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Abstract

Effectively encoding multi-scale contextual information
is crucial for accurate semantic segmentation. Most of the
existing transformer-based segmentation models combine
features across scales without any selection, where features
on sub-optimal scales may degrade segmentation outcomes.
Leveraging from the inherent properties of Vision Trans-
formers, we propose a simple yet effective module, Trans-
former Scale Gate (TSG), to optimally combine multi-scale
features. TSG exploits cues in self and cross attentions in
Vision Transformers for the scale selection. TSG is a highly
flexible plug-and-play module, and can easily be incorpo-
rated with any encoder-decoder-based hierarchical vision
Transformer. Extensive experiments on the Pascal Context,
ADE20K and Cityscapes datasets demonstrate that the pro-
posed feature selection strategy achieves consistent gains.

1. Introduction
Semantic segmentation aims to segment all objects in-

cluding ‘things’ and ‘stuff’ in an image and determine their
categories. It is a challenging task in computer vision, and
serves as a foundation for many higher-level tasks, such as
scene understanding [15,34], object recognition [23,29] and
vision+language [30, 33]. In recent years, Vision Trans-
formers based on encoder-decoder architectures have be-
come a new paradigm for semantic segmentation. The en-
coder consists of a series of multi-head self-attention mod-
ules to capture features of image patches, while the decoder
has both self- and cross-attention modules to generate seg-
mentation masks. Earlier works [47] usually use Vision
Transformers designed for image classification to tackle se-
mantic segmentation, and only encode single-scale features.
However, different from image classification where we only
need to recognize one object in an image, semantic segmen-
tation is generally expected to extract multiple objects of
different sizes. It is hard to segment and recognize these
varying sized objects by only single-scale features.

Some methods [20, 37] attempt to leverage multi-scale
features to solve this problem. They first use hierarchical
transformers such as Swin Transformer [20] and PVT [37]
to extract multi-scale image features, and then combine
them, e.g. by the pyramid pooling module (PPM) [46] or
the seminal feature pyramid network (FPN) [18] borrowed
from CNNs. We argue that such feature combinations can-
not effectively select an appropriate scale for each image
patch. Features on sub-optimal scales may impact the seg-
mentation performance.To address this issue, CNN-based
methods [3, 8, 14, 32] design learnable models to select the
optimal scales. Nevertheless, these models are complex, ei-
ther use complex mechanisms [3,8,14] and/or require scale
labels [32], which decrease the network efficiency and may
cause over-fitting.

In this paper, we exploit the inherent characteristics of
Vision Transformers to guide the feature selection process.
Specifically, our design is inspired from the following ob-
servations: (1) As shown in Fig. 1(a), the self-attention
module in the transformer encoder learns the correlations
among image patches. If an image patch is correlated to
many patches, small-scale (low-resolution) features may be
preferred for segmenting this patch, since small-scale fea-
tures have large effective receptive fields [42] to involve as
many of these patches as possible, and vice versa. (2) In
the transformer decoder, the cross-attention module mod-
els correlations between patch-query pairs, as shown in
Fig. 1(b), where the queries are object categories. If an
image patch is correlated to multiple queries, it indicates
that this patch may contain multiple objects and need large-
scale (high-resolution) features for fine-grained segmenta-
tion. On the contrary, an image patch correlated to only a
few queries may need small-scale (low-resolution) features
to avoid over-segmentations. (3) The above observations
can guide design choices for not only category-query-based
decoders but also object-query-based decoders. In object-
query-based decoders, each query token corresponds to an
object instance. Then, the cross-attention module extracts
relationships between patch-object pairs. Many high cross-
attention values also indicate that the image patch may con-
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Figure 1. Illustration of Vision Transformers for semantic segmentation. (a) The image is divided into multiple patches and input into
the encoder. The encoder contains Lenc blocks and outputs features for every image patch. (b) The decoder takes learnable query tokens
as inputs, where each query is corresponding to an object category. The decoder with Ldec blocks outputs query embeddings. Finally,
segmentation results are generated by multiplying the image patch features and the query embeddings. In this paper, we exploit inner
properties of these attention maps for multi-scale feature selection.

tain multiple objects and require high-resolution features.
Note that these are general observations, which do not mean
that these are the only relationships between transformer
correlation maps and feature scales.

From these observations and analyses, we propose a
novel Transformer Scale Gate (TSG) module that takes cor-
relation maps in self- and cross-attention modules as inputs,
and predicts weights of multi-scale features for each image
patch. Our TSG is a simple design, with a few lightweight
linear layers, and thus can be plug-and-play across diverse
architectures. We further extend TSG to a TSGE module
and a TSGD module, which leverage our TSG weights to
optimize multi-scale features in transformer encoders and
decoders, respectively. TSGE employs a pyramid struc-
ture to refine multi-scale features in the encoder by the
self-attention guidance, while TSGD fuses these features in
the decoder based on the cross-attention guidance. Experi-
mental results on three datasets, Pascal Context, ADE20K,
Cityscapes show that the proposed modules consistently
achieve gains, up to 4.3% in terms of mIoU, compared with
Swin Transformer based baseline [20].

Our main contributions can be summarized as follows:
(1) To the best of our knowledge, this is the first work to
exploit inner properties of transformer attention maps for
multi-scale feature selection in semantic segmentation. We
analyze the properties of Vision Transformers and design
TSG for the selection. (2) We propose TSGE and TSGD
in the encoder and decoder in transformers, respectively,

which leverage our TSG to improve the semantic segmen-
tation performance. (3) Our extensive experiments and ab-
lations show that the proposed modules obtain significant
improvements on three semantic segmentation datasets.

2. Related Work
CNN-based semantic segmentation methods usually

use the fully convolutional network (FCN) [21], which for-
mulates the semantic segmentation task as a pixel-wise clas-
sification problem and designs an encoder-decoder struc-
ture. The encoder extracts features of each pixel in the im-
age, while the decoder labels every pixel. Noh et al. [24]
design a deconvolutional decoder to gradually restore more
details, which is the mirror of the CNN encoder. Although
these approaches make significant progress for recogniz-
ing objects of fixed size ranges, they struggle to segment
objects of diverse sizes. To segment variable sized ob-
jects, some prior works propose to use multi-scale strate-
gies. Lin et al. [17] directly resize the input image into
multiple scales and generate multiple predictions, which are
then assembled together. Some works extract multi-scale
features in the encoder by pyramid pooling module (PPM)
and pyramid atrous convolutions and feature pyramid net-
work (FPN), and then combine multi-scale features to pre-
dict segmentation results. Another methods [1,28] adopt the
deconvolutional decoder [24] and incorporate multi-scale
features into the decoder. All these methods only simply
combine multi-scale features without any selection. While
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some existing works [3,8,14,31,32] propose learnable mod-
ules to select multiple scales, they either require complex
mechanisms [3,8,14] and/or scale labels [32], and are there-
fore not ideally suited for efficient scale selection.

Vision Transformers have recently attracted increasing re-
search interest and have become a new paradigm for se-
mantic segmentation, thanks to their ability of modeling
long-range dependencies. Ranftl et al. [27] and Zheng et
al. [47] employ ViT [10] as the encoder to extract single-
scale features and use CNN-based decoders for semantic
segmentation. Strudel et al. [36] and Xie et al. [41] de-
sign transformer-based decoders, which take categories as
queries. Cheng et al. [6] propose an object-query-based
transformer decoder and combine it with a pixel-level de-
coder to predict segmentation results. These methods ig-
nore the diversity of object sizes. Other recent works de-
sign pyramid architectures to obtain multi-scale features in
the encoder and fuse them in the decoder for segmenta-
tion. Most of them [9, 20, 37, 39, 43, 44] adopt PPM [46]
and/or FPN [18] for multi-scale feature fusion, while Xie et
al. [42] and Gu et al. [11] use lightweight concatenations.
Lee et al. [13] propose multi-path Transformer blocks to
better integrate multi-scale features. Instead of combining
multi-scale features, Bousselham et al. [2] leverage multiple
transformer decoders to generate multi-scale segmentation
results and then aggregate these results. Qin et al. [26] av-
erages multi-scale results and adds a cross-attention model
to capture inter-scale information. However, these com-
binations cannot effectively select multi-scale features for
each image patch. Several works [16, 35, 38, 45, 49] select
scales from transformer image or query embeddings. Dif-
ferent from these works, our method exploits the relation-
ships between transformer attention maps and segmentation
scales instead of image features/embeddings for scale se-
lection. Meanwhile, our attention-map-based and previous
feature/embedding-based scale selections are not mutually
exclusive, but rather complementary.

3. Proposed Method

3.1. Vision Transformer for Semantic Segmentation

Vision Transformers typically contain an encoder and a
decoder, as shown in Fig. 1. An image is first split into
multiple patches and every patch is embedded into a token.
Let Z = {z1, z2, ..., zN} represent the set of tokens, where
N is the number of patches, zn ∈ RdZ (n = 1, ..., N) is the
token of the n-th patch, and dZ is the dimension of tokens.

Encoder. The encoder takes these tokens as inputs, and
outputs the feature vector of every image patch. The key
component in the encoder is the multi-head self-attention,
which learns the long-range dependencies of image patches,

Qi = Linear(Z), Ki = Linear(Z), Vi = Linear(Z)
(1)

Aself
i = Softmax(

QiKi
T

√
ds

) (2)

Hi = Aself
i Vi (3)

O = Linear(Concat(H1, ...,Hhself
)) (4)

where Z ∈ RN×dZ is the image token set, i =
1, ..., hself and hself is the number of heads in the multi-
head self-attention module. Linear(·) is the linear layer;
Softmax(·) is the Softmax function; and Concat(·) rep-
resents the concatenation. Qi,Ki,Vi ∈ RN×ds denote the
query, key and value, respectively, where ds is their dimen-
sion. Aself

i ∈ RN×N is the self-attention map, which mod-
els long-range dependencies between every patch pair in the
image. Hi ∈ RN×ds is the feature map generated by the
i-th attention head. Feature maps in all heads are concate-
nated into a single map and transformed by a linear layer to
output dO-dimensional feature map O ∈ RN×dO .

An encoder block composes of a multi-head self-
attention module, a multilayer perceptron (MLP) and nor-
malizations, as shown in Fig. 1 (a). By cascading Lenc en-
coder blocks, we can obtain the encoder-output image patch
feature map F ∈ RN×dF , and F = {f1, f2, ..., fN}, where
fn ∈ RdF is the encoder-output feature vector for the n-th
image patch, and dF is the feature dimension.

Our baseline decoder. The inputs of the transformer
decoder are a series of query tokens. Inspired by [36], we
use C query tokens X = {x1,x2, ...,xC}, where C is the
number of object classes and each token xc ∈ RdF (c =
1, ..., C) corresponds to a class. The dimension of query
tokens is the same as image patch features. Different from
[36], which also uses image patch features F as query to-
kens in the decoder, we take image patch features F as keys
and values to reduce computational costs.

As shown in Fig. 1 (b), the decoder includes multi-head
self-attention modules and cross-attention modules. Sim-
ilar to the encoder, self-attention modules take query to-
kens as inputs and learn their relationships. In contrast,
cross-attention modules aim to capture relationships be-
tween each image patch and query token:

Qj = Linear(X),Kj = Linear(F),Vj = Linear(F)
(5)

Across
j = Softmax(

QjKj
T

√
dc

) (6)

Hj = Across
j Vj (7)

3053



N
o

rm

M
L

P…

A h

A 1

C
o

n
cat

L
in

ear

A S
o

ftm
ax

G

= …

scale 1:

scale S:

N tokens

Multi-head attention 

maps (h heads)

N tokens

Integrated 

attention map
Scale gates for S scales

N tokens

N tokens
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Figure 3. Transformer Scale Gate in Encoder (TSGE). For simplicity, we only depict the self-attention module in each block. In the
encoder, our TSG generates scale gates from self-attention maps, and we leverage these gates to select and fuse multi-scale feature maps.

where F ∈ RN×dF represents the image patch feature
matrix, X ∈ RC×dF is the query token matrix, j =
1, ..., hcross and hcross denotes the number of heads in the
cross-attention module. Similar to self-attention modules,
Qj,Kj,Vj ∈ RN×dc are the dc-dimension query, key and
value, respectively. Across

j ∈ RC×N captures relationships
between every patch-class pair. Hj ∈ RC×dc represents the
feature map in the j-th head, and features in all heads can
be combined by Eq. (4).

Through Ldec decoder blocks, our decoder outputs query
embeddings Y = {y1,y2, ...,yC}, where Y ∈ RC×dF

and yc ∈ RdF is the embedding vector of the c-th class. The
segmentation result can be predicted by the matrix product
of patch feature matrix F and class query embedding matrix
Y:

P = Softmax(
FYT

√
dF

) (8)

where P ∈ RN×C contains the classification scores for ev-
ery image patch. The segmentation result is composed of
these patch-wise classification results.

3.2. Transformer Scale Gate (TSG)

From Eq. (2)&(6), we observe that the self-attention map
Aself

i reflects the correlation between an image patch and
other patches, while the cross-attention map Across

j reflects
the correlation between every image patch and object cat-
egory. In Aself

i , if an image patch is highly related to a
large number of patches, it may require small-scale features
(large effective receptive fields), and vice versa. In Across

j ,
if an image patch is correlated to many object classes, this
patch may contain multiple objects and require large-scale
(high-resolution) features.

Considering the above observations, our TSG takes at-
tention maps as inputs and generates gates for every scale.
As shown in Fig. 2, we first integrate multi-head attention
maps into a single map A ∈ RN×dA , where dA is its dimen-
sion. For self-attention modules in the encoder, attention
maps are integrated as

A = Linear(Concat(Aself
1 , ...,Aself

hself
)). (9)

We concatenate attention maps in all heads and use a linear
layer to project them to dA dimensions.

For cross-attention modules in the decoder, we first
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change the softmax in Across
j . The original softmax is ap-

plied on the patch dimension (i.e., over N image patches),
which reflects the importance of patches for each object
class. We change this softmax to the class dimension.
The changed softmax reveals the importance of classes for
each image patch, which is more suitable for our TSG. Let
Ãcross

j represent the cross-attention map with the modified
softmax. We concatenate the transposes of Ãcross

j in all
heads and use a linear layer to transform dimensions,

A = Linear(Concat((Ãcross
1 )T , ..., (Ãcross

hcross
)T )). (10)

After the integration, our TSG generates multi-scale fea-
ture gates as

G̃ = MLP (Norm(A)), (11)

G = Softmax(G̃). (12)

We employ a layer normalization to normalize A, and use
an MLP to predict the scale gates G̃ ∈ RN×S , where S
is the number of scales. Here, we use a two-layer MLP
with GELU activation function. G̃ is normalized into G by
a softmax function on the scale dimension. In matrix G,
value gn,s indicates the gate of the s-th scale for the n-th
image patch. We next introduce how to use our scale gates
to select features in the encoder and decoder.

3.3. Transformer Scale Gate in Encoder (TSGE)

The multi-scale transformer backbone contains S stages.
In each stage s, the backbone generates a feature map
Fs ∈ RNs×dF,s , where dF,s is its dimension, and Ns is the
number of patches in this feature map. Therefore, we have
S multi-scale features {F1,F2, ...,FS} from the backbone
model. We propose a TSGE module, which leverages TSG
to generate scale gates G to refine these features, where
we denote {Fenc

1 ,Fenc
2 , ...,Fenc

S } as the refined features,

Fenc
s ∈ RNs×dF (s = 1, ..., S), and all features are refined

into the same dimension dF .
Inspired by feature fusion methods in CNN [8, 18], our

TSGE gradually fuses small-scale features into large-scale
features, as shown in Fig. 3. Specifically, we fuse two fea-
ture maps, the smaller-scale refined feature map Fenc

s+1 and
the larger-scale feature map Fs, at each step. Fenc

s+1 is first
upsampled to fit the size of Fs. Then, we use a linear
layer to transform the feature dimension of the larger-scale
feature map Fs. Finally, the unsampled smaller-scale fea-
ture map and the transformed larger-scale feature map are
weighted by our scale gates and summed as

fencn,s = gn,1f̃
enc
n,s+1 + gn,2f̃n,s (13)

where f̃encn,s+1 ∈ RdF and f̃n,s ∈ RdF are the feature vec-
tors of the n-th image patch in the unsampled smaller-scale
feature map and the transformed larger-scale feature map,
respectively, and fencn,s ∈ RdF is the weighted sum. Weights
gn,1 and gn,2 are generated from our TSG. The inputs of our
TSG at each step are the self-attention maps corresponding
to features maps we used. For example, when we fuse fea-
ture maps Fs and Fenc

s+1, the inputs are self-attention maps
in the last blocks from the s-th stage to the S-th stage, be-
cause Fenc

s+1 has already included features from Fs+1 to FS.
Since these attention maps are in different sizes, we upsam-
ple them into the size of Fs, before inputting them to TSG.
For each image patch n, our TSG outputs two gates gn,1
and gn,2 for the two feature maps, respectively.

3.4. Transformer Scale Gate in Decoder (TSGD)

The refined features {Fenc
1 ,Fenc

2 , ...,Fenc
S } are then in-

put to our decoder, and we propose a TSGD module to in-
tegrate them. In the l-th decoder block, to integrate multi-
scale features, we first upsample them into the same size.
{F̃enc

1 , F̃enc
2 , ..., F̃enc

S } are the upsampled feature maps,
where F̃enc

s ∈ RN×dF (s = 1, ..., S) and N = N1. Then,
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we leverage our TSG to predict scale gates, which takes the
cross-attention maps from the previous block as inputs, as
shown in Fig. 4. Our TSG outputs a matrix G ∈ RN×S ,
which contains the gates of all scales for every image patch.
Finally, we use these gates to weight the upsampled feature
maps and sum them as follows:

fdecl,n =

S∑
s=1

gn,sf̃
enc
n,s (14)

where f̃encn,s ∈ RdF is the feature vector of the n-th im-
age patch in the feature map F̃enc

s , gn,s in G represents the
gate of the s-th scale for this patch, and fdecl,n ∈ RdF is
the weighted sum feature vector of this patch. The feature
map Fdec

l consists of {fdecl,1 , fdecl,2 , ..., fdecl,N }, which is used
to generate keys and values in the current decoder block.
For the first block, since there is no previous block, we only
sum the upsampled multi-scale features:

fdec1,n =

S∑
s=1

f̃encn,s . (15)

The final segmentation result is generated by Eq. (8),
where we use the integrated feature map Fdec

Ldec
in the last

decoder block to generate the result:

P = Softmax(
Fdec

Ldec
YT

√
dF

). (16)

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate our method on three datasets,
Pascal Context, ADE20K and Cityscapes. Pascal Con-
text [22] contains 10103 images, 4998 for training and
5105 for validation. There are 60 category labels in this
dataset, including 59 object classes and one background
class. ADE20K [48] includes 150 object categories, 20210
training images, 2000 validation images and 3352 testing
images. Cityscapes [7] has 19 object classes, 2975, 500,
and 1525 images for training, validation and testing, respec-
tively. For all these datasets, similar to previous works, we
train our method on training images and report the results
on validation images.
Metrics. We adopt the common segmentation metric,
‘mIoU’, for evaluation, which is the average of the ‘IoU’
values of all object classes. We report our results of a single
model, without multi-scale and horizontal flip ensembles.
Implementation Details. Our TSG can be used for any
hierarchical Vision Transformer. Here, we use Swin Trans-
former [20] as a running example. There are four-scale fea-
ture maps in Swin Transformer [20], i.e., S = 4. We only

use local attention maps in each window in Swin Trans-
former to generate scale gates. We set the dimension dF
of refined features to 512, use eight heads for both self-
and cross-attention modules, and use three blocks in the de-
coder. We also set dA to 512, and employ a 512-dimension
hidden layer in the MLP in our TSG. Our model is built
on the Pytorch [25] platform. Following common settings
[2, 20], we leverage weights pretrained on ImageNet-1K
and ImageNet-22K to initialize Swin-T and Swin-L, re-
spectively. Query tokens in the decoder are initialized to
zero. Other parts are randomly initialized. We adopt cross-
entropy loss, ‘AdamW’ optimizer and the ‘poly’ learning
rate decay scheduling during training, with an initial learn-
ing rate of 6× 10−5 and a weight decay of 10−2.

4.2. Results and Comparisons

Table 1 shows the results of existing state-of-the-art
methods and our method. On Pascal Context, compared
with our baselines, Swin Transformer [20] Tiny and Large,
our method achieves 4.3% and 3.0% gains, respectively.
Compared with SenFormer [2], which also uses category-
query-based decoders and multi-scale features, our pro-
posed method yields improvements of 1.3% and 0.9% when
using Swin-T and Swin-L backbones, respectively. How-
ever, the number of parameters of our method is signif-
icantly lower than that of SenFormer. SenFormer uses
a heavyweight architecture with multiple transformer de-
coders to generate multi-scale predictions. In contrast,
our method only leverages one decoder and lightweight
scale gates, while achieving better performance. Results on
ADE20K and Cityscapes also show our superior accuracy.

Our method can also be used for object-query-based de-
coders. Take Mask2Former [5] as an example. We add our
TSGE to its encoder and TSGD to its transformer decoder
to select optimal feature scales based on patch-object corre-
lations. We also keep the masked attention in the decoder,
as the same as in Mask2Former [5]. On Pascal Context,
compared with the original Mask2Former [5], our method
achieves 1.4% and 1.1% gains with Swin-T and Swin-L, re-
spectively. Compared with other state-of-the-art methods,
our method also shows the superior performance. These re-
sults demonstrate not only the effectiveness of our proposed
method, but also its versatility in supporting both category-
query-based decoders and object-query-based decoders.

Fig. 5(a) depicts qualitative results on the Pascal Con-
text dataset. Swin Transformer [20] and SenFormer [2] only
simply combine multi-scale features or multi-scale segmen-
tation results without any selection, and thus fail to segment
many small objects, such as the left ‘person’ in the second
image in Fig. 5(a). Our TSG selects suitable scales for im-
age patches. When segmenting patches including small ob-
jects, our approach selects high-resolution features based on
transformer attention cues. Therefore, our method success-
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Method Backbone Params Pascal Context ADE20K Cityscapes
mIoU (%) mIoU (%) mIoU (%)

Swin (Upernet decoder) [20] Swin-T 60M 50.2 44.4 71.8
Swin (Upernet decoder) [20] Swin-L 234M 60.3 52.1 79.9
TSG (Ours) Swin-T 72M 54.5 (+4.3) 47.5 (+3.1) 75.8 (4.0)
TSG (Ours) Swin-L 250M 63.3 (+3.0) 54.2 (+2.1) 83.1 (+3.2)
Mask2Former [5] Swin-T 42M 54.6 47.7 79.7
Mask2Former [5] Swin-L 216M 63.8 56.1 83.3
TSG (Ours) + Mask2Former [5] Swin-T 51M 56.0 (+1.4) 49.0 (+1.3) 80.5 (+0.8)
TSG (Ours) + Mask2Former [5] Swin-L 232M 64.9 (+1.1) 56.9 (+0.8) 83.6 (+0.3)
Other state-of-the-art methods
PSPNet [46] ResNet101 60M 47.0 42.0 78.4
DeepLabV3+ [4] ResNet101 63M 47.4 45.5 80.9
SETR [47] ViT-L 311M 54.9 48.6 79.3
Segformer [42] MiT-B5 85M 54.8 51.0 82.4
Segmenter [36] ViT-L 333M 58.1 51.8 80.4
MaskFormer [6] Swin-T 42M 53.3 46.7 -
MaskFormer [6] Swin-L 212M 62.6 54.1 -
HRViT [12] HRViT-b3 28.6M - 50.2 83.2
PCAA [19] ResNet101 - 55.6 46.7 82.3
SenFormer [2] Swin-T 144M 53.2 46.0 -
SenFormer [2] Swin-L 314M 62.4 53.1 82.8
PFT [26] + Mask2Former [5] Swin-L 232M - 56.1 -
PFT [26] + Mask2Former [5] + MSDA [49] Swin-L 232M - 56.3 -

Table 1. Results of semantic segmentation on Pascal Context, ADE20k and Cityscapes validation. All methods use single model, without
multi-scale-model and horizontal-flip ensembles. Our proposed TSG achieves consistent gains with different backbones.

Model Encoder Decoder mIoU(%)

1 Swin-T Upernet 50.2
2 Swin-T + TSGE Upernet 51.6 (+1.4)
3 Swin-T BD 51.3
4 Swin-T + TSG BD 52.4 (+1.1)
5 Swin-T BD + TSGD 52.7 (+1.4)
6 Swin-T + FPN BD 52.9
7 Swin-T + TSGE BD 53.9 (+1.0)
8 Swin-T + FPN BD + TSGD 54.1 (+1.2)
9 Swin-T + TSGE BD + TSGD 54.5 (+4.3)

Table 2. The effects of main components in our method on Pascal
Context validation. ‘BD’ means our baseline decoder.

fully segments these small objects. Previous approaches are
also prone to over-segmentation and mis-recognitions. For
example, in the first image in Fig. 5, Swin Transformer [20]
over-segments the ‘road’ object as two objects, and Sen-
Former [2] mis-recognizes the ‘road’ object as ‘ground’.
Our method avoids these, by selecting suitable scales to seg-
ment and recognize objects of diverse scales.

4.3. Ablation Analysis

TSG in encoder. We conduct multiple ablations to ver-
ify the contributions of our TSG module for the Transformer
encoder in Table 2. The vanilla Swin Transformer [20]

(Model 1) takes UperNet [40] as its decoder, which already
includes FPN and PPM. In Model 2, we use our TSGE to
replace FPN and PPM in UperNet. From the first and sec-
ond lines in Table 2, it can be observed that our method ob-
tains an improvement of 1.4% in this setting. We next test
models using our baseline decoder. Our baseline decoder
requires to first integrate multi-scale feature maps into one
feature map. Thus, we first add a linear layer to every fea-
ture map to convert their dimensions into the same. Then,
the converted multi-scale feature maps are upsampled into
the same size, and summed as the input of our baseline de-
coder. In Model 4, our TSG generates scale gates from self-
attention modules in the encoder, and these gates are used to
weight the multi-scale feature maps before summing them.
Through our TSG, the mIoU can be improved by 1.1%. In
Models 6&7, we use FPN [18] and our TSG to refine multi-
scale feature maps, respectively, and sum the refined fea-
ture maps in our decoder. Compared with FPN, our TSGE
achieves a gain of 1.0%.

TSG in decoder. From Models 3&5 in Table 2, we ob-
serve that our TSGD outperforms the baseline decoder by
1.4% when using the ‘Swin-T’ encoder. With the ‘Swin-
T + FPN’ encoder (Models 6&8), our TSGD improves the
performance by 1.2%. Our final model (Model 9) uses both
TSGE and TSGD, which achieves an improvement of 4.3%,
compared with Swin Transformer [20]. These results sug-
gest that our proposed TSG is effective in fusing cues across
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Segmentation results from feature maps on different scales

Transformer scale gates on feature maps of different scales

(Warmer colors mean larger gate values)

(b) Visualization of our scale gates (a) Segmentation results

1/4 image size 1/8 image size 1/16 image size 1/32 image size

Figure 5. (a) Qualitative results on Pascal Context samples, with Swin-L backbone. Our method generates better results than prior works,
especially for large and small objects. (b) Visualization of our transformer scale gates. For small objects (‘tree’, ‘building’, etc), TSG
generates large gate values on large-scale feature maps (1/4 image size), indicating that our model successfully chooses high-resolution
maps for small objects, and vice versa.

F1 F2 F3 F4

Model (1/4) (1/8) (1/16) (1/32) mIoU(%)

Swin-T + FPN + BD ✓ 47.2
Swin-T + FPN + BD ✓ 50.1
Swin-T + FPN + BD ✓ 51.6
Swin-T + FPN + BD ✓ 52.5
Swin-T + FPN + BD ✓ ✓ ✓ ✓ 52.9
Swin-T + TSGE + BD + TSGD ✓ ✓ ✓ ✓ 54.5

Table 3. The effects of features on different scales on Pascal Con-
text validation. ‘BD’ is our baseline decoder. ‘1/4’, ‘1/8’, ‘1/16’
and ‘1/32’ mean that the resolutions of feature maps are ‘1/4’,
‘1/8’, ‘1/16’ and ‘1/32’ of the image size.

Design mIoU(%)

TSG with multi-head average 54.1
TSG with multi-head concatenation 54.5 (+0.4)
TSGs with shared weights 53.8
TSGs with independent weights 54.5 (+0.7)

Table 4. The impact of different design choices in our TSG module
evulated on Pascal Context validation set.

multiple spatial resolutions.
Results on different scales. We compare the results from
multi-scale features in Table 3. Our method significantly
outperforms all singe-scale models and the approaches that
simply combine the multi-scale features, benefiting from
our transformer-based scale selection.
Dissecting TSG. Table 4 shows the results of our TSG with
different settings. In Sec. 3.2, we concatenate multi-head at-
tention maps, which improves the mIoU by 0.4%, compared
with averaging multi-head attention maps. This is because
some information may be lost in the average, while the con-

catenation retains all information in attention maps. We use
multiple TSG with independent weights in different steps
in the encoder and different blocks in the decoder. Com-
pared with sharing weights among different TSGs, inde-
pendent weights achieve 0.7% improvements, because ev-
ery TSG has different inputs and independent weights show
better ability for different inputs. Nonetheless, our TSG
with shared weights can also improve the performance by
3.6%, compared with Swin Transformer [20] baseline.
TSG visualization. We visualize our scale gates in
Fig. 5(b). It can be observed that our TSG highlights small
objects ( ‘tree’ and ‘grass’) in large-scale feature maps
for more accurate segmentation, while selecting smaller-
scale feature maps for larger objects (‘aeroplane’, ‘sky’ and
‘ground’) to reduce over-segmentations.

5. Conclusion
In this paper, we have presented a Transformer Scale

Gate (TSG) module, which exploits inherent properties in
Vision Transformers to effectively select multi-scale fea-
tures for semantic segmentation. Our TSG is a simple and
lightweight transformer-based module, which can be used
in transformer segmentation networks in a plug-and-play
manner. We have also proposed TSGE and TSGD, which
leverage our TSG to further improve the segmentation ac-
curacy in the transformer encoder and decoder, respectively.
TSGE refines multi-scale features in the encoder by the self-
attention guidance, while TSGD integrates multi-scale fea-
tures in the decoder based on cross-attention maps. Exten-
sive experiments on three semantic segmentation datasets
demonstrate the effectiveness of our proposed method.
Acknowledgement. This research is supported by
Monash FIT Start-up Grant and ARC DECRA Fellowship
DE200101100.
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