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Abstract

Natural videos captured by consumer cameras often suf-
fer from low framerate and motion blur due to the combi-
nation of dynamic scene complexity, lens and sensor imper-
fection, and less than ideal exposure setting. As a result,
computational methods that jointly perform video frame in-
terpolation and deblurring begin to emerge with the unreal-
istic assumption that the exposure time is known and fixed.
In this work, we aim ambitiously for a more realistic and
challenging task - joint video multi-frame interpolation and
deblurring under unknown exposure time. Toward this goal,
we first adopt a variant of supervised contrastive learn-
ing to construct an exposure-aware representation from in-
put blurred frames. We then train two U-Nets for intra-
motion and inter-motion analysis, respectively, adapting to
the learned exposure representation via gain tuning. We
finally build our video reconstruction network upon the ex-
posure and motion representation by progressive exposure-
adaptive convolution and motion refinement. Extensive ex-
periments on both simulated and real-world datasets show
that our optimized method achieves notable performance
gains over the state-of-the-art on the joint video ×8 interpo-
lation and deblurring task. Moreover, on the seemingly im-
plausible ×16 interpolation task, our method outperforms
existing methods by more than 1.5 dB in terms of PSNR.

1. Introduction
When capturing videos, shutter period (i.e., the inverse

of the framerate) and exposure time are two major factors
that we are able to manipulate for improved video qual-
ity, compared to other confounding factors such as object
motion in the scene, lens imperfection, and sensor limita-
tions [3]. Particularly, a long shutter period corresponds to
lower framerate, and a longer exposure time increases the
possibility of introducing severer motion blur (see Fig. 1).
Often, we have good control over the shutter period in the
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Figure 1. Visualization of motion blur under different exposure
time and object motion. Frames from the left to right are obtained
with increasing exposure time, leading to severer degree of motion
blur. The situation may be worse if stronger motion is present, as
illustrated by images in the second row.

form of the framerate, which is, nevertheless, quite lim-
ited in consumer cameras (e.g., 30 frames per second, or
FPS). This is not the case for exposure time, which may
constantly and dynamically change depending on the video
shooting environment, e.g., illumination and reflection con-
ditions [25]. Therefore, video frame interpolation (also
known as framerate up-conversion [5, 10, 15]) and video
deblurring methods (under unknown exposure time) are
crucial for improving the quality of low framerate blurred
videos, and are widely applicable to video editing, video
compression, and slow-motion video generation.

In literature, video frame interpolation [21,30,42,48] and
video deblurring [9, 35] have long been treated as individ-
ual problems and tackled separately with worth-celebrating
successes. A straightforward approach to joint video frame
interpolation and deblurring is to deploy deblurring meth-
ods followed by frame interpolation. However, this type
of cascaded methods usually cannot obtain satisfactory re-
construction results, since algorithm-dependent deblurring
artifacts would be propagated to and amplified in interpo-
lated frames [41]. Similar situations will occur if we cas-
cade video frame interpolation first [1]. This inspires re-
cent work [1, 34, 41, 47] to cast video frame interpolation
and deblurring (or super-resolution) as a joint and emerg-
ing low-level vision problem. However, these methods as-
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sume known and fixed exposure time in the video degrada-
tion model, which is unrealistic, especially when the auto-
exposure mode is enabled. Thus, they are bound to general-
ize poorly in the real-world.

Currently, there are two studies [25, 51] considering the
setting of unknown exposure time. Zhang et al. [51] com-
puted generic quadratic motion trajectories from consec-
utive blurred (or estimated sharp) frames. They directly
cascaded existing deblurring and frame interpolation meth-
ods, suffering from the error propagation problem. Benefit-
ing from additional event cameras [4], Kim [25] proposed
an event-guided and end-to-end optimized video deblurring
method under unknown exposure time, but event sensors
have not been equipped on consumer cameras, restricting
its practical applications.

In this work, we aim ambitiously for the more realis-
tic and challenging task - joint video multi-frame interpola-
tion and deblurring under unknown exposure time. Our pri-
mary design philosophy is adaptive computation: we adapt
our Video frame Interpolation and Deblurring method un-
der Unknown Exposure time (VIDUE) to exposure-aware
and motion-aware representations, where the computation
of the motion-aware representation is further adapted to the
exposure-aware representation. To achieve this, we first
adopt a variant of supervised contrastive learning to ex-
tract an exposure-aware representation from a low framerate
blurred video. We then train two U-Nets: one is responsible
for intra-motion analysis (e.g., assessing motion complexity
within each frame); the other is responsible for inter-motion
analysis (e.g., assessing motion continuity between frames).
We adapt the two U-Nets to the exposure-aware representa-
tion via gain tuning [31] (also can be seen as a variant of
sequence-and-excitation [16]). We last develop a video re-
construction network with a U-Net-like structure, which en-
ables exposure-adaptive convolution and motion refinement
in a progressive fashion.

Extensive experiments on both synthetic and real
datasets show that the proposed VIDUE consistently pro-
duces higher-quality deblurred and ×8 interpolated frames
both visually and in terms of standard quality metrics.
Moreover, VIDUE exhibits significant performance gains
(≥ 1.5 dB) over the state-of-the-art on the seemingly im-
plausible ×16 interpolation and deblurring task.

2. Related Work

2.1. Video Frame Interpolation

The video industry has long been interested in increas-
ing the temporal resolution of a video sequence, i.e., fram-
erate up conversion [7, 10, 18], with primary application to
video compression. The problem resurges in the computer
vision community under the name of video frame interpo-
lation along with the renaissance of deep learning. Both

Center-Frame Interpolation (CFI) [2, 11, 30, 33] and Multi-
Frame Interpolation (MFI) [17, 19, 48] have been exten-
sively investigated. For center-frame interpolation, Niklaus
et al. [33] proposed separable kernel prediction networks to
handle large motion, optimized by “perceptual” losses [20].
Bao et al. [2] proposed to incorporate depth information
during interpolation to combat occlusion through bidirec-
tional flow estimation. Lee et al. [30] combined and gen-
eralized the kernel-based and flow-based methods by offset
prediction, and introduced an adversarial loss to examine
the naturalness of the interpolated frame w.r.t. adjacent in-
put frames. For multi-frame interpolation, more complex
motion trajectory models need to be specified compared to
the linear model assumption typically used in center-frame
interpolation. Xu et al. [48] proposed a quadratic inter-
polation scheme to allow the inter-motion to be curvilin-
ear. Chi et al. [8] proposed a cubic-based motion model
with a relaxed warping loss to further boost interpolation
accuracy for complex motion scenes. Huang et al. [17] de-
signed the so-called privileged distillation scheme for real-
time arbitrary timestamp frame interpolation. In addition,
Kalluri et al. [21] cast multi-frame interpolation as a self-
supervised pretext task to benefit downstream video appli-
cations, such as action recognition and video object track-
ing. 3D convolutions were adopted for spatiotemporal fea-
ture extraction. All these methods would encounter diffi-
culties when processing motion-blurred videos because the
optical flow/motion estimation as the core module will be-
come less accurate.

2.2. Image and Video Deblurring

Traditionally, image deblurring is formulated as a Max-
imum A Posteriori (MAP) problem, which relies heav-
ily on natural image priors, such as total variation [6],
smoothness priors based on Markov random fields [37],
normalized sparsity [28], and color-line priors [29]. Re-
cent image deblurring methods adopt a pure data-driven
approach, learning to deblur from massive deblurred-clean
image pairs [9, 49]. Among popular architectural de-
sign choices, coarse-to-fine estimation has been extensively
studied [9, 12, 32, 36]. For example, Chi et al. [9] adopted
a U-Net to accept blurred images of multiple scales, and
produce the corresponding set of sharp images in parallel.
Alternatively, Ren et al. [38] proposed an unsupervised im-
age deblurring scheme by leveraging deep priors [44] of
both underlying sharp images and blur kernels. For video
deblurring, the added temporal dimension can be coped
with recurrent computation [14, 52], optical flow estima-
tion [26,35,40], and deformable convolution [45], aided by
handcrafted priors [35] or complementary modalities [40].
Image/video deblurring can only restore existing blurred
frames, even motion information between input frames are
computed to facilitate deblurring, which is kind of computa-
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tional waste. Therefore, it is rational to consider joint video
frame interpolation and deblurring, especially when the mo-
tion between consecutive frames is computed in either case.

2.3. Joint Video Interpolation and Deblurring

Recently, some researchers began to address the problem
of joint video frame interpolation and deblurring. Shen et
al. [41] proposed a pyramidal method for center-frame in-
terpolation and deblurring. Argaw et al. [1] adopted a
motion-based approach for not only multi-frame interpo-
lation but also extrapolation. Oh et al. [34] introduced
flow-guided attention and recursive feature refinement to
improve the reconstruction performance. All these meth-
ods assume known and fixed exposure time, which is less
realistic. Closest to ours, Zhang et al. [51] chose to cas-
cade deblurring and interpolation networks under unknown
exposure time. However, the performance would inevitably
be compromised by the inaccuracy of the optical flow mod-
ule in the deblurring network. Here, the proposed VIDUE
is designed to adapt its computation to exposure-aware and
motion-aware representations for joint video multi-frame
interpolation and deblurring under unknown exposure time.

3. Proposed VIDUE
In this section, we first present the problem formulation

of joint video frame interpolation and deblurring under un-
known exposure time, and then describe in detail the pro-
posed VIDUE method, consisting of an exposure-aware fea-
ture extractor ge, an intra- and inter-motion analyzer ga, and
a video reconstruction network f .

3.1. Problem Formulation

When capturing a video frame, the shutter period ∆t in-
cludes two phases: the exposure phase ∆te and the effective
readout phase ∆tr, where ∆t = ∆te +∆tr. Given a video
with T frames y = {yt}Tt=1, the t-th frame yt is essentially
an integral of the latent image xτ at each instant time τ over
the exposure time ∆te:

yt =
1

∆te

∫ τ=t·∆t+∆te

τ=t·∆t

xτdτ. (1)

For consumer-grade cameras, the captured videos for dy-
namic scenes usually suffer from low framerate and blur due
to long shutter period with a large portion of exposure time.
Joint video ×S interpolation and deblurring aims to recover
a high framerate video with sharp frames: x = {xt}T×S

t=1

from the observed video y. In this work, we assume the
shutter period ∆t is known, while the exposure time ∆te
is not, and thus ∆te is directly linked to the strength of the
motion blur. It is noteworthy that the formulation in Eq. (1)
is different from DeMFI [34], which synthesizes blur by
directly averaging consecutive frames, while ignoring the
readout phase.

3.2. Exposure-Aware Feature Extractor

Our first design choice is that the video reconstruction
network f should adapt to different exposure time. For
the ×S interpolation task, we have the same number of S
exposure time durations, where ∆te ∈ {1, 2, . . . , S} and
∆t = S in Eq. (1). ∆te : ∆t = S : S means that the ef-
fective readout time ∆tr is zero. That is, the actual readout
phase is fully overlapped with the next exposure phase.

We work with a mini-batch of input video sequences,
from which we create two multiviewed versions by ap-
plying horizontal and vertical flipping, 90◦ rotation, and
random cropping to obtain B = {(y(i),∆t

(i)
e )}|B|

i=1 with
y(i) ∈ R(T×3)×H×W . We combine the temporal and chan-
nel dimensions into one to naı̈vely enable spatiotemporal
analysis using 2D convolutions. We adopt a variant of
ResNet18 as ge : R(T×3)×H×W 7→ RC×1, where we re-
place the classification head with two Fully-Connected (FC)
layers with leaky ReLU nonlinearity in between, to extract
the exposure-aware feature representation u(i) ∈ RC×1.

We want to make the feature representations {u(i)} cor-
responding to different exposure time to be as discrimina-
tive as possible. Thus we resort to supervised contrastive
learning [24], and introduce the relative weighting to indi-
cate the difference in exposure time between each sample
and the anchor:

ℓws =
∑
u∈B

−1

|P|
∑
v∈P

log
exp (u⊺v/α)∑

v′∈B\{u}
w(u,v′) · exp (u⊺v′/α)

,

(2)
where u denotes the anchor, P contains positive samples
that share the same exposure time with the anchor, and
α is a fixed temperature parameter. The relative weight-
ing can be straightforwardly computed by w(u(i),u(j)) =∣∣∣∆t

(i)
e −∆t

(j)
e

∣∣∣. We also try to formulate the exposure-
aware feature representation learning as ordinal regres-
sion [13], but obtain worse final results (see Table 4). Af-
ter training, the exposure-aware feature extractor ge is fixed
during the training of the motion analyzer and the final re-
construction network.

3.2.1 Intra- and Inter-Motion Analyzer

Our second design choice is that the video reconstruction
network f should adapt to different motion patterns pre-
sented in dynamic scenes. We choose to analyze both
intra-motion within each video frame, which is relevant to
motion complexity (captured in a given exposure time pe-
riod ∆te), and inter-motion between frames, which is perti-
nent to motion continuity (captured in a given shutter pe-
riod ∆t). Our motion analyzer ga : R(T×3)×H×W 7→
RT×1×H×W × R(S×T )×2×H×W , computes, from an input
video sequence y(i), T intra-motion maps and S × T inter-
motion maps of the same spatial size, respectively, whose
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Figure 2. Overview of the reconstruction network of VIDUE, by which low framerate blurred video y with T frames can be reconstructed
to high framerate sharp video with S × T frames for the ×S interpolation and deblurring task. The reconstruction network is built upon
the exposure-aware representation u and motion-aware representations m and n by exposure-adaptive convolution, and we implement
progressive motion refinement for better reconstruction performance.
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Figure 3. Overview of the proposed progressive motion refinement
module. We first refine the intra-motion maps m(l) with the help
of g(l) to obtain m̃(l), and then refine the inter-motion maps n(l)

based on m̃(l) and u. Finally, we obtain the motion-refined output
feature ĝ(l) by warping the input feature g(l) according to ñ(l),
followed by further refinement and incorporation of the upsampled
ĝ(l−1) from the previous stage via addition.

computation is adaptive to the exposure-aware representa-
tion u(i).
Intra-Motion Analysis. We adopt a pre-trained light-
weight U-Net [50], in which we tune the “gain” (i.e., a sin-
gle multiplicative scaling parameter) of each channel of the
intermediate representations z ∈ RC′×H′×W ′

(in the ex-
pansive path [39]):

gi• = u′
i · zi•, u′ = σ (W⊺

2LReLU (W⊺
1u)) . (3)

Here zi• stands for the i-th channel, and u′ ∈ RC′×1

is the gain vector computed from the exposure-aware rep-
resentation u by two FC layers with leaky ReLU in be-
tween, followed by a Sigmoid function σ(·). {W1,W2}
are learnable weight matrices. Eq. (3) can also be seen as
a form of the squeeze-and-excitation operation [16], where

we “squeeze” the raw video sequence into u′ through u,
and use it to “excite” z. The results from the U-Net
are intra-motion offsets o(s) ∈ RT×2×H×W and o(e) ∈
RT×2×H×W , which are the starting and ending positions
of estimated motion trajectories in horizontal and vertical
directions, respectively. We compute the final intra-motion
maps m ∈ RT×1×H×W by subtracting o(e) from o(s), fol-
lowed by root mean squared of the subtracted offsets. Intra-
motion maps can also be integrated into ge to improve rep-
resentation capabilities.
Inter-Motion Analysis. We adopt a second randomly
initialized light-weight U-Net, taking the estimated intra-
motion offsets o(s) and o(e) as inputs, and producing inter-
motion maps n ∈ R(S×T )×2×H×W . The adaptive gain tun-
ing in Eq. (3) is also enabled in the expansive path of the
U-Net. The detailed network specifications of the motion
analyzer can be found in the supplementary.

3.3. Video Reconstruction Network

It is then ready to describe our video reconstruction net-
work f : RT×3×H×W 7→ R(S×T )×3×H×W , which is built
upon the exposure-aware representation u and the motion-
aware representations m and n by progressive exposure-
adaptive convolution and motion refinement. The architec-
ture is shown in Fig. 2.

We first feed the input video sequence y ∈
R(T×3)×H×W into an encoder, which consists of four
stages of residual blocks, separated by the spatially down-
sampling layers. Each residual block contains two 3 × 3
convolution layers with leaky ReLU in between. Similarly,
the decoder is composed of three stages of one transposed
convolution for upsampling, residual blocks, one exposure-
adaptive convolution, and one motion refinement module,
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Method Inference time (sec) GoPro-5:8 GoPro-7:8
/ Framerate (FPS) Deblurring Interpolation Avg Deblurring Interpolation Avg

CDVD-TSP+QVI 1.02 / 7.84 33.06 / 0.952 30.02 / 0.914 30.40 / 0.918 31.39 / 0.933 29.39 / 0.902 29.64 / 0.906
CDVD-TSP+RIFE 0.40 / 20.00 29.95 / 0.907 30.34 / 0.913 29.15 / 0.892 29.44 / 0.897
MIMOUNetPlus+QVI 0.78 / 10.26 34.42 / 0.961 30.48 / 0.920 30.97 / 0.925 33.15 / 0.951 30.18 / 0.915 30.55 / 0.920
MIMOUNetPlus+RIFE 0.16 / 50.00 30.83 / 0.921 31.28 / 0.926 30.33 / 0.913 30.69 / 0.918
UTI-VFI 0.68 / 11.76 — — 34.40 / 0.965 — — 33.28 / 0.955
FLAVR 0.50 / 16.00 35.78 / 0.968 34.20 / 0.959 34.39 / 0.960 33.72 / 0.953 33.36 / 0.952 33.41 / 0.952
DeMFI 3.19 / 2.51 36.69 / 0.974 34.77 / 0.965 35.01 / 0.967 35.01 / 0.964 34.43 / 0.962 34.50 / 0.962
VIDUE (Ours) 0.27 / 29.63 37.74 / 0.980 36.12 / 0.973 36.32 / 0.974 36.12 / 0.973 35.56 / 0.970 35.63 / 0.970

Table 1. PSNR / SSIM comparison results on the GoPro dataset. “Deblurring” and “Interpolation” columns contain the reconstruction
results of the input and interpolated frames, respectively, while the “Avg” column summarizes the average performance.

Blurred Frame TSP + QVI TSP + RIFE MIMO + QVI MIMO + RIFE UTI-VFI FLAVR DeMFI VIDUE (Ours) GT
Figure 4. Visual comparison on the GoPro dataset. Orange and green boxes indicate cropped patches for zoomed-in comparison from
deblurred and interpolated frames, respectively. TSP and MIMO are short for CDVD-TSP and MIMOUNetPlus, respectively. GT stands
for the ground-truth patches cropped from the reference high framerate video.

followed by a back-end residual block and a convolution
layer for channel number adjustment.
Exposure-Adaptive Convolution. Motivated by [22, 23],
we propose to further convolve the intermediate representa-
tion z from the residual blocks using a filter bank, in which
we adapt the filter weights to the exposure-aware represen-
tation u. We generate the filter weights w by

u′ = W⊺
2LReLU (W⊺

1u) ,

wijk =
w′

ijk · u′
i√∑

i,k(w
′
ijk · u′

i)
2 + ϵ

, (4)

where {w′,W1,W2} are learnable, and i, j, and k index
the input feature channel, the output feature channel, and
the spatial footprint of the convolution, respectively. ϵ is
a small positive constant to avoid numerical instability is-
sues. As in [23], we first perform instance normalization
of the feature representation z with the learnable scaling
factor and the bias term, followed by the exposure-adaptive
convolution to obtain g (refer to the notations in Fig. 2).
Motion Refinement Module. At the l-th stage for l ∈
{1, 2, 3}, the motion refinement module accepts g(l) from
the exposure-adaptive convolution as input, whose channel
dimension is adjusted by a 1 × 1 convolution. The intra-
motion maps m and the inter-motion maps n are accord-
ingly resized to the same spatial size with g(l), denoted
by m(l) and n(l), respectively. We refine the intra-motion
maps by

m̃(l) = σ
(
Conv

(
Concat

(
m(l), g(l)

))
+m(l)

)
, (5)

where Conv(·) denotes a 3× 3 convolution, Concat(·) de-
notes the concatenation operation along the channel dimen-
sion, and + indicates that we rely on a residual connection
for implementation. We continue to refine the inter-motion
maps n(l) based on m̃(l):

ñ(l)= Conv(E Conv(n(l),u)⊙ m̃(l)+n(l) ⊙ (1−m̃(l))),
(6)

where E Conv(·) stands for the exposure-adaptive convo-
lution and ⊙ is an element-wise multiplication operation.
Progressive Reconstruction. Finally, we make use of the
refined inter-motion maps ñ(l) and the input features g(l)

for progressive reconstruction:

ĝ(l) = Refine(Warp(g(l), ñ(l))) + Up(ĝ(l−1)), (7)

where Warp(·) denotes the backward warping func-
tion [35], and Up(·) denotes the bilinear upsampling op-
eration. Refine(·) is implemented by a front-end convo-
lution layer, two residual blocks, and a back-end convolu-
tion layer. To initialize progressive reconstruction, we set
ĝ(0) = 0 as a tensor with all zeros, and summarize one
stage of processing in Fig. 3. At last, we add g(4) (i.e., the
output of the back-end residual block and convolution layer
in the decoder) to ĝ(3) to estimate the high framerate sharp
video sequence x̂ ∈ R(S×T )×3×H×W .

During training, we optimize all modules in the proposed
VIDUE method (except for the exposure-aware feature ex-
tractor) using a variant of stochastic gradient descent by
minimizing the Mean Absolute Error (MAE) between the
ground-truth high framerate sharp video sequences and their
predictions by VIDUE.
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Method Adobe-5:8 Adobe-7:8
Deblurring Interpolation Avg Deblurring Interpolation Avg

CDVD-TSP+QVI 29.34 / 0.896 23.34 / 0.739 24.10 / 0.759 27.57 / 0.862 23.42 / 0.741 23.94 / 0.756
CDVD-TSP+RIFE 23.29 / 0.729 24.06 / 0.750 23.31 / 0.730 23.85 / 0.747
MIMOUNetPlus+QVI 29.71 / 0.894 23.48 / 0.741 24.27 / 0.761 27.69 / 0.854 23.52 / 0.740 24.05 / 0.754
MIMOUNetPlus+RIFE 23.85 / 0.748 24.59 / 0.767 23.76 / 0.744 24.26 / 0.758
UTI-VFI — — 26.69 / 0.842 — — 25.84 / 0.815
FLAVR 28.52 / 0.869 27.05 / 0.841 27.23 / 0.845 26.98 / 0.834 26.94 / 0.837 26.94 / 0.837
DeMFI 27.24 / 0.848 25.49 / 0.814 25.71 / 0.818 25.81 / 0.813 25.64 / 0.814 25.66 / 0.814
VIDUE (Ours) 30.44 / 0.905 28.50 / 0.876 28.74 / 0.880 27.85 / 0.864 27.92 / 0.867 27.91 / 0.866

Table 2. PSNR / SSIM comparison results on the Adobe dataset.

Blurred Frame
TSP + QVI TSP + RIFE MIMO + QVI MIMO + RIFE UTI-VFI FLAVR DeMFI VIDUE (Ours) GT

Figure 5. Visual comparison on the Adobe dataset. Orange and green patches are from deblurred and interpolated frames, respectively.

4. Experiments
In this section, we evaluate VIDUE on both synthetic and

real-world datasets. More results including reconstructed
videos can be found in the supplementary. The source code
is implemented in Pytorch, and is made publicly available
at https://github.com/shangwei5/VIDUE. We
also provide an implementation in HUAWEI Mindspore
at https://github.com/Hunter-Will/VIDUE-
mindspore.

4.1. Datasets

To establish simulated datasets for quantitative perfor-
mance comparison of video interpolation and deblurring,
we synthesize low framerate videos according to Eq. (1) by
downsampling high framerate videos [34, 51]. The exper-
iments are conducted on both the GoPro dataset [32] and
the Adobe dataset [43]. On the GoPro dataset with ×8 in-
terpolation (and deblurring) task, we set S = 8 by which
an original 240 FPS video is degraded to 30 FPS. For a fair
comparison, we set exposure frames to two odd numbers,
i.e., ∆te : ∆t ∈ {5 : 8, 7 : 8}, since existing methods
require the middle frame as reference. As for training, we
sample ∆te : ∆t ∈ {1 : 8, 2 : 8, . . . , 8 : 8} to generate
blurred frames as a form of data augmentation to train the
exposure-aware feature extractor ge. On the Adobe dataset
with ×8 interpolation (and deblurring) task, the synthetic
setting is identical, but the blurring artifacts are more severe
by setting a longer shutter period. Furthermore, we evaluate
the generalizability of VIDUE against competing methods
on real-world data from the RealBlur dataset [43].

4.2. Implementation Details

We set the input frame number T = 4, and the the
exposure-aware feature dimension C = 256. The temper-

ature parameter in Eq. (2) and the normalizing constant in
Eq. (4) is set to α = 0.5 and ϵ = 1×10−5, respectively. We
adopt the Adam [27] optimizer with the default setting for
training ge with an initial learning rate of 0.1 and a mini-
batch size of 40. Similarly, we adopt the AdaMax [27] op-
timizer with parameters β1 = 0.9 and β2 = 0.999 for train-
ing ga and f , and set the initial learning rate and the mini-
batch size to 2 × 10−4 and 12, respectively. We train the
models for 200 epochs, and halve the learning rate when-
ever the training plateaus, which is cross-validated as done
in [21]. VIDUE is trained on 4 Tesla V100 GPUs, and can
make inference on a single GTX 2080 Ti GPU. Throughout
the paper, we use the Peak Signal-to-Noise Ratio (PSNR)
and the Structural SIMilarity (SSIM) index [46] as the eval-
uation metrics.

4.3. Evaluation on ×8 Interpolation Task

We compare VIDUE with both cascade and joint meth-
ods. For cascade methods, deblurring methods CDVD-
TSP [35], MIMOUNetPlus [9] and interpolation methods
QVI [48], RIFE [17] are cascaded for video deblurring and
interpolation. We also take UTI-VFI [51] into comparison,
which handles unknown exposure time. For joint meth-
ods, we include FLAVR [21] and DeMFI [34]. It is worth
noting that the original FLAVR is an interpolation method
with sharp inputs, and we retrain it on the same training
sets to tackle joint video interpolation and deblurring. For
MIMOUNetPlus and RIFE, we find that models provided
by the respective authors perform better than our retrained
counterparts, and thus we stick to the official implementa-
tions for evaluation.
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Method GoPro-9:16 GoPro-11:16 GoPro-13:16 GoPro-15:16 Avg
CDVD-TSP+QVI 25.70 / 0.786 25.45 / 0.780 25.20 / 0.774 24.97 / 0.767 25.33 / 0.777
CDVD-TSP+RIFE 26.08 / 0.797 25.74 / 0.788 25.41 / 0.780 25.12 / 0.772 25.59 / 0.784
MIMOUNetPlus+QVI 26.12 / 0.794 25.97 / 0.791 25.78 / 0.787 25.49 / 0.780 25.84 / 0.788
MIMOUNetPlus+RIFE 26.95 / 0.821 26.71 / 0.815 26.41 / 0.808 25.98 / 0.797 26.51 / 0.810
UTI-VFI 28.59 / 0.876 28.17 / 0.866 27.40 / 0.845 26.37 / 0.814 27.63 / 0.851
FLAVR 28.77 / 0.875 28.71 / 0.875 28.43 / 0.870 28.04 / 0.860 28.49 / 0.870
DeMFI 28.64 / 0.876 28.67 / 0.878 28.49 / 0.873 28.11 / 0.863 28.48 / 0.873
VIDUE (Ours) 31.10 / 0.922 29.91 / 0.906 29.90 / 0.905 29.50 / 0.898 30.10 / 0.908

Table 3. PSNR / SSIM comparison results on the GoPro dataset for joint ×16 interpolation and deblurring.

Blurred Frame TSP + QVI TSP + RIFE MIMO + QVI MIMO + RIFE UTI-VFI FLAVR DeMFI VIDUE (Ours)
Figure 6. Visual comparison on the RealBlur dataset. Orange and green patches are from deblurred and interpolated frames, respectively.

Setting GoPro-5:8 GoPro-7:8
Exposure-Agnostic 34.79 / 0.965 34.13 / 0.960
Ordinal Regression 35.44 / 0.969 34.97 / 0.966
Contrastive Learning 36.32 / 0.974 35.63 / 0.970
Known Exposure Time 36.41 / 0.974 35.87 / 0.971

Table 4. Role of the exposure-aware feature representation u eval-
uated by PSNR / SSIM. The default setting is highlighted in bold.

4.3.1 Comparison on the GoPro Dataset

As mentioned previously, we create two versions of the Go-
Pro dataset, “GoPro-5:8” and “GoPro-7:8”, with different
exposure time, and list the comparison results in Table 1.
We find that cascade methods are significantly worse than
joint methods, with a PSNR gap of almost 3 to 6 dB. In
comparison with joint methods, VIDUE achieves about 1.0
to 1.1 dB PSNR gains for deblurring, and about 1.1 to 1.4
dB PSNR gains for interpolation, respectively. In terms of
visual comparison in Fig. 4, cascade methods fail in inter-
polating sharp frames. The deblurring results of the joint
methods FLAVR and DeMFI are satisfactory, but they are
still limited in interpolation. This is because the unknown
exposure time setting is not carefully modeled, and latent
sharp frames during the readout phase cannot be properly
reconstructed. In stark contrast, VIDUE is able to adapt
to different exposure time based on the learned exposure-
aware feature representation, and achieves noticeable per-
formance gains on this challenging task of joint video multi-
frame interpolation and deblurring. In addition, we test the
inference time (and framerate) of all methods on the GoPro
dataset. We calculate the average running time of recon-
structing 8 frames (i.e., using ×8 interpolation as the ex-
ample) on the Tesla V100 GPU. We find from Table 1 that
VIDUE shows clear advantages over all competing meth-
ods except for the light-weight cascade method (i.e., MI-

MOUNetPlus+RIFE, which does not deliver convincing re-
construction performance). DeMFI involves extensive re-
current computation, leading to the longest inference time
among all methods. In summary, the proposed VIDUE en-
joys faster inference time, and achieves the best reconstruc-
tion performance, which justifies our key design philosophy
of adaptive computation to deblurring and interpolation rel-
evant features.

4.3.2 Comparison on the Adobe Dataset

We evaluate the joint ×8 interpolation and deblurring per-
formance of VIDUE against the competing methods in Ta-
ble 2 and Fig. 5. Despite more severe blurring artifacts than
those in the GoPro dataset, we come to similar conclusions
that joint methods are superior over cascade methods. The
most competitive method - DeMFI - experiences a signif-
icant performance drop due to the presence of the heavy
blur. VIDUE still outperforms FLAVR about 0.9 to 1.9 dB
for deblurring, and about 1.0 to 1.4 dB for interpolation,
respectively. From Fig. 5, one can see that the competing
methods fail to restore sharp frames, while VIDUE still ob-
tains visually favorable results even in the presence of the
strong blur.

4.3.3 Generalization to Real-World Videos

Finally, we evaluate the generalizability of VIDUE on real-
world blurred frames by testing the model trained on the
GoPro dataset to interpolate and deblur video data from the
RealBlur dataset. As shown in Fig. 6, VIDUE achieves
the most visually plausible interpolation and deblurring re-
sults with sharper structures and textures, while others suf-
fer from visually annoying artifacts.
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Exposure Representation Intra- Inter- Motion GoPro-5:8 GoPro-7:8Squeeze-and-Excitation E Conv Motion Motion Refinement
% % % % % 34.79 / 0.965 34.13 / 0.960
% ! % % % 36.05 / 0.972 34.87 / 0.963
% ! % ! % 36.18 / 0.973 35.27 / 0.968
% ! ! % ! 36.20 / 0.973 35.24 / 0.968
% ! ! ! % 36.23 / 0.974 35.28 / 0.968
! % ! ! ! 36.12 / 0.973 35.39 / 0.969
% ! ! ! ! 36.32 / 0.974 35.63 / 0.970

Table 5. Module analysis of VIDUE on the GoPro dataset.

4.4. Evaluation on ×16 Interpolation Task

Without auxiliary information (e.g., event signals [25]),
joint ×16 interpolation and deblurring is extremely diffi-
cult, and is rarely evaluated in literature. We conduct this
experiment on the GoPro dataset, and list the results in Ta-
ble 3. VIDUE achieves more than 1.5 dB gains than ex-
isting methods, and performs consistently better under all
exposure time settings, which are unknown. More visual
comparisons are provided in the supplementary.

4.5. Ablation Studies

4.5.1 Effectiveness of Exposure-Aware Representation

As shown in Table 4, four VIDUE variants are trained on the
GoPro dataset to verify the effectiveness of the exposure-
aware feature representation u: 1) one that is exposure-
agnostic (i.e., without learning and adapting to u), 2) one
that learns u using ordinal regression, 3) one that learns
u using supervised contrastive learning combined with rel-
ative weighting (as the default setting), 4) one with the
known exposure time (as a form of upper bound). To lever-
age the known exposure time, we first represent it as an
S-dimensional vector with the first ∆te entries being one
and the remaining entries being zero. We then use two
FC layers with leaky ReLU in between to map it into a
C-dimensional feature representation, which can be readily
adapted in VIDUE. As reported in Table 4, both exposure-
aware feature representations learned by ordinal regression
and supervised contrastive learning bring significant im-
provements than the exposure-agnostic variant. Compared
to ordinal regression, our default choice of supervised con-
trastive learning is able to approach the “upper bound” with
the known exposure time. We believe this arises because
contrastive learning provides a more direct way of encour-
aging discriminative feature learning than ordinal regres-
sion learns to rank different exposure time.

4.5.2 Module Analysis

We single out the contribution of each component of
VIDUE using the GoPro dataset. The first row in Table 5
shows the results of a plain U-Net, while the second row

is obtained by a simplified VIDUE without motion analy-
sis and adaptation in the decoder. Surprisingly, the simpli-
fied VIDUE achieves better results than existing methods,
(see Tables 1 and 5). The performance gains by VIDUE
is mostly attributed to the use of the exposure-aware rep-
resentation by contrasting it to the plain U-Net. We next
remove each component of VIDUE to verify its necessity.
Most importantly, removing motion refinement leads to per-
formance drops under different exposure time, especially
when the exposure time is large (i.e., when the motion is
strong). We also replace the exposure-adaptive convolution
(i.e., E Conv defined in Eq. (4)) with the sequence-and-
excitation operation [16], and find that E Conv is more ef-
fective in leveraging the exposure-aware representation. As
expected, the full VIDUE achieves the best interpolation
and deblurring performance.

5. Conclusion
We have described a computational method - VIDUE -

for joint video multi-frame interpolation and deblurring un-
der unknown exposure time. We trained contrastively to ex-
tract exposure-aware feature representation, which can then
be embedded into intra- and inter-motion analyzer and the
video reconstruction network via gain tuning and exposure-
adaptive convolution, respectively. We refined the estimated
motion representations for better progressive video recon-
struction. We demonstrated the superiority of VIDUE on
both synthetic and real-world datasets to perform ×8 and
×16 interpolation and deblurring tasks. Future work can be
planed to 1) further reduce the computational complexity of
VIDUE while retaining (or improving) the performance and
2) to optimize VIDUE by perceptual quality metrics with
emphasis on temporal coherence.
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