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Figure 1. Different from existing single-modal forgery detection tasks, DGM4 not only performs real/fake classification on the input
image-text pair, but also attempts to detect more fine-grained manipulation types and ground manipulated image bboxes and text tokens.
They provide more comprehensive interpretation and deeper understanding about manipulation detection besides the binary classification.
(FS: Face Swap Manipulation, FA: Face Attribute Manipulation, TS: Text Swap Manipulation, TA: Text Attribute Manipulation)

Abstract

Misinformation has become a pressing issue. Fake me-
dia, in both visual and textual forms, is widespread on the
web. While various deepfake detection and text fake news
detection methods have been proposed, they are only de-
signed for single-modality forgery based on binary classi-
fication, let alone analyzing and reasoning subtle forgery
traces across different modalities. In this paper, we high-
light a new research problem for multi-modal fake me-
dia, namely Detecting and Grounding Multi-Modal Media
Manipulation (DGM4). DGM4 aims to not only detect the
authenticity of multi-modal media, but also ground the ma-
nipulated content (i.e., image bounding boxes and text to-
kens), which requires deeper reasoning of multi-modal me-
dia manipulation. To support a large-scale investigation,
we construct the first DGM4 dataset, where image-text pairs
are manipulated by various approaches, with rich anno-
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tation of diverse manipulations. Moreover, we propose a
novel HierArchical Multi-modal Manipulation rEasoning
tRansformer (HAMMER) to fully capture the fine-grained
interaction between different modalities. HAMMER per-
forms 1) manipulation-aware contrastive learning between
two uni-modal encoders as shallow manipulation reason-
ing, and 2) modality-aware cross-attention by multi-modal
aggregator as deep manipulation reasoning. Dedicated ma-
nipulation detection and grounding heads are integrated
from shallow to deep levels based on the interacted multi-
modal information. Finally, we build an extensive bench-
mark and set up rigorous evaluation metrics for this new re-
search problem. Comprehensive experiments demonstrate
the superiority of our model; several valuable observations
are also revealed to facilitate future research in multi-modal
media manipulation.

1. Introduction

With recent advances in deep generative models, in-
creasing hyper-realistic face images or videos can be au-
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Table 1. Comparison of the proposed DGM4 with existing tasks related to image and text forgery detection.

Problem Setting Image Forgery Text Forgery Multi-Modal
Forgery DetectionDetection Grounding Detection Grounding

DeepFake Detection [26, 55] " % % % %

Text Fake News Detection [48, 53] % % " % %

Multi-Modal Misinformation Detection [1, 25] % % % % "

DGM4 " " " " "

tomatically generated, which results in various security is-
sues [35–41, 43, 52] such as serious deepfake problem [7,
12, 21, 34, 42] spreading massive fabrication on visual me-
dia. This threat draws great attention in computer vision
community and various deepfake detection methods have
been proposed. With the advent of Large Language Model,
e.g., BERT [6], GPT [31], enormous text fake news [48, 53]
can be readily generated to maliciously broadcast mislead-
ing information on textual media. Natural Language Pro-
cessing (NLP) field pays great attention to this issue and
presents diverse text fake news detection methods.

Compared to a single modality, the multi-modal media
(in form of image-text pairs) disseminates broader infor-
mation with greater impact in our daily life. Thus, multi-
modal forgery media tends to be more harmful. To cope
with this new threat with a more explainable and inter-
pretable solution, this paper proposes a novel research prob-
lem, namely Detecting and Grounding Multi-Modal Media
Manipulation (DGM4). As shown in Table 1 and Fig. 1,
two challenges are brought by DGM4: 1) while current
deepfake detection and text fake news detection methods
are designed to detect forgeries of single modality, DGM4

demands simultaneously detecting the existence of forgery
in both image and text modality and 2) apart from binary
classification like current single-modal forgery detection,
DGM4 further takes grounding manipulated image bound-
ing boxes (bboxes) and text tokens into account. This
means existing single-modal methods are unavailable for
this novel research problem. A more comprehensive and
deeper reasoning of the manipulation characteristics be-
tween two modalities is of necessity. Note that some multi-
modal misinformation works [1, 25] are developed. But
they are only required to determine binary classes of multi-
modal media, let alone manipulation grounding.

To facilitate the study of DGM4, this paper contributes
the first large-scale DGM4 dataset. In this dataset, we study
a representative multi-modal media form, human-centric
news. It usually involves misinformation regarding politi-
cians and celebrities, resulting in serious negative influ-
ence. We develop two different image manipulation (i.e.,
face swap/attribute manipulation) and two text manipula-
tion (i.e., text swap/attribute manipulation) approaches to
form the multi-modal media manipulation scenario. Rich
annotations are provided for detection and grounding, in-
cluding binary labels, fine-grained manipulation types, ma-
nipulated image bboxes and manipulated text tokens.

Compared to pristine image-text pairs, manipulated
multi-modal media is bound to leave manipulation traces
in manipulated image regions and text tokens. All of
these traces together alter the cross-modal correlation and
thus cause semantic inconsistency between two modali-
ties. Therefore, reasoning semantic correlation between
images and texts provides hints for the detection and
grounding of multi-modal manipulation. To this end, in-
spired by existing vision-language representation learning
works [16, 17, 30], we propose a novel HierArchical Multi-
modal Manipulation rEasoning tRansformer (HAMMER)
to tackle DGM4. To fully capture the interaction between
images and texts, HAMMER 1) aligns image and text em-
beddings through manipulation-aware contrastive learning
between two uni-modal encoders as shallow manipulation
reasoning and 2) aggregates multi-modal embeddings via
modality-aware cross-attention of multi-modal aggregator
as deep manipulation reasoning. Based on the interacted
multi-modal embeddings in different levels, dedicated ma-
nipulation detection and grounding heads are integrated hi-
erarchically to detect binary classes, fine-grained manipula-
tion types, and ground manipulated image bboxes, manipu-
lated text tokens. This hierarchical mechanism contributes
to more fine-grained and comprehensive manipulation de-
tection and grounding. Main contributions of our paper:
• We introduce a new research problem Detecting and

Grounding Multi-Modal Media Manipulation (DGM4),
with the objective of detecting and grounding manipula-
tions in image-text pairs of human-centric news.

• We contribute a large-scale DGM4 dataset with samples
generated by two image manipulation and two text ma-
nipulation approaches. Rich annotations are provided for
detecting and grounding diverse manipulations.

• We propose a powerful HierArchical Multi-modal
Manipulation rEasoning tRansformer (HAMMER). A
comprehensive benchmark is built based on rigorous eval-
uation protocols and metrics. Extensive quantitative and
qualitative experiments demonstrate its superiority.

2. Related Work
DeepFake Detection. To detect face forgery images, cur-
rent deepfake detection methods are built based on spa-
tial and frequency domains. Spatial-based deepfake de-
tection methods exploit spatial visual cues, such as blend-
ing artifacts [19], textural features [4, 55, 57], 3D infor-
mation [57], patch consistency [56] and noise character-
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istics [10]. Frequency-based deepfake detection methods
detect spectrum artifacts, like high-frequency components
decomposed from Discrete Fourier Transform (DFT) [8],
subtle frequency discrepancy derived from Discrete Co-
sine Transform (DCT) [29], up-sampling artifacts hidden
in phase spectrum [23] and frequency-based metric learn-
ing [18]. Most of the above deepfake detection methods
only perform binary classification in image media, not to
mention manipulation grounding across multi-modalities.
Multi-Modal Misinformation Detection. Several exist-
ing works study the detection of multi-modal misinforma-
tion [1, 2, 13, 15, 25, 49]. Some of them deal with a small-
scale human-generated multi-modal fake news [13, 15, 49],
while others address out-of-context misinformation where
a real image is paired with another swapped text with-
out image and text manipulation [1, 2, 25]. All of these
methods only perform binary classification based on simple
image-text correlation. In contrast, DGM4 studies large-
scale machine-generated multi-media manipulation, which
is closer to broad misinformation on the web in practice.
Additionally, DGM4 requires not only manipulation detec-
tion for binary classification, but also manipulation ground-
ing with more interpretation for multi-modal manipulation.

3. Multi-Modal Media Manipulation Dataset
Most of existing misinformation datasets focus on

single-modal image forgery [7, 12, 20, 34] or text forgery
[44, 48, 53]. Some multi-modal datasets are built, but
they usually contain a small amount of human-generated
fake news [5, 13] or out-of-context pairs [2, 25] for binary
forgery detection. To better facilitate the proposed novel re-
search problem, we present DGM4 dataset, studying large-
scale machine-generated multi-modal media manipulation.
DGM4 dataset is constructed with diverse manipulation
techniques on both Image and Text modality. All samples
are annotated with rich, fine-grained labels that enable both
Detection and Grounding of media manipulation.

3.1. Source Data Collection

Among all forms of multi-modal media, we specifically
focus on human-centric news, in consideration of its great
public influence. We thus develop our dataset based on the
VisualNews dataset [22], which collects numerous image-
text pairs from real-world news sources (The Guardian,
BBC, USA TODAY, and The Washington Post). To formu-
late a human-centric scenario with meaningful context, we
further conduct data filtering on both image and text modal-
ity, and only keep the appropriate pairs to form the source
pool O = {po|po = (Io, To)} for manipulation.

3.2. Multi-Modal Media Manipulation

We employ two types of harmful manipulations on both
image and text modality. ‘Swap’ type is designed to include

relatively global manipulation traces, while ‘Attribute’ type
introduces more fine-grained local manipulations. The ma-
nipulated images and texts are then randomly mixed with
pristine samples to form a total of 8 fake plus one original
manipulation classes. Distribution of manipulation classes
and some samples are displayed in Fig. 2 (a).
Face Swap (FS) Manipulation. In this manipulation type,
the identity of the main character is attacked by swapping
his/her face with another person. We adopt two representa-
tive face swap approaches, SimSwap [3] and InfoSwap [9].
For each original image Io, we choose one of the two ap-
proach to swap the largest face Ifo with a random source
face Ifceleb from CelebA-HQ dataset [14], producing a face
swap manipulation sample Is. The MTCNN bbox of the
swapped face ybox = {x1, y1, x2, y2} is then saved as an-
notation for grounding.
Face Attribute (FA) Manipulation. As a more fine-
grained image manipulation scenario, face attribute manip-
ulation attempts to manipulate the emotion of the main char-
acter’s face while preserving the identity. For example, if
the original face is smiling, we deliberately edit it to the op-
posite emotion, e.g., an angry face. To achieve this, we first
predict the original facial expression of the aligned face Ifo
with a CNN-based network, then edit the face towards the
opposite emotion using GAN-based methods, HFGI [47]
and StyleCLIP [28]. After obtaining the manipulated face
Ifemo, we re-render it back to the original image Io to obtain
the manipulated sample Ia. Bbox ybox is also provided.
Text Swap (TS) Manipulation. In this scenario, the text is
manipulated by altering its overall semantic while preserv-
ing words regarding main character. Given an original cap-
tion To, we use Named Entity Recognition (NER) model to
extract the person’s name as query ‘PER’. Then we retrieve
a different text sample T ′

o containing same ‘PER’ entity
from the source corpus O. T ′

o is then selected as the manip-
ulated text Ts. Note that we compute the semantic embed-
ding of each text using Sentence-BERT [32] and only accept
T ′
o that has low cosine similarity with To. This ensures the

retrieved text is not semantically aligned with To, so that the
text semantic regarding the main character in the obtained
pair pm = (Io, Ts) is manipulated. After that, given M
text tokens in Ts, we annotate them with a M -dimensional
one-hot vector ytok = {yi}Mi=1, where yi ∈ {0, 1} denotes
whether the i-th token in Ts is manipulated or not.
Text Attribute (TA) Manipulation. Although news is a
relatively objective media form, we observe that a consid-
erable portion of news samples po ∈ O still carry senti-
ment bias within the text To, as depicted in Fig. 2 (d). The
malicious manipulation of text attributes, especially its sen-
timent tendency, could be more harmful and also harder
to be detected as it causes less cross-modal inconsistency
than text swap manipulation. To reflect this specific situa-
tion, we first use a RoBERTa [24] model to split the cap-
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Figure 2. Statistics of DGM4 dataset. (a) Distribution of manipulation classes; (b) manipulated regions of most images are small-size,
especially for face attribute manipulation; (c) manipulated tokens of text attribute manipulation are fewer than text swap manipulation; (d)
distribution of text sentiment scores in the source pool. (e) number of manipulated samples towards each face/text attribute direction.

tions into positive, negative and neutral sentiment corpora:
{O+, O−, Oneu}. Following [45], we replace all sentiment
words of the original text To with the opposite sentiment
text generated by a B-GST model trained on our own cor-
pora {O+, O−}, obtaining Ta. Similar to text swap manip-
ulation, all text tokens are also annotated with ground-truth
vector ytok.
Combination and Perturbation. Once all single-modal
manipulations are finished, we combine the obtained ma-
nipulation samples Is, Ia, Ts and Ta with the original
(Io, To) pairs. This forms a multi-modal manipulated me-
dia pool with full manipulation types: P = {pm|pm =
(Ix, Ty), x, y ∈ {o, s, a}}. Each pair pm in the pool is pro-
vided with a binary label ybin, a fine-grained manipulation
type annotation ymul, aforementioned annotations ybox and
ytok. ybin describes whether the image-text pair pm is real
or fake, and ymul = {yj}4j=1 is a 4-dimensional vector de-
noting whether the j-th manipulation type (i.e., FS, FA, TS,
TA) appears in pm. To better reflect the real-world situation
where manipulation traces may be covered up by noise, we
employ random image perturbations on 50% of the media
pool P , such as JPEG compression, Gaussian Blur, etc.

3.3. Dataset Statistics

The overall statistics of DGM4 dataset are illustrated in
Fig. 2 (a). It consists a total of 230k news samples, includ-
ing 77,426 pristine image-text pairs and 152,574 manipu-
lated pairs. The manipulated pairs contain 66,722 face swap
manipulations, 56,411 face attribute manipulations, 43,546
text swap manipulations and 18,588 text attribute manip-
ulations. ∼1/3 of the manipulated images and ∼1/2 of
the manipulated text are combined together to form 32,693
mixed-manipulation pairs. Since both image and text at-
tributes can be edited towards two opposite sentiment direc-
tions, we deliberately keep a balanced proportion to create

an emotionally-balanced dataset, as shown in Fig. 2 (e).
Furthermore, it can be observed from Fig. 2 (b)-(c) that

the manipulated regions of most images and the number
of manipulated text tokens are relatively small. This in-
dicates DGM4 dataset provides a much more challenging
scenario for forgery detection compared to existing deep-
fake and multi-modal misinformation datasets.

4. HAMMER
To address DGM4, as illustrated in Fig. 3, we pro-

pose a HierArchical Multi-modal Manipulation rEasoning
tRansformer (HAMMER), which is composed of two uni-
modal encoders (i.e., Image Encoder Ev , Text Encoder Et),
Multi-Modal Aggregator F , and dedicated manipulation
detection and grounding heads (i.e., Binary Classifier Cb,
Multi-Label Classifier Cm, BBox Detector Dv , and Token
Detector Dt). All of these uni-modal encoders and multi-
modal aggregator are built based on transformer-based ar-
chitecture [46]. As mentioned above, modeling semantic
correlation and capturing semantic inconsistency between
two modalities can facilitate detection and grounding of
multi-modal manipulation. However, there exist two chal-
lenges 1) as discussed in Sec. 3.3 and shown in Fig. 2 (b)-
(c), a large portion of multi-modal manipulations are minor
and subtle, locating in some small-size faces and a few word
tokens and 2) much visual and textual noise [17] exists in
multi-modal media on the web. As a result, some semantic
inconsistencies caused by manipulation may be neglected
or covered by noise. This demands more fine-grained rea-
soning of multi-modal correlation. To this end, we devise
HAMMER to perform hierarchical manipulation reason-
ing which explores multi-modal interaction from shallow
to deep levels, along with hierarchical manipulation detec-
tion and grounding. In the shallow manipulation reason-
ing, we carry out semantic alignment between image and
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Figure 3. Overview of proposed HAMMER. It 1) aligns image and text embeddings through manipulation-aware contrastive learning
between Image Encoder Ev , Text Encoder Et in shallow manipulation reasoning and 2) further aggregates multi-modal embeddings
via modality-aware cross-attention of Multi-Modal Aggregator F in deep manipulation reasoning. Based on the interacted multi-modal
embeddings in different levels, various manipulation detection and grounding heads (Multi-Label Classifier Cm, Binary Classifier Cb,
BBox Detector Dv , and Token Detector Dt) are integrated to perform their tasks hierarchically. Modules with dashed lines mean they are
the corresponding momentum versions of Image Encoder, Text Encoder, Multi-Modal Aggregator and Token Detector, respectively.

text embeddings through Manipulation-Aware Contrastive
Loss LMAC , and conduct manipulated bbox grounding un-
der Image Manipulation Grounding Loss LIMG. In the
deep manipulation reasoning, based on deeper interacted
multi-modal information generated by Multi-Modal Aggre-
gator, we then detect binary classes with Binary Classi-
fication Loss LBIC , fine-grained manipulation types with
Multi-Label Classification Loss LMLC , and ground manip-
ulated text tokens via Text Manipulation Grounding Loss
LTMG. By combing all the above losses, manipulation rea-
soning is performed hierarchically, contributing to a joint
optimization framework as follows:

L = LMAC + LIMG + LMLC + LBIC + LTMG (1)

4.1. Shallow Manipulation Reasoning

Given an image-text pair (I, T ) ∼ P , we patchify and
encode image I into a sequence of image embeddings via
self-attention layers and feed-forward networks in Image
Encoder as Ev(I) = {vcls, vpat}, where vcls is the em-
bedding of [CLS] token, and vpat = {v1, ..., vN} are em-
beddings of N corresponding image patches. Text Encoder
extracts a sequence of text embeddings of T as Et(T ) =
{tcls, ttok}, where tcls is the embedding of [CLS] token,
and ttok = {t1, ..., tM} are embeddings of M text tokens.
Manipulation-Aware Contrastive Learning. To help two
uni-modal encoders better exploit the semantic correlation
of images and texts, we align image and text embeddings
through cross-modal contrastive learning. Nevertheless,
some subtle multi-modal manipulations cause minor se-
mantic inconsistency between two modalities, which are
hardly unveiled by normal contrastive learning. To em-
phasize the semantic inconsistency caused by manipula-
tions, HAMMER proposes manipulation-aware contrastive
learning on image and text embeddings. Different from nor-
mal cross-modal contrastive learning pulling embeddings
of original image-text pairs close while only pushing those

of unmatched pairs apart, manipulation-aware contrastive
learning pushes away embeddings of manipulated pairs as
well so that semantic inconsistency produced by them can
be further emphasized. Following InfoNCE loss [27], we
formulate image-to-text contrastive loss by:

Lv2t(I, T
+, T−) = −Ep(I,T )

[
log

exp(S(I, T+)/τ)∑K
k=1 exp(S(I, T

−
k )/τ)

]
(2)

where τ is a temperature hyper-parameter, T− =
{T−

1 , ..., T−
K} is a set of negative text samples that are not

matched to I as well as that belong to manipulated image-
text pairs. Since [CLS] token serves as the semantic repre-
sentation of the whole image and text, we use two projection
heads hv and ĥt to map [CLS] tokens of two modalities
to a lower-dimensional (256) embedding space for similar-
ity calculation: S(I, T ) = hv(vcls)

Tĥt(t̂cls). Inspired by
MoCo [11], we learn momentum uni-modal encoders Êv ,
Êt (an exponential-moving-average version) and momen-
tum projection heads for two modalities respectively. Two
queues are used to store the most recent K image-text pair
embeddings. Here t̂cls are [CLS] tokens from text momen-
tum encoders and ĥt(t̂cls) means projected text embeddings
from text momentum projection head. Similarly, text-to-
image contrastive loss is as follows:

Lt2v(T, I
+, I−) = −Ep(I,T )

[
log

exp(S(T, I+)/τ)∑K
k=1 exp(S(T, I

−
k )/τ)

]
(3)

where I− = {I−1 , ..., I−K} is a queue of K recent nega-
tive image samples that are not matched to T as well as
that belong to manipulated image-text pairs. S(T, I) =

ht(tcls)
Tĥv(v̂cls). Inspired by [51], to maintain reasonable

semantic relation within each single modality, we further
carry out intra-modal contrastive learning in both modali-
ties. We incorporate all the losses to form Manipulation-
Aware Contrastive Loss as follows:

LMAC =
1

4
[Lv2t(I, T

+, T−) + Lt2v(T, I
+, I−)+

Lv2v(I, I
+, I−) + Lt2t(T, T

+, T−)]

(4)
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Manipulated Image Bounding Box Grounding. As men-
tioned above, FS or FA swaps identities or edits attributes of
faces in images. This alters their correlation to correspond-
ing texts in terms of persons’ names or emotions. Given
this, we argue that the manipulated image region could
be located by finding local patches that have inconsisten-
cies with the text embeddings. In this regard, we perform
cross-attention between image and text embeddings to ob-
tain patch embeddings that contain image-text correlation.
Attention function [46] is performed on normalized query
(Q), key (K), and value (V ) features as:

Attention(Q,K, V ) = Softmax(KTQ/
√
D)V (5)

Here we cross-attend the image embedding with text em-
bedding, by treating Q as image embedding, K and V as
text embedding as follows:

Uv(I) = Attention(Ev(I), Et(T ), Et(T )) + Ev(I) (6)

where Uv(I) = {ucls, upat}. upat = {u1, ..., uN} are N
image patch embeddings interacted with text information.
Unlike [CLS] token ucls, the patch tokens upat are gen-
erated with position encoding [46]. This means they pos-
sess richer local spatial information and thus are more suit-
able for manipulated image bbox grounding. Based on this
analysis, we propose Local Patch Attentional Aggregation
(LPAA) to aggregate the spatial information in upat via an
attentional mechanism. This aggregation is performed by
cross-attending a [AGG] token with upat as follows:

uagg = Attention([AGG], upat, upat) (7)

Different from previous work [54] directly using [CLS] to-
ken for bbox prediction, we perform the manipulated bbox
grounding based on the attentionally aggregated embed-
ding uagg. Specifically, we input uagg into BBox Detector
Dv and calculate Image Manipulation Grounding Loss by
combing normal ℓ1 loss and generalized Intersection over
Union (IoU) loss [33] as follows:

LIMG =E(I,T )∼P [∥Sigmoid(Dv(uagg))− ybox∥

+ LIoU(Sigmoid(Dv(uagg))− ybox)]
(8)

4.2. Deep Manipulation Reasoning

Manipulated token grounding is a tougher task than ma-
nipulated bbox grounding as it requires deeper analysis and
reasoning on the correlation between images and texts. For
example, as illustrated in Fig. 3, we are able to detect the
manipulated tokens in T , i.e., ‘force’ and ‘resign’, only
when we are aware of such negative words mismatching
the positive emotion (i.e., smiling faces) in I . Besides, we
need to summarize multi-modal information to detect fine-
grained manipulation types and binary classes. This de-
mands a comprehensive information summary at this stage.
To this end, we propose deep manipulation reasoning.
Manipulated Text Token Grounding. To model deeper
multi-modal interaction, as depicted in Fig. 3, we pro-
pose modality-aware cross-attention to further lead text em-
bedding Et(T ) to interact with image embedding Ev(I)

through multiple cross-attention layers in Multi-Modal Ag-
gregator F . This generates aggregated multi-modal em-
bedding F (Ev(I), Et(T )) = {mcls,mtok}. In particular,
mtok = {m1, ...,mM} represent the deeper aggregated em-
beddings corresponding to each token in T . At this stage,
each token in T has passed through multiple self-attention
layers in Et and cross-attention layers in F . In this way,
each token embedding in mtok not only entirely explores
the context information of text, but also fully interacts with
image features, which fits manipulated text tokens ground-
ing. Moreover, grounding manipulated tokens is equal to
labeling each token as real or fake. This is similar to se-
quence tagging task in NLP. Notably, unlike existing se-
quence tagging task mainly studied in text modality, manip-
ulated text token grounding here can be regarded as a novel
multi-modal sequence tagging since each token is interacted
with two modality information. In this case, we use a Token
Detector Dt to predict the label of each token in mtok and
calculate cross-entropy loss as follows:

Ltok = E(I,T )∼P H(Dt(mtok), ytok) (9)

where H(·) is the cross-entropy function. As mentioned,
news on the web is usually noisy with texts unrelated to
paired images [17]. To alleviate over-fitting to noisy texts,
as shown in Fig. 3, we further learn momentum versions for
Multi-Modal Aggregator and Token Detector, respectively,
denoted as F̂ and D̂t. We can obtain the multi-modal em-
bedding from momentum modules as F̂ (Êv(I), Êt(T )) =
{m̂cls, m̂tok}. Based on this, momentum Token Detector
generates soft pseudo-labels to modulate the original token
prediction, by calculating the KL-Divergence as follows:

Lmom
tok = E(I,T )∼PKL

[
Dt(mtok)∥D̂t(m̂tok)

]
(10)

The final Text Manipulation Grounding Loss is a weighted
combination as follows:

LTMG = (1− α)Ltok + αLmom
tok (11)

Fine-Grained Manipulation Type Detection and Binary
Classification. Unlike current forgery detection works
mainly performing real/fake binary classification, we ex-
pect our model to provide more interpretation for manip-
ulation detection. As mentioned in Sec. 3.2, two image
and two text manipulation approaches are introduced in
DGM4 dataset. Given this, we aim to further detect four
fine-grained manipulation types. As different manipulation
types could appear in one image-text pair simultaneously,
we treat this task as a specific multi-modal multi-label clas-
sification. Since [CLS] token mcls aggregates multi-modal
information after modality-aware cross-attention, it can be
utilized as a comprehensive summary of manipulation char-
acteristics. We thus concatenate a Multi-Label Classifier
Cm on top of it to calculate Multi-Label Classification Loss:

LMLC = E(I,T )∼P H(Cm(mcls), ymul) (12)

Naturally, we also conduct a normal binary classification
based on mcls as follows:

LBIC = E(I,T )∼P H(Cb(mcls), ybin) (13)

6909



Table 2. Comparison of multi-modal learning methods for DGM4.

Categories Binary Cls Multi-Label Cls Image Grounding Text Grounding
Methods AUC EER ACC mAP CF1 OF1 IoUmean IoU50 IoU75 Precision Recall F1

CLIP [30] 83.22 24.61 76.40 66.00 59.52 62.31 49.51 50.03 38.79 58.12 22.11 32.03
ViLT [16] 85.16 22.88 78.38 72.37 66.14 66.00 59.32 65.18 48.10 66.48 49.88 57.00

Ours 93.19 14.10 86.39 86.22 79.37 80.37 76.45 83.75 76.06 75.01 68.02 71.35

Table 3. Comparison of deepfake detection methods for DGM4.
Categories Binary Cls Image Grounding
Methods AUC EER ACC IoUmean IoU50 IoU75
TS [26] 91.80 17.11 82.89 72.85 79.12 74.06

MAT [55] 91.31 17.65 82.36 72.88 78.98 74.70
Ours 94.40 13.18 86.80 75.69 82.93 75.65

Table 4. Comparison of sequence tagging methods for DGM4.

Categories Binary Cls Text Grounding
Methods AUC EER ACC Precision Recall F1
BERT [6] 80.82 28.02 68.98 41.39 63.85 50.23

LUKE [50] 81.39 27.88 76.18 50.52 37.93 43.33
Ours 93.44 13.83 87.39 70.90 73.30 72.08

Table 5. Ablation study of image modality.

Categories Binary Cls Image Grounding
Methods AUC EER ACC IoUmean IoU50 IoU75

Ours-Image 93.96 13.83 86.13 75.58 82.44 75.80
Ours 94.40 13.18 86.80 75.69 82.93 75.65

Table 6. Ablation study of text modality.

Categories Binary Cls Text Grounding
Methods AUC EER ACC Precision Recall F1

Ours-Text 75.67 32.46 72.17 42.99 33.68 37.77
Ours 93.44 13.83 87.39 70.90 73.30 72.08

5. Experiments

Please refer to appendix for implementation details and
rigorous setup of evaluation metrics.

5.1. Benchmark for DGM4

Comparison with multi-modal learning methods. We
adapt two SOTA multi-modal learning methods to DGM4

setting for comparison. Specifically, CLIP [30] is one of
the most popular dual-stream approaches where two modal-
ities are not concatenated at the input level. For adaptation,
we make outputs of two streams interact with each other
through cross-attention layers. Detection and grounding
heads are further integrated on top of them. In addition,
ViLT [16] is a representative single-stream approach where
cross-modal interaction layers are operated on a concate-
nation of image and text inputs. We also adapt it by con-
catenating detection and grounding heads on corresponding
outputs of the model. We tabulate comparison results in
Table 2. The results show that the proposed method signifi-
cantly outperforms both baselines in terms of all evaluation
metrics. This demonstrates that hierarchical manipulation
reasoning is more able to accurately and comprehensively
model the correlation between images and texts and capture
semantically inconsistency caused by manipulation, con-
tributing to better manipulation detection and grounding.
Comparison with deepfake detection and sequence tag-

ging methods. We compare our method with competitive
uni-modal methods in two single-modal forgery data splits,
respectively. For a fair comparison, in addition to the orig-
inal ground-truth regarding binary classification, we fur-
ther integrate manipulation grounding heads into uni-modal
models with corresponding annotations of grounding. For
image modality, we tabulate the comparison with two SOTA
deepfake detection methods in Table 3. For text modality,
we compare two widely-used sequence tagging methods in
NLP to ground manipulated tokens along with binary clas-
sification. We report the comparison results in Table 4. Ta-
bles 3 and 4 show that HAMMER performs better than
uni-modal methods for single-modal forgery detection by a
large margin. This indicates our method trained with multi-
modal media also achieves promising manipulation detec-
tion and grounding performance in each single modality.

5.2. Experimental Analysis

Ablation study of two modalities. To validate the impor-
tance of multi-modal correlation for our model, we perform
ablation study by only keeping corresponding input and net-
work components with respect to image (Ours-Image) or
text (Ours-Text) modality. We tabulate results in Tables 5
and 6, showing the performance of complete version of our
model surpasses its ablated parts, especially in text modal-
ity. This suggests the performance degrades once one of
the two modalities is missing without cross-modal interac-
tion. This is to say, through exploiting correlation between
two modalities via our model, more complementary infor-
mation between them can be dug out to promote our task.
Particularly, this correlation is more essential for manipula-
tion detection and grounding in text modality.
Ablation study of losses. The considered losses and corre-
sponding results obtained for each case are tabulated in Ta-
ble 7. As evident from Table 7, removing the task-general
loss, i.e., LMAC , nearly all the performance degenerates.
This implies manipulation-aware contrastive learning is in-
dispensable for our task. After getting rid of any one of task-
specific losses, i.e., LMLC , LIMG and LTMG, not only the
performance of the corresponding task degrades dramati-
cally, but also the overall binary classification performance
probably becomes lower. Comparatively, our model with
the complete loss function obtains the best performance in
most of cases, indicating the effectiveness and complemen-
tarity of all losses. In particular, the first row of Table 7
represents the current multi-modal misinformation detec-
tion scenario where only LBIC is used. Our method sub-
stantially outperforms this baseline on binary classification,
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Table 7. Ablation study of losses in the proposed method.

Losses Binary Cls Multi-Label Cls Image Grounding Text Grounding
BIC MLC MAC IMG TMG AUC EER ACC mAP CF1 OF1 IoUmean IoU50 IoU75 Precision Recall F1
" 91.04 16.91 83.81 20.79 33.84 33.48 4.81 0.33 0.00 15.95 78.70 26.53
" " " " 91.74 16.08 84.39 27.22 30.81 27.62 74.05 81.34 72.59 74.30 66.84 70.37
" " " " 92.77 14.53 86.01 85.52 79.09 79.86 75.98 83.37 75.25 77.82 61.83 68.91
" " " " 93.21 14.30 86.28 86.29 79.37 80.32 4.69 0.17 0.00 75.72 67.44 71.34
" " " " 92.99 14.62 86.15 86.06 79.06 79.93 76.51 83.73 76.05 13.93 58.87 22.53
" " " " " 93.19 14.10 86.39 86.22 79.37 80.37 76.45 83.75 76.06 75.01 68.02 71.35

Figure 4. Efficacy of local patch
attentional aggregation (LPAA).

Figure 5. Performance of
each manipulation type.

implying more manipulation grounding tasks in DGM4 fa-
cilitate binary classification as well.

Efficacy of LPAA. Regarding manipulated bbox ground-
ing, we compare the usage of [CLS] token [54] with pro-
posed LPAA in Fig. 4. Fig. 4 shows LPAA yields better
performance under all metrics, verifying its efficacy.

Details of manipulation type detection. We plot the clas-
sification performance of each manipulation type based on
the output of Multi-Label Classifier in Fig. 5. The results
deliver more interpretation that text manipulation detection
is harder than image modality and TA is the hardest case.

Visualization of manipulation detection and grounding.
We provide some visualized results of manipulation detec-
tion and grounding in Fig. 6. Fig. 6 (a)-(b) show our method
can accurately ground manipulated bboxes and detect cor-
rect manipulation types for both FA and FS. Furthermore,
most of the manipulated text tokens in TS and all of those
in TA are successfully grounded in Fig. 6 (c)-(d). All of
them visually verify effective manipulation detection and
grounding can be achieved by HAMMER.

Visualization of attention map. We provide Grad-CAM
visualizations of our model regarding manipulated text to-
kens in Fig. 7. Fig. 7 (a) shows our model pays attention to
surroundings of the character in image. These surroundings
indicate the character is giving a speech, which is seman-
tically distinct from text tokens manipulated by TS. As for
TA, Fig. 7 (b) shows the per-word visualization with respect
to the manipulated word (‘mourn’). It implies our model
focuses on the smiling face in image that is semantically
inconsistent to the sad sentiment expressed from the manip-
ulated word (‘mourn’). These samples prove our model can
indeed capture the semantic inconsistency between images
and texts to tackle DGM4.

Caroline Flint trebled her majority in Don Valley
in the general election.

(a) GT: Fake-FS, Pred: Fake-FS

Thousands gathered in Liverpool on Wednesday
evening for a vigil to remember the victims.

(b) GT: Fake-FA, Pred: Fake-FA

French minister of the interior Bernard Cazeneuve
and his British counterpart Theresa May shake hands
at the Eurotunnel terminal in Calais.

(c) GT: Fake-TS, Pred: Fake-TS

BJP supporters protest against the party’s attack
outside their office in Gauhati India.

(d) GT: Fake-TA, Pred: Fake-TA
Figure 6. Visualization of detection and grounding results. Ground
truth annotations are in red, and prediction results are in blue.

Airbus employees throw flower petals to welcome
Nick Clegg to their facility in Bangalore India.

(a) Attention map in TS

Kevin Garnett the head of teammate KarlAnthony
Towns cries as they mourn during the closing
moments of a win on Nov 27 2015.

(b) Attention map in TA
Figure 7. Grad-CAM visualizations on manipulated text tokens.

6. Conclusion
This paper studies a novel DGM4 problem, aiming to de-

tect and ground multi-modal manipulations. We construct
the first large-scale DGM4 dataset with rich annotations. A
powerful model HAMMER is proposed and extensive ex-
periments are performed to demonstrate its effectiveness.
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