 all 1-19 20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all 1-15 16-20 all

EWC† [20] 23.20 16.00 22.90 26.90 14.00 26.30 26.70 37.70 29.40 24.30 35.50 27.10 0.30 4.30 1.30 0.30 4.30 1.30
ILT† [28] 69.10 16.40 66.40 67.75 10.88 65.05 63.20 39.50 57.30 67.08 39.23 60.45 3.70 5.70 4.20 8.75 7.99 8.56
MiB† [2] 69.60 25.60 67.40 71.43 23.59 69.15 71.80 43.30 64.70 76.37 49.97 70.08 46.20 12.90 37.90 34.22 13.50 29.29
SDR† [29] 69.90 37.30 68.40 69.10 32.60 67.40 73.50 47.30 67.20 75.40 52.60 69.90 59.20 12.90 48.10 44.70 21.80 39.20
PLOP† [8] 75.37 38.89 73.64 75.35 37.35 73.54 71.00 42.82 64.29 75.73 51.71 70.09 57.86 13.67 46.48 65.12 21.11 54.64
RECALL [27] 65.20 50.10 65.80 67.90 53.50 68.40 66.30 49.80 63.50 66.60 50.90 64.00 66.00 44.90 62.10 65.70 47.80 62.70
REMIND [32] - - - 76.48 32.34 74.38 - - - 76.11 50.74 70.07 - - - 68.30 27.23 58.52
RC [45] - - - - - - 75.00 42.80 67.30 78.80 52.00 72.40 66.10 18.20 54.70 70.60 23.70 59.40
SPPA [25] 75.50 38.00 73.70 76.50 36.20 74.60 75.30 48.70 69.00 78.10 52.90 72.10 59.60 15.60 49.10 66.20 23.30 56.00
RBC† [48]

CNN

76.43 45.79 75.01 77.26 55.60 76.23 75.12 49.71 69.89 76.59 52.78 70.92 61.68 19.52 51.60 69.54 38.44 62.14
Joint 77.40 78.00 77.40 77.40 78.00 77.40 79.10 72.56 77.39 79.10 72.56 77.39 79.10 72.56 77.39 79.10 72.56 77.39
MiB* 80.61 45.17 79.61 79.91 47.70 79.10 74.98 59.90 72.27 78.62 63.10 75.62 66.74 26.32 58.28 72.55 23.14 61.73
RBC* 80.94 42.05 79.68 80.24 38.79 78.99 77.70 59.06 74.05 78.86 62.01 75.53 69.03 28.37 60.54 75.90 40.15 68.24
Ours

TransF
82.39 64.18 82.15 82.54 60.95 82.14 81.59 62.17 77.60 82.53 69.25 79.93 81.42 57.05 76.25 79.60 59.56 75.55

Joint 83.03 73.56 82.58 83.03 73.56 82.58 83.26 77.97 82.58 83.26 77.97 82.58 83.26 77.97 82.58 83.26 77.97 82.58

Table 2. Comparison on Pascal VOC 10-1 overlapped setting.

Method 1-10 11-20 all
MiB [2] 20.0 (-59.8) 20.1 (-52.5) 20.1 (-58.1)
SDR [29] 32.4 (-47.4) 17.1 (-55.5) 25.1 (-53.1)
PLOP [8] 44.0 (-35.8) 15.5 (-57.1) 30.5 (47.7)
RECALL [27] 59.5 (-20.3) 46.7 (-25.4) 54.8 (-23.4)
RC [45] 55.4 (-24.4) 15.1 (-57.5) 34.3 (-43.9)
Joint (CNN) 79.8 72.6 78.2
Ours 77.62 (-3.36) 60.33 (-22.58) 70.16 (-12.42)
Joint (TransF) 80.98 82.91 82.58

for multi-step learning according to the classes. And [2] fur-
ther proposes different division settings: disjoint and over-
lap. In the disjoint setting, the data in each step only con-
tains the old classes C0:t−1 learned in the previous steps
and the current classes Ct, without the future classes, and
the old classes are labeled as the background. In the overlap
setting, the data of each step further contains future classes,
which is more consistent with realistic scenes.

Following the common protocols [2,8], for Pascal VOC,
we evaluate our method on multiple division benchmarks,
including: 15-5 (2 steps, first training on 15 classes, then
on the 5 new classes), 19-1 (2 steps), 15-1 (6 steps), and
more challenging 10-1 (11 steps). For ADE20k, we evalu-
ate on: 100-50 (2 steps), 50-50 (3 steps), 100-10 (6 steps)
and 100-5 (11 steps). For metrics, we use mean Intersection
over Union (mIoU). Specifically, after retraining T steps,
we compute the mIoU of the initial classes C1 to evaluate
the stability, the mIoU of the following steps C2:T to evalu-
ate the plasticity, and the mIoU of all classes to evaluate the
overall performance. We further use mean False Positive
(mFP, where in each class, FP is the proportion of the area
of wrong prediction to the total area predicted to this class,
mFP is to average FP of all classes) in ablation studies to

evaluate the degree of model overfitting to new classes.
Implementation Details. We build our method on the

transformer framework [36], the vision encoder adopts ViT-
B/16 [7] pre-trained on ImageNet [6], and the decoder con-
tains two layers of transformer. The input image is cropped
to 512×512 following common setting [2,48]. In the initial
step, we train our method on Pascal VOC with learning rate
1e-4 for 32 epochs and ADE20k with 1e-3 for 64 epochs,
and the learning rate is half of the initial value in the follow-
ing steps. For the single-class per step protocols, we reduce
the learning rate and iterations in part of steps to prevent
overfitting. At step t of incremental learning, we initialize
the current model with the old model parameters from step
t − 1, and the old class tokens (except the background) are
fixed and the new class tokens are randomly initialized.

4.2. Comparisons with the state-of-the-arts

Pascal VOC. We first perform experiments on Pascal
VOC. As reported in Table 1, our method significantly out-
performs the previous state-of-the-art methods by a large
margin on all three protocols (about 6∼14 absolute points
on all mIoU). For short-step learning, our method outper-
forms the previous best by 7.14 (disjoint) and 5.91 (over-
lapped) points on all mIoU in 19-1 setting, and 7.71 and
7.53 points in 15-5 setting. For the long-step, the superiority
of our method is more obvious. In 6 steps setting 15-1, our
method outperforms the previous best by 14.15 and 13.85
absolute points on all mIoU, and outperforms the previous
methods by a large margin on both old and new classes.

Further, we evaluate our method on a longer setting 10-1
overlapped (11 steps), which is shown in Table 2. In longer
learning steps, our method has a stronger ability to learn
new classes, while forgetting much fewer old classes than
the previous. Our method outperforms the previous best by
15.36 points on all mIoU, and even though the previous best
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Table 3. Comparison of class-incremental semantic segmentation results on ADE20k under the overlapped setting .

100-50 (2 steps) 50-50 (3 steps) 100-10 (6 steps) 100-5 (11 steps)Method 1-100 101-150 all 1-50 51-150 all 1-100 101-150 all 1-100 101-150 all
MiB [2] 40.52 17.17 32.79 45.57 21.01 29.31 38.21 11.12 29.24 36.01 5.66 25.96
SDR [29] 37.40 24.80 33.20 40.90 23.80 29.50 28.90 7.40 21.70 - - -
PLOP [8] 41.66 15.42 32.97 47.75 21.60 30.43 39.42 13.63 30.88 39.11 7.81 28.75
REMINDER [32] 41.55 19.16 34.14 47.11 20.35 29.39 38.96 21.28 33.11 - - -
RC [45] 42.30 18.80 34.50 48.30 25.00 32.50 39.30 17.60 38.90 38.50 11.50 29.60
SPPA [25] 42.90 19.90 35.20 49.80 23.90 32.50 41.00 12.50 31.50 - - -
RBC [48] 42.90 21.49 35.81 49.59 26.32 34.18 39.01 21.67 33.27 - - -
Joint (CNN) 43.90 27.20 38.30 50.90 32.10 38.30 43.90 27.20 38.30 43.90 27.20 38.30
MiB* 46.40 34.95 42.58 52.21 35.56 41.11 42.95 30.80 38.90 40.21 26.59 35.67
Ours 49.42 35.62 44.82 56.15 37.81 43.92 48.47 34.62 43.85 46.93 31.31 41.72
Joint (TransF) 49.79 37.09 45.56 56.43 40.12 45.56 49.79 37.09 45.56 49.79 37.09 45.56

Table 4. Component ablation results on Pascal VOC 15-1 over-
lapped setting. We use the pseudo-labeling based transformer
framework in Sec. 3.2 plus VKD as the baseline, gradually add
our proposed FOD (including Vis FOD and Cls FOD) in Sec. 3.3
and CDS in Sec. 3.4 to get our complete Incrementer.

VKD Vis FOD Cls FOD CDS 1-15 16-20 all
X 73.73 24.49 62.96

X 75.27 31.77 65.82
X X 74.88 32.27 65.62

X X 75.96 39.93 68.23
X X X 79.60 59.56 75.55

method RECALL [27] utilizes additional synthetic data, our
method still achieves much higher performance on all three
metrics. Even compared with previous methods based on
respective joint training, ours only forgets -3.36 points on
the initial classes after 11 steps, compared to the previous
best of -20.3 points. Meanwhile, our method has a stronger
learning ability for new classes with a gap of -22.58 points
from joint training, which is much better than the previous
with a gap of more than -50 points. This proves that our
method not only preserves the stability of the old knowl-
edge, but also improves the plasticity of the new knowledge.

For a more fair comparison, we re-implemented the pre-
vious methods on our transformer framework, including
the classic method MiB [2] and the previous best method
RBC [48], and the comparison is shown at the bottom of
Table 1. Based on the transformer, the above two meth-
ods achieve performance improvements, but our method
still outperforms them by 2∼15 points in the three proto-
cols, especially in long-step learning, which demonstrates
the effectiveness of our proposed new knowledge distilla-
tion scheme (FOD) and class deconfusion strategy (CDS).

ADE20k. We further perform experiments on the more
challenging ADE20k dataset. As shown in Table 3, in the
short-step settings (100-50 and 50-50), our method outper-
forms existing methods on all mIoU by more than 9 abso-
lute points. More importantly, in the long-step setting, aside
from much higher performance, based on the joint training
results of the respective frameworks, our method achieves
performance close to the short-step setting on new classes

while maintaining less forgetting on old classes, where ours
forgets -1.32 points in 100-10 and -2.86 points in 100-5,
while the previous best forgets -2.9 and -3.79 points. All
above experimental results on the above datasets verify that
our proposed transformer framework Incrementer is a pow-
erful and robust pipeline for incremental learning, and our
proposed FOD and CDS can balance the stability and plas-
ticity of the model better, especially in long-step learning.

4.3. Ablation Studies

To verify the effectiveness of our proposed knowledge
distillation scheme focusing on old classes (FOD) and class
deconfusion strategy (CDS), we perform ablation experi-
ments on the 15-1 overlapped setting of Pascal VOC.

Component Ablations. Our distillation scheme FOD
consists of two parts, knowledge distillation focusing on
old-class of visual embedding features (Vis FOD) and class
embedding features (Cls FOD). To verify the effectiveness
of the two distillation schemes, we take the pseudo-labeling
based transformer framework introduced in Section 3.2 as
the basis, and add vanilla feature knowledge distillation
(VKD) as the baseline, where VKD distills all visual em-
beddings, and the baseline do not reduce the weight of new
classes in the segmentation loss. As shown in the first two
rows of Table 4, we first compare VKD and our proposed
Vis FOD. Our Vis FOD not only outperforms VKD by 7.28
points on the new classes, but also 1.54 points higher the
on old ones, which shows that compared to distilling all
features, distilling only the old-class features is more con-
ducive to stability-plasticity balance. Next, we compare the
performance after adding Cls FOD, as shown in the third
and fourth rows of Table 4, we combine Cls FOD with
VKD and Vis FOD respectively, where Cls FOD+Vis FOD
is the complete FOD, and Cls FOD further improves the all
mIoU by∼2.5 points. Our full FOD improves the method’s
performance for new classes by over 15 points. Finally, we
add CDS to get our full method, and CDS further improves
the performance of our method for new classes by nearly 20
points. The above results verify that our proposed FOD and
CDS greatly improve the plasticity of the model for new
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Table 5. Ablation results of CDS on Pascal VOC 15-1 overlapped. We use our Incrementer w/o CDS as the baseline, and add the two parts
of CDS (ω and LBM ) respectively, to show the impact of ω and LBM on the mIoU of each class and the mFP of the old and new classes.

S0 S1 S2 S3 S4 S5 mIoU mFP(↓)
Class aero bike bird boat bottle bus car cat chair cow table dog horse motor person pot sheep sofa train tv all 1-15 16-20 all
w/o CDS 81.20 43.15 90.19 66.73 86.00 46.31 86.18 95.33 42.82 71.81 66.69 93.48 89.27 90.45 89.82 50.43 31.86 45.47 38.93 32.99 68.23 9.16 38.76 16.56
w/ ω 92.04 44.16 92.33 75.65 86.35 87.06 89.58 95.98 48.39 78.54 68.60 94.22 89.84 90.46 89.56 29.47 0.75 53.95 44.36 50.73 71.27 9.30 22.45 12.59
w/ LBM 81.09 43.47 89.64 67.85 86.12 60.72 86.96 95.39 43.88 77.82 65.09 93.24 90.63 90.35 89.76 62.31 83.45 46.24 50.62 48.21 73.67 9.44 32.58 15.22
w/ CDS 85.86 43.42 90.32 70.98 86.37 76.44 88.79 95.77 45.62 79.55 66.53 93.34 91.36 90.14 89.58 62.64 74.11 50.83 56.36 53.86 75.55 9.15 26.80 13.03

Image GTOursRBC*MiB*

Figure 3. Comparison of visualization results on Pascal VOC 15-1 overlapped setting.

classes while improving the stability for old ones.
Analysis of Class Deconfusion Strategy. In the incre-

mental learning process, the performance of new classes is
often much lower than joint training. Our proposed FOD
significantly alleviates this problem, but there is still a large
room for improvement, especially in the setting of long-
step with few new classes. To analyze this issue, we first
observed the relationship between the old and new classes,
and found that if the new class has similarities with an old
class, such as ‘sheep’ and ‘cow’, ‘train’ and ‘bus’, the per-
formance of these similar classes will drop significantly, as
shown on the left side of Table 5. Further, we calculated
the proportion of false positives (mFP) in the old and new
classes, as shown on the right side of Table 5, it can be ob-
served that the mFP of the new classes is much higher than
that of the old ones, which means that the model overfits
the new classes and incorrectly identifies non-new-class re-
gions as new class. In summary, the model overfits the new
classes in the incremental learning process, and generates a
large number of false positives, which reduces the mIoU of
the new classes, and also confuses the similar old and new
classes, resulting in the performance drop of the old classes.

To solve this problem, we propose DCS, including re-
ducing the segmentation loss weight ω for new classes to
alleviate overfitting, and using the old-new binary mask loss
LBM to improve the ability of the model to distinguish old
and new classes. In Table 5, we use our method without
CDS as the baseline and add ω and LBM respectively. First,
with ω in segmentation loss, the loss weights of the new
classes are reduced, so the model’s overfitting to the new
classes is alleviated, and the mFP of the new classes drops

significantly, but it limits the ability of the model to learn
new classes, especially similar ones. Second, with LBM ,
the ability of the model to distinguish similar classes is im-
proved, but it still overfits the new classes with high mFP.
Therefore, we combine the above two and get our CDS,
which takes their advantages, not only reduces the overfit-
ting of new classes, but also improves the discrimination of
similar classes, thus obtaining better overall performance.

Qualitative Results. Fig. 3 shows the visualized seg-
mentation results of the three methods based on transformer.
For some classes that are easy to be confused, such as ‘bus’,
‘seep’, MiB [2] and RCB [48] either forget or have difficulty
to distinguish these classes, resulting in inaccurate segmen-
tation predictions. In contrast, our method can distinguish
confusing classes without forgetting old classes and gener-
ate more accurate segmentation results.

5. Conclusion
In this paper, we propose a new transformer-based

framework, Incrementer, for class-incremental semantic
segmentation. Based on this framework, we further pro-
pose FOD, a knowledge distillation scheme focusing on old
classes, to balance model stability and plasticity. And a
class deconfusion strategy (CDS) is proposed to alleviate
the model’s overfitting to new classes and the confusion of
similar classes. Our method outperforms the SOTAs by a
large margin on both Pascal VOC and ADE20k datasets.
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