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Abstract

Domain adaptive semantic segmentation methods com-
monly utilize stage-wise training, consisting of a warm-up
and a self-training stage. However, this popular approach
still faces several challenges in each stage: for warm-up,
the widely adopted adversarial training often results in lim-
ited performance gain, due to blind feature alignment; for
self-training, finding proper categorical thresholds is very
tricky. To alleviate these issues, we first propose to re-
place the adversarial training in the warm-up stage by a
novel symmetric knowledge distillation module that only ac-
cesses the source domain data and makes the model do-
main generalizable. Surprisingly, this domain generaliz-
able warm-up model brings substantial performance im-
provement, which can be further amplified via our pro-
posed cross-domain mixture data augmentation technique.
Then, for the self-training stage, we propose a threshold-
free dynamic pseudo-label selection mechanism to ease the
aforementioned threshold problem and make the model bet-
ter adapted to the target domain. Extensive experiments
demonstrate that our framework achieves remarkable and
consistent improvements compared to the prior arts on
popular benchmarks. Codes and models are available at
https://github.com/fy-vision/DiGA

1. Introduction
Semantic segmentation [7,42,45,82] is an essential com-

ponent in autonomous driving [20], image editing [54, 79],
medical imaging [60], etc. However, for images in a spe-
cific domain, training deep neural networks [35, 37, 38, 62]
for semantic segmentation often requires a vast amount of
pixel-wisely annotated data, which is expensive and la-
borious. Therefore, domain adaptive semantic segmen-
tation, i.e. learning semantic segmentation from a la-
belled source domain (either virtual data or an existing
dataset) and then performing unsupervised domain adapta-
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tion (UDA) [3,15,21,46,63] to the target domain, becomes
an important research topic. Yet the remaining challenge is
the severe model performance degradation caused by the vi-
sual domain gap between source and target domain data. In
this work, we tackle this domain adaptive semantic segmen-
tation problem, with the goal of aligning correct categorical
information pixel-wisely from the labelled source domain
onto the unlabelled target domain.

Currently, stage-wise training, composed of a warm-up
and a self-training stage, has been widely adopted in do-
main adaptive semantic segmentation [1,41,50,80,81,84] as
it stabilizes the domain adaptive learning [81] and thus re-
duces the performance drop across domains. However, the
gap is far from being closed and, in this work, we identify
that there is still a large space to improve in both warm-up
and self-training.

Regarding warm-up, recent works in this field [41, 50,
80, 81, 84] mostly adopt adversarial training [21, 67, 68] as
their basic strategy, which usually contributes to limited
adaptation improvements. Without knowing the target do-
main labels, this adversarial learning proposes to align the
overall feature distributions across domains. Note that this
alignment is class-unaware and fails to guarantee the fea-
tures from the same semantic category are well aligned be-
tween the source and target domain, thus being sub-optimal
as a warm-up strategy.

In contrast, we take an alternative perspective to improve
the warm-up: simply enhancing the model’s domain gener-
alizability without considering target data. To be specific,
we introduce a pixel-wise symmetric knowledge distillation
technique. The benefits are threefold: i. knowledge distil-
lation is performed on the source domain where ground-
truths are available, the learning thus becomes class-aware,
which avoids the blind alignment as observed in adversarial
training; ii. the soft labels created in the process of distilla-
tion can effectively avoid the model overfitting to domain-
specific bias [71] and help to learn more generalized fea-
tures across domains; iii. our symmetric proposal ensures
the bidirectional consistency between the original source
view and its augmented view, leading to more generaliz-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15866



domain

translator

source 

input

frozen semantic
segmentation


network output
C

rD
oM

ix

symmetric distillation 

target 

input

semantic
segmentation


network output

dynamic pseudo-supervision

Adapt to Target
Generalize to Target

stored prob. labels

update feat. centroids

(Warm-up stage)
(Self-training stage)

Figure 1. A systematic overview of DiGA framework. For
warm-up stage, instead of aligning features between the two do-
mains from the beginning, we propose to first make the model
generalizable to an unseen domain through our symmetric distil-
lation scheme, which can be achieved even without access to the
target domain data. Coupled with our target-aware CrDoMix data
augmentation technique, a warm-up model of higher quality can be
obtained. To make the model better adapted to the target domain,
a threshold-free self-training stage is empowered by checking the
consensus between feature-induced labels and probability-based
labels that are initialized from the warm-up model. CrDoMix also
contributes to the update of domain-generalized class centroids to
strengthen the self-training stage.

able model performance in the warm-up stage. Our method
achieves a significant improvement from 45.2 to 48.9 mIoU
compared to adversarial training, meanwhile, it outperforms
existing arts on domain generalized segmentation.

We further observe that making the data augmentation
target-aware can help the model explore target domain char-
acteristics and improve the adaptation. Hence, we propose
cross-domain mixture (CrDoMix) data augmentation to bet-
ter condition our warm-up model to the next stage.

In terms of self-training on the target domain, many
works [1, 41, 50, 80, 81, 84] manage to optimize their self-
training stage by finding proper thresholds for pseudo-
labelling, which is onerous and not productive enough so
far. In practice, however, self-training methods often get
trapped into a performance bottleneck because the search
for categorical thresholds is regarded as a trade-off be-
tween quantity and quality. Larger thresholds lead to in-
sufficient learning, whereas smaller ones introduce noisy
pseudo-labels in training.

To handle this, we propose bilateral-consensus pseudo-
supervision, a threshold-free technique which selects
pseudo-labels dynamically by checking the consensus be-
tween feature-induced and probability-based labels. The
feature-induced labels come from pixel-to-centroid voting,
focusing on local contexts of an input. The probability-
based labels from the warm-up model are better at captur-
ing global and regional contexts by the design nature of se-
mantic segmentation architectures. Hence, by checking the
consensus of these two types of labels generated by differ-
ent mechanisms, the obtained pseudo-labels provide reli-
able and comprehensive estimation of target domain labels.
Thus, an efficient self-training stage is enabled, leading to
substantial performance gainagainst prior arts.

In this work, we present DiGA, a novel framework for
domain adaptive semantic segmentation (see Fig.1). Our
contributions can be summarized as follows:

• We introduce pixel-wise symmetric knowledge distil-
lation sorely on source domain, which results in a
stronger warm-up model and turns out to be a better
option than its adversarial counterpart.

• We introduce cross-domain mixture (CrDoMix), a
novel data augmentation technique that brings further
improvement to our warm-up model performance;

• We propose bilateral-consensus pseudo-supervision,
empowering efficient self-training while abandoning
categorical thresholds;

• Our method achieves remarkable and consistent per-
formance gain over prior arts on popular benchmarks,
e.g., GTA5- and Synthia-to-Cityscapes adaptation.

2. Related Work
Adversarial Domain Adaptation Adversarial learning [5,
21, 48, 55, 68] on UDA segmentation [67] is usually per-
formed in GAN [2, 22, 32, 33, 49] fashion with a convolu-
tional discriminator to force the output structure of the tar-
get segmentation maps to look like those from the source
domain. However, adversarial training requires both source
and target domain data as input and usually ends up with
limited initial improvements due to blind feature alignment.
In our work, in order to avoid this blind alignment, we pro-
pose pixel-wise symmetric knowledge distillation on source
domain, which attains much better model generalization on
target data even without observing them in training.
Knowledge Distillation Knowledge distillation tech-
nique [25, 44, 71–73] is first developed to perform model
compression [4, 64] tasks. In conventional knowledge dis-
tillation pipeline, the student network learns, based on the
same input, to mimic the soft output of a pretrained and
fixed teacher. Therefore, the learning is unidirectional as
the student has no feedback to the teacher. In our work,
however, we point out that sufficient teacher-student inter-
action is useful in the UDA setting. We present a symmetric
distillation approach to enhance the teacher-student collab-
oration and make the model domain generalizable.
Domain Generalization Domain generalization for seman-
tic segmentation [12,29,36,56,83] assumes the accessibility
only to one labelled source domain and aims to generalize
the learned model to multiple target domains. SFDA [36]
prepares different classification heads for different types of
augmented source data, and the model generalization can be
improved by assembling outputs of the heads at test time.
SHADE [83] achieves domain generalization by utilizing a
pretrained source domain teacher from the previous stage
and places output consistency loss on the student network
in the second stage, meanwhile, a style consistency loss is
applied to the student outputs on different augmented styles.
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Instead of using a fixed teacher in two-stage setting, we
propose a simpler but more powerful end-to-end symmet-
ric distillation strategy, where the teacher can get adaptively
improved online by the student, gradually making the model
domain generalizable.
Data Augmentation for UDA Segmentation Data aug-
mentation [1,14,17,18,36,52,65,66,77,78], which increases
input diversity, is a promising strategy in UDA to explore
out-of-source distribution and reduces the domain discrep-
ancy at input level. Early dedications on GAN-based im-
age domain transfer [10, 26, 30, 43, 76, 85] seek to train on
target-like images with the same source labels to improve
the model performance on the target domain. TIR [34] adds
stylized source images carrying various texture changes to
prevent the segmentation network from overfitting on one
specific source texture. However, these approaches either
introduce more training burdens (i.e., each augmentation
is an extra batch) or depend merely on augmented images
without involving the equally informative source inputs.
However, in our work, we leverage random masks taken
from the source label map and simultaneously embed all
meaningful augmentations in a single view without intro-
ducing multiple extra training batches.
Self-training for UDA Segmentation Self-training [11,19,
53] is widely used in UDA as pseudo-labels [86, 87] can be
generated for the target domain, such that it can be treated
in the same fashion as source domain. In [31, 41, 86, 87],
pseudo-label acquisition is based on class-wise thresholds
determined by output uncertainty. However, improper
thresholds often hamper the model to learn further. Seg-
Uncertainty [84] presents a pseudo-label rectifying scheme
according to the prediction variance, reducing the impact
of thresholds, but obtains limited boost over the threshold-
based arts. ProDA [80] seeks to rectify pseudo-labels softly
online according to the prototypical context estimated by
target domain features towards target class centroids. Nev-
ertheless, all pixels in rectified pseudo-labels are treated
equally during training, including the false labels, thus com-
promising the benefit of label rectification. In our work, we
exploit to enhance the label quality while not sacrificing the
quantity of target pseudo-labels in a threshold-free manner.

3. Method
This section describes our DiGA framework for domain

adaptive semantic segmentation. For the warm up stage, we
introduce the pixel-wise symmetric knowledge distillation
technique in Section 3.1 and introduce our cross-domain
mixture data augmentation technique in Section 3.2. Then,
for the self-training stage, we describe our threshold-free
pseudo-label selection mechanism in Section 3.3.

Our notations are shown as the following. Let (Xs,Ys)
denote the source dataset and xs ∈ Xs is a source RGB im-
age with a semantic label map ys ∈ Ys. And Xt denotes

,
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Figure 2. Overview of the warm-up stage training. The net-
work takes xs and x̃s as input, then perform pixel-wise symmetric
knowledge distillation sorely on source domain.

the target domain dataset where xt ∈ Xt stands for an un-
labelled training image from the target domain. The goal is
to train a segmentation network that can predict the correct
per-pixel label for Xt with the assist of (Xs,Ys).

3.1. Pixel-wise Symmetric Knowledge Distillation

In UDA segmentation, the purpose of a desired warm-
up model is to provide strong support for the next train-
ing stage. We devise a new warm-up technique, pixel-wise
symmetric knowledge distillation, to enhance the generaliz-
ability of the model towards the unseen target domain.
Supervised Loss As depicted in Fig.2, our framework con-
sists of a teacher network F† ◦ ϕ† and a student network
F ◦ ϕ, where {ϕ†, ϕ} represent the feature encoders and
{F†, F} stand for the semantic classifiers. Now since
ground-truths for source domain are available, we first train
the student network F ◦ ϕ using {xs, ys} and minimize the
cross-entropy loss,

Lseg
s =

∑
h,w

∑
c

−y(c,h,w)
s log(ps)

(c,h,w) (1)

where h, w and c are height, width and number of semantic
classes respectively.
Distillation Loss In parallel, we perform knowledge dis-
tillation sorely on source domain data. Based on the xs,
we first create its augmented view x̃s with basic operations
(such as Gaussian blur, grayscale, color jitter, etc.) Then,
we introduce a pixel-wise symmetric knowledge distillation
scheme which interacts different views of the input image
between the teacher and the student. By exchanging cross-
view information alternately, we want the generalization of
the model to be enhanced. Specifically, we pass xs and x̃s

in a fused batch to the teacher F† ◦ϕ† and the student F ◦ϕ
respectively to obtain the corresponding segmentation out-
puts (Fig.2),

{p†s, p̃†s} = σ(F† ◦ ϕ†({xs, x̃s})) (2)
{p̃s, ps} = σ(F ◦ ϕ({x̃s, xs})) (3)
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Figure 3. An illustration of the unhelpful long-tail label from
the source domain. (a) is a patch cut from source ground-truth
ys, revealing the unhelpful label pixels in it; (b) shows teacher
predicted label map σ(F† ◦ ϕ†(x̃s)) for the same patch from x̃s;
(c) is the corresponding RGB image for this patch.

where σ(·) denotes the softmax operator, whose output
stands for the segmentation map in probability space. Be-
tween the teacher and student outputs, we then introduce
a pixel-wise knowledge distillation loss that is computed at
all pixel locations on the segmentation map. In addition, the
distillation loss is symmetric, meaning that p̃s is supposed
to get close to p†s distribution while ps close to p̃†s,

Ldistil
s = H(p†s, p̃s) + αH(p̃†s, ps) (4)

where H(a, b) = −a log(b) is a cross-entropy loss, and the
overline indicates that the loss is computed as the mean over
all pixel locations. α ∈ (0,1) is a scaling factor.

Following prior arts [6, 23, 66, 80], the gradient track of
the teacher F† ◦ϕ† is disabled, and its parameters Θ(F†◦ϕ†)

are updated per iteration according to an exponential mov-
ing average (EMA) of F ◦ ϕ with a momentum of ξ,

Θ(F†◦ϕ†) ← ξ ∗Θ(F†◦ϕ†) + (1− ξ) ∗Θ(F◦ϕ) (5)

Why symmetric distillation works? I. Distilling the soft
assignments p†s to p̃s: By softly forcing teacher-student
prediction consistency between different views (i.e., xs

and x̃s), the network learns to produce stable outputs when
input appearances are altered. This improves the model
generalizability to a broader variants of source inputs and
thereby, to data from an unknown domain distribution.
II. Distilling the soft assignments p̃†s to ps: Not all source
labels are helpful to learn a domain adaptable model [39].
As shown in Fig.3(a) and Fig.3(c), the virtual source label
map is much too fine-grained by definition, such that it
may provide labels that are hardly recognizable in the
corresponding RGB image. Given this fact, training the
network with those unhelpful long-tail source label pixels
will introduce bias. However, the label map derived from
the teacher output (Fig.3(b)) is smoother in those regions.
Thus, introducing another symmetric distillation path on
those regions of ps can discourage the student to learn
unhelpful source labels while maintaining the correct
predictions under ys’s supervision.

3.2. Cross-domain Mixture Data Augmentation

Other than basic data augmentation operations used in
Sec. 3.1, the domain transferred images generated by neural

Random Mask

Eq. 6

Figure 4. A pictorial overview of our CrDoMix data augmenta-
tion technique. A pretrained image domain translator is adopted.

networks provide a supplementary way of performing data
augmentation as they provide useful information across do-
mains. Therefore, we introduce cross-domain mixture (Cr-
DoMix) data augmentation to create a target-aware novel
view out of xs (shown in Fig.4). Specifically, we take a pre-
trained and fixed source-to-target image translator Ts2t that
is trained under CycleGAN [85] pipeline, but adding a se-
mantic edge reconstruction loss when input comes from the
source domain (detailed in Supplementary), and we pass xs

to Ts2t to generate its target-like version xs2t = Ts2t(xs).
Then, according to the source label map ys, we randomly
select half of its available classes crs and obtain a binary
mask M, with which we create CrDoMix augmentation
xcdm combining x̃s and xs2t,

xcdm = x̃s ⊙M+ xs2t ⊙ (1−M) (6)

where ⊙ is element-wise multiplication. The mixture of
two images using CrDoMix simultaneously embeds diverse
inter-domain effects on every single augmentation xcdm

without increasing the training batch size to cover all types
of augmented images. Additionally, xcdm does not break
the geometric structure of the original input xs, and the
domain changes that happen around instance contours can
randomly appear across the whole image. Inserting target-
like appearances into data augmentation, CrDoMix helps
to learn cross-domain knowledge and increases the target-
awareness during warm-up training. Hence, we take xcdm

instead of just x̃s for data augmentation in warm-up stage.

3.3. Threshold-free Self-training

After acquiring a warm-up model that demonstrates
good generalizability on target data, we then consider fur-
ther adapting it to the target domain assisted by pseudo-
labels in a following self-training (ST) stage.
Label Preparation To prepare for the self-training stage,
we initialize feature class centroids Λ = {ρ(k), k =
1, 2..., c} offline using encoder ϕ based on our warm-up
model. According to the source ground-truth we get ρ(k),

ρ(k) =

∑
Ns

GAP (ϕ(xcdm)(k) ⊙ (y
(k)
s = 1))∑

Ns
1⊙ (y

(k)
s = 1)

(7)

where k defines the specific semantic class, Ns is the num-
ber of images in Xs, GAP (·) is the global average pooling
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Figure 5. Overview of the proposed bilateral-consensus
pseudo-supervision. Pseudo-labels for the target domain are de-
termined dynamically according to consensus of probability-based
label maps and the ones produced by centroid-guided voting in
feature space.

operator, xcdm is acquired using Eq.(6) to compute domain-
robust centroids, and 1 is an indicator checking whether
there exists class k in current image xcdm.

In addition, a set of label maps ŷwarm
t ∈ Ŷt

warm
for tar-

get domain can be obtained by processing the images from
target dataset Xt through the warm-up model. Then, we
start to consider Xt as input to our network for the ST stage.
As shown in Fig.5, in each iteration, xt is first encoded by
ϕ†, and for each feature point at a specific pixel location we
take feature centroids Λ as reference and vote this point to
its nearest neighbor in Λ. Given that Λ are initialized based
on CrDoMix inputs with source labels, we can confirm that
they represent the correct categorical properties of semantic
classes in feature space, such that pixel-to-centroid voting
can lead to reasonable target label assignments. In this way,
we acquire for target domain another type of label map in-
duced from pixel-wise voting in feature space,

ŷ
feat(jk)
t = O(argmin ||ϕ†(xt)

(jk) − Λ||2) (8)

where O stands for one-hot vectorization, || · ||2 is L2 norm
and j × k ∈ h× w.
Pseudo-Supervision Given the challenge of searching
for categorical thresholds, can efficient self-training be
achieved in a threshold-free manner? Here we give this
question a positive answer. On top of the source domain
distillation training described in Sec. 3.1, we introduce
bilateral-consensus pseudo-supervision (BP) with a simple
but effective dynamic pseudo-label generation procedure.
Considering that ŷfeatt is acquired by pixel-wise voting in
the feature space, it focuses more on local contexts but is
likely to ignore the global semantics. For instance, ŷfeatt in
Fig.5 spots the tiny objects such as traffic signs and lights,
but it fails to segment building region as a whole part. On
the contrary, ŷwarm obtained from probability space is able
to capture global structure of an image because the design of
semantic classifiers [7,42,82] is usually able to cover larger

receptive fields rather than single pixels, such that neighbor-
ing region alignment can be better considered. Therefore,
the correctness of pseudo-labels can be improved if we find
pixel locations in ŷfeatt and ŷwarm

t , which are defined from
different mechanisms, sharing common label pixels. To this
end, we select pseudo-labels ŷt dynamically by checking
the consensus of label pixels between ŷfeatt and ŷwarm

t , and
compute the self-training loss on the target domain,

L̂seg
t =

∑
h,w

∑
c

−ŷ(c,h,w)
t log(pt)

(c,h,w) (9)

where ŷt = ŷfeatt ∩ ŷwarm
t . Hence, the self-training can be

performed without any effort of finding class-wise thresh-
olds. To compensate some wrong labels from warm-up
models, we update ŷwarm

t after 50 epochs with the current
student output and repeat the training till it is finished. Dur-
ing training, the network parameters get constantly updated,
thus the class centroids are dynamically altering from the
perspective of the feature encoder. Therefore, in each itera-
tion we update the feature class centroids based on EMA,

ρ(k) ← δ(δρ(k) + (1− δ)ρ′ (k)s ) + (1− δ)ρ
′ (k)
t (10)

where δ is the momentum and ρ
′(k)
s is computed accord-

ing to the latest xcdm. Moreover, as ŷt becomes growingly
more reliable, we also include ρ

′(k)
t for obtaining domain-

generalized centroids.
Full Objective So far, the full loss for training our DiGA
framework can be summarized as following,

LDiGA = λdistil
s Ldistil

s + λseg(Lseg
s + L̂seg

t ) (11)

4. Experiment and Discussion
4.1. Datasets and Implementation Details

For the source domain, we adopt the GTA5 dataset [58]
consisting of 24,966 images with 1914 × 1052 resolu-
tion taken from the game engine, and SYNTHIA-RAND-
CITYSCAPES dataset [61] composed of 9,400 images of
1280 × 760 resolution with fine-grained segmentation la-
bels. We adopt as target domain the 2975 urban scene train-
ing images in Cityscapes dataset [13] and its labelled vali-
dation set containing 500 images.

We implement DiGA on an NVIDIA Quadro RTX 8000
with 48 GB memory. For fair comparison we first use Ima-
geNet [16] pretrained ResNet-101 [24] as backbone fea-
ture extractor and adopt Deeplab-V2 [7] for semantic
segmentation. However, to test the architectural general-
izability of our method, we also train on OCRNet [75] with
HRNet-W48 [70] backbone, as well as on the transformer-
based architectures DAFormer [27] and HRDA [28]. For
the transformer-based approaches, in order to align with the
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Figure 6. Qualitative results of GTA5-to-Cityscapes adaptation on Cityscapes validation set. Columns from left to right are: target
domain inputs; ground-truth labels; segmentation predictions of BDL [41], ProDA [80], CPSL [40] and DiGA (ResNet).
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mIoU
BDL [41] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5

ProDA‡ [80] 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7
CPSL‡ [40] 91.7 52.9 83.6 43.0 32.3 43.7 51.3 42.8 85.4 37.6 81.1 69.5 30.0 88.1 44.1 59.9 24.9 47.2 48.4 55.7
ProCA [31] 91.9 48.4 87.3 41.5 31.8 41.9 47.9 36.7 86.5 42.3 84.7 68.4 43.1 88.1 39.6 48.8 40.6 43.6 56.9 56.3

DiGA (Ours,ResNet) 95.6 67.4 89.8 51.6 38.1 52.0 59.0 51.5 86.4 34.5 87.7 75.6 48.8 92.5 66.5 63.8 19.7 49.6 61.6 62.7
DiGA (Ours,HRNet) 95.2 65.2 90.7 59.0 57.1 57.8 63.3 54.8 90.0 42.4 89.0 76.8 49.6 91.6 66.8 69.8 59.7 24.0 51.9 66.1

DAFormer [27] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
DiGA (Ours + DAFormer) 95.7 70.4 89.8 54.8 47.8 51.3 57.8 63.9 90.3 48.8 91.8 73.1 46.6 92.6 78.5 81.3 74.8 57.3 63.2 70.0

HRDA [28] 96.4 74.4 91.0 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79.0 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8
DiGA (Ours + HRDA) 97.0 78.6 91.3 60.8 56.7 56.5 64.4 69.9 91.5 50.8 93.7 79.2 55.2 93.7 78.3 86.9 77.8 63.7 65.8 74.3

Table 1. GTA5-to-Cityscapes adaptation results. We compare our model performance with state-of-the-art methods. In all tables of
Sec. 4.2, bold stands for best and underline for second-best. ‡ for fair comparison, we use their reported results after ST stage.

end-to-end training pipeline, we implement our Ldistil
s as

an plug-and-play module, train distillation for 1 epoch and
then adapt the model to target domain with self-training.
During training, our input image size is 896 × 512 for
both domains and batch size is 3 (containing both low and
high resolution images). We augment the training data con-
sidering color jitter, color transfer [57], classmix [52, 66],
grayscale and gaussian blur, etc. We use the SGD [59] opti-
mizer with a default learning rate of 2.5×10−4 for ResNet
but 1×10−3 for HRNet setting to train our network, and for
transformer-based architectures we use AdamW [47] opti-
mizer with a learning rate of 6 × 10−5 following [27, 28].
We use momentum ξ = δ = 0.999 for EMA. During train-
ing, the losses are weighted by different hyperparameters,
we set λseg = 1, α = 0.5, and λdistil

s = 0.5 for warm-up but
0.25 for ST stage as the model relies more on self-training
in this stage. We report results based on multi-scale testing
(MST) as mentioned in [31, 50, 69].

4.2. Evaluation on Benchmark Datasets

We compare our model with state-of-the-art approaches
for domain adaptive semantic segmentation. As shown in
Table 1, our DiGA framework shows leading performance
among the state-of-the-art methods on GTA5-to-Cityscapes
adaptation, achieving 62.7 mIoU after the ST stage. Note
that our model still outperforms ProDA [80] and CPSL [40]
even after they apply their proposed extra SimCLRv2 [8]
distillation stage. Our model demonstrates superior results
on many important classes (e.g., road, traffic light, traffic

sign, person, rider, car, truck, bus, bike etc.). A visual
impression of segmentation examples generated by DiGA
compared to other methods is shown in Fig.6. On Synthia-
to-Cityscapes adaptation in Table 2, we also achieved state-
of-the-art results (60.2 mIoU), outperforming other meth-
ods in segmenting sidewalk, traffic light as well as vehi-
cles such as car and bicycle etc. In addition, the efficacy
of our approach can be extended on more advanced ar-
chitectures, reaching new milestones on both benchmarks,
e.g., 66.1 (HRNet) and 74.3 (HRDA) mIoU for GTA5-to-
Cityscapes adaptation, as well as 62.8 (HRNet) and 66.2
(HRDA) mIoU for Synthia-to-Cityscapes adaptation.

4.3. Ablation Study

Based on Deeplab-V2with ResNet-101 setting, we
provide ablative experiments in Table 3 to analyze the ef-
fect of each component for training our DiGA framework.
Each experiment is evaluated on Cityscapes validation set
to compute mIoU. Compared to the source-only approach,
experiment in row (i) implies that distilling soft knowledge
from p†s to p̃s on source domain according to the first half
of Eq.(4) can lead to a considerable performance raise by
8.4%. On top of that, we observe that adding an addi-
tional symmetric path from p̃†s to ps (the second half of
Eq.(4)) to our distillation brings a performance increase by
2.2%, reaching 48.9 mIoU (row (ii)). Combining CrDoMix,
row (iii) gives the full model for training our warm-up stage,
obtaining an increase from 48.9 to 51.1 mIoU, which al-
ready outperforms many existing self-training based meth-
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mIoU mIoU⋆

BDL [41] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - 51.4
ProDA‡ [80] 87.1 44.0 83.2 26.9 0.0 42.0 45.8 34.2 86.7 81.3 68.4 22.1 87.7 50.0 31.4 38.6 51.9 58.5
CPSL‡ [40] 87.3 44.4 83.8 25.0 0.4 42.9 47.5 32.4 86.5 83.3 69.6 29.1 89.4 52.1 42.6 54.1 54.4 61.7
ProCA [31] 90.5 52.1 84.6 29.2 3.3 40.3 37.4 27.3 86.4 85.9 69.8 28.7 88.7 53.7 14.8 54.8 53.0 59.6

DiGA (Ours,ResNet) 89.1 53.4 86.1 28.7 3.0 49.6 50.6 34.9 88.2 84.9 71.3 40.9 91.6 75.1 50.3 65.8 60.2 67.9
DiGA (Ours,HRNet) 90.6 56.3 87.4 38.8 6.4 57.7 59.3 50.4 87.9 86.4 76.1 47.9 89.0 54.2 47.2 69.1 62.8 69.4

DAFormer [27] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 89.8 73.2 48.2 87.2 53.2 53.9 61.7 60.9 67.4
DiGA (Ours + DAFormer) 85.2 41.4 88.2 42.6 7.5 52.1 57.5 47.7 87.8 90.8 75.0 50.8 87.8 58.0 58.5 63.0 62.1 68.6

HRDA [28] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 92.9 79.4 52.8 89.0 64.7 63.9 64.9 65.8 72.4
DiGA (Ours + HRDA) 88.5 49.9 90.1 51.4 6.6 55.3 64.8 62.7 88.2 93.5 78.6 51.8 89.5 62.2 61.0 65.8 66.2 72.8

Table 2. Synthia-to-Cityscapes adaptation results. mIoU, mIoU⋆ refer to 16-class and 13-class experimental settings, respectively. ‡ for
fair comparison, we use their reported results after ST stage following [31].

Method a b c d e mIoU ∆

Source-only 38.3 +0.0
Source-only ✓ 38.9 +0.6

(i) ✓ ✓ 46.7 +8.4
(ii) ✓ ✓ ✓ 48.9 +10.6
(iii) ✓ ✓ ✓ ✓ 51.1 +12.8
(iv) ✓ ✓ ✓ ✓ ✓ 62.7 +24.4

Table 3. DiGA components: a −→ MST, b −→ H(p†s, p̃s), c −→

H(p̃†s, ps), d −→ CrDoMix, and e −→ L̂seg
t .

Strategy Adv. [67] Distil. Adv. [67]+CrDoMix Distil.+CrDoMix

mIoU 45.2 48.9 47.3 51.1

Table 4. Warm-up model comparison between adversarial train-
ing and our knowledge distillation w/ and w/o CrDoMix.

ods [11, 19, 53, 86]. Row (iv) indicates that, given a do-
main generalized warm-up model, our proposed bilateral-
consensus pseudo-supervision strategy ensures high-quality
self-training, boosting the mIoU from 51.1 to 62.7.

In Table 4, we compare warm-up models trained with
different configurations. It indicates that our knowledge dis-
tillation technique provides a better warm-up solution than
adversarial training [67], witnessing a substantial improve-
ment no matter w/ or w/o our CrDoMix data augmentation.

4.4. Pseudo-labelling Comparison

We show that our proposed bilateral-consensus pseudo-
supervision (BP) can be a more efficient strategy for
pseudo-labelling in UDA segmentation. It assures a suf-
ficient amount of reliable pixels in the resulting pseudo-
labels but requires no effort to look for a proper thresh-
old for each class. To verify this, we train ST stage mod-
els using different pseudo-labelling strategies, ablating on
ŷfeatt , ŷwarm

t and comparing with two influential strategies
in this field, BDL [41] and ProDA [80]. For fair com-
parison, we start with our warm-up model in all experi-
ments but only replace our BP with other strategies and
evaluate the ST stage model performances on Cityscapes
validation set. As shown in Table 5, training sorely with

Strategy (1)ŷfeatt (2)ŷwarm
t (3)BDL (4)ProDA (5)ŷt(ours)

mIoU 52.1 53.8 56.2 59.5 62.7

Table 5. mIoU comparison of applying different pseudo-labelling
techniques to train ST stage based on our warm-up model.

(d) 

(a) BDL (b) ProDA

(f) ground truth(e) 

(c)  (ours)

Figure 7. Comparison of different pseudo-labelling techniques
given the same input image, and ground truth (f) is only adopted
for comparison. Dashed black boxes reveal the major differences.

either ŷfeatt or ŷwarm
t fails to show advantageous results

(Exp.(1) & Exp.(2)), which indicates that it is required to
check the consensus between ŷfeatt and ŷwarm

t in order to
achieve the best performance among all (Exp.(5)). We can
also observe through Exp.(3) and Exp.(4) that replacing our
BP strategy with BDL [41] and ProDA [80] strategies will
lead to lower scores, obtaining 56.2 and 59.5 mIoU, respec-
tively. Nevertheless, the scores are still higher than those re-
ported in their original papers (48.5 and 53.7 mIoU), which
also implies the superiority of our proposed warm-up strat-
egy, confirming that a more advanced warm-up model con-
tributes largely to the performance gain in ST stage.
A visual intuition can be obtained by comparing Fig.7 (a),

(b) and (c) with the ground-truth (f). Given the same target
domain input, BDL [41] manages to exclude predicted la-
bels that are less confident than the class-wise thresholds,
which misses a number of label pixels with correct pre-
dictions, leading to insufficient self-training. ProDA [80],
on the other hand, keeps a full rectified label map by
element-wisely re-weighting initial soft assignments using
prototype-based soft assignments. Nevertheless, ProDA has
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Figure 8. Label uncertainty in ST stage. From top to bottom: tar-
get input, prediction uncertainty (darker means lower confidence),
pseudo-label, ground-truth (unused in training).

no label filtering mechanism, and the worst that can hap-
pen is that the model will be trained with wrong labels
if false prototypical predictions override the correct initial
ones. However, our BP strategy provides a better trade-off,
showing superiority, both quantitatively and qualitatively,
over the above methods in generating pseudo-labels.

4.5. Pseudo-labelling and Prediction Uncertainty

We reveal experimentally that our BP strategy is strongly
correlated with pixel uncertainty in pseudo-label selection.
During ST stage training, we visualize the model uncer-
tainty on target inputs based on the output probabilities
(See Fig. 8). For each mini-batch of data, the prediction
uncertainty varies class-wisely and instance-wisely, which
can hardly be described by some specific thresholds. How-
ever, we observe that BP strategy dynamically and effi-
ciently identifies most pixel locations with relatively lower
confidence ratio and successfully filters them out from the
pseudo labels. Therefore, we confirm that, our BP strat-
egy, despite of being threshold-free, can still obtain reliable
pseudo-labels to improve self-training.

4.6. Extensive Experiments

Domain Generalization Even though we focus on solving
the problem of UDA segmentation in this work, we also
want to share that our warm-up strategy can offer a ‘free
lunch’ for domain generalization on semantic segmentation
and achieve superior results compared to SOTA methods.
Decoupling CrDoMix (no xs2t) from our data augmenta-
tion, meaning no information of target domain is touched,
our warm-up distillation method works surprisingly well
on domain generalization for semantic segmentation, i.e.,
train on one labelled source domain and generalize to mul-
tiple target domains. Our model trained on GTA5 [58]

Method
Train on GTA5 (G)

→C →B →M →S

ISW [12] 42.87 38.53 39.05 29.58
SFDA [71] 43.50 - - -

SAN-SAW [56] 45.33 41.18 40.77 31.84
SHADE [83] 46.66 43.66 45.50 -

Our Distillation 48.87 44.42 51.78 37.17

Table 6. mIoU comparison with SOTA methods for domain
generalization. G, C, B, M and S denote GTA5, Cityscapes,
BDD100k, Mapillary and Synthia, respectively. For fair compari-
son, all the listed methods are based on ResNet-101 backbone.

Method
Cityscapes

1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)

CPS [9] 75.09 77.92 79.24 80.67
Ours 76.86 78.51 80.01 80.93

Table 7. mIoU comparison of semi-supervised semantic seg-
mentation using HRNet backbone, based on which SOTA perfor-
mance of CPS [9] is reported. Evaluation performed on Cityscapes
validation set under different partition protocols.

dataset can be well generalized on the validation set of
Cityscapes [13], BDD100k [74], Mapillary [51] and Syn-
thia [61], outperforming existing SOTA methods of domain
generalizable semantic segmentation [12, 56] by consider-
able margins (see Table 6). This cannot be accomplished
by adversarial learning as it requires target data for training.

Semi-supervised Semantic Segmentation As shown in Ta-
ble 7, following the same partition protocols on Cityscapes
dataset, our stage-wise training pipeline also shows impres-
sive performance on the task of semi-supervised semantic
segmentation. In particular, the less labels available, the
more advantageous DiGA is.

5. Conclusion

In this work, we propose DiGA framework for domain
adaptive semantic segmentation. It first enhances the model
generalization to the target domain by pixel-wise symmet-
ric knowledge distillation performed on the source dataset.
Supported by this strong warm-up model, our bilateral-
consensus pseudo-supervision strategy reinforces the model
adaptability during self-training without thresholds, demon-
strating SOTA performances on popular benchmarks. Be-
sides, through extensive experiments we also observe the ef-
ficacy of DiGA on domain generalized and semi-supervised
semantic segmentation tasks. We believe DiGA can provide
a universal solution for element-wise 2D (or 3D) classifica-
tion problems under UDA or semi-supervised setting, into
which we will investigate more in the future.
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[4] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-
Mizil. Model compression. In Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 535–541, 2006. ii

[5] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin
Wang. Partial adversarial domain adaptation. In Proceed-
ings of the European conference on computer vision (ECCV),
pages 135–150, 2018. ii

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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