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Figure 1. Samples generated by our Poly-INR model on the ImageNet dataset at various resolutions. Our model generates images with high
fidelity without using convolution, upsample, or self-attention layers, i.e., no interaction between the pixels.

Abstract

Implicit neural representations (INR) have gained sig-
nificant popularity for signal and image representation for
many end-tasks, such as superresolution, 3D modeling, and
more. Most INR architectures rely on sinusoidal positional
encoding, which accounts for high-frequency information in
data. However, the finite encoding size restricts the model’s
representational power. Higher representational power is
needed to go from representing a single given image to repre-
senting large and diverse datasets. Our approach addresses
this gap by representing an image with a polynomial function
and eliminates the need for positional encodings. Therefore,
to achieve a progressively higher degree of polynomial rep-
resentation, we use element-wise multiplications between
features and affine-transformed coordinate locations after
every ReLU layer. The proposed method is evaluated quali-
tatively and quantitatively on large datasets like ImageNet.
The proposed Poly-INR model performs comparably to state-
of-the-art generative models without any convolution, nor-
malization, or self-attention layers, and with far fewer train-
able parameters. With much fewer training parameters and
higher representative power, our approach paves the way

for broader adoption of INR models for generative mod-
eling tasks in complex domains. The code is available at
https://github.com/Rajhans0/Poly_INR

1. Introduction

Deep learning-based generative models are a very ac-
tive area of research with numerous advancements in recent
years [8, 13, 24]. Most widely, generative models are based
on convolutional architectures. However, recent develop-
ments such as implicit neural representations (INR) [29, 43]
represent an image as a continuous function of its coordinate
locations, where each pixel is synthesized independently.
Such a function is approximated by using a deep neural
network. INR provides flexibility for easy image transforma-
tions and high-resolution up-sampling through the use of a
coordinate grid. Thus, INRs have become very effective for
3D scene reconstruction and rendering from very few train-
ing images [3, 27–29, 56]. However, they are usually trained
to represent a single given scene, signal, or image. Recently,
INRs have been implemented as a generative model to gener-
ate entire image datasets [1,46]. They perform comparably to
CNN-based generative models on perfectly curated datasets
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like human faces [22]; however, they have yet to be scaled
to large, diverse datasets like ImageNet [7].

INR generally consists of a positional encoding module
and a multi-layer perceptron model (MLP). The positional
encoding in INR is based on sinusoidal functions, often re-
ferred to as Fourier features. Several methods [29, 43, 49]
have shown that using MLP without sinusoidal positional
encoding generates blurry outputs, i.e., only preserves low-
frequency information. Although, one can remove the po-
sitional encoding by replacing the ReLU activation with
a periodic or non-periodic activation function in the MLP
[6, 37, 43]. However, in INR-based GAN [1], using a peri-
odic activation function in MLP leads to subpar performance
compared to positional encoding with ReLU-based MLP.

Sitzmann et al. [43] demonstrate that ReLU-based MLP
fails to capture the information contained in higher deriva-
tives. This failure to incorporate higher derivative informa-
tion is due to ReLU’s piece-wise linear nature, and second
or higher derivatives of ReLU are typically zero. This can
be further interpreted in terms of the Taylor series expansion
of a given function. The higher derivative information of a
function is included in the coefficients of a higher-order poly-
nomial derived from the Taylor series. Hence, the inability
to generate high-frequency information is due to the ineffec-
tiveness of the ReLU-based MLP model in approximating
higher-order polynomials.

Sinusoidal positional encoding with MLP has been widely
used, but the capacity of such INR can be limiting for two
reasons. First, the size of the embedding space is limited;
hence only a finite and fixed combination of periodic func-
tions can be used, limiting its application to smaller datasets.
Second, such an INR design needs to be mathematically co-
herent. These INR models can be interpreted as a non-linear
combination of periodic functions where periodic functions
define the initial part of the network, and the later part is
often a ReLU-based non-linear function. Contrary to this,
classical transforms (Fourier, sine, or cosine) represent an
image by a linear summation of periodic functions. However,
using just a linear combination of the positional embedding
in a neural network is also limiting, making it difficult to
represent large and diverse datasets. Therefore, instead of
using periodic functions, this work models an image as a
polynomial function of its coordinate location.

The main advantage of polynomial representation is the
easy parameterization of polynomial coefficients with MLP
to represent large datasets like ImageNet. However, conven-
tionally MLP can only approximate lower-order polynomials.
One can use a polynomial positional embedding of the form
xpyq in the first layer to enable the MLP to approximate
higher order. However, such a design is limiting, as a fixed
embedding size incorporates only fixed polynomial degrees.
In addition, we do not know the importance of each polyno-
mial degree beforehand for a given image.

Hence, we do not use any positional encoding, but we
progressively increase the degree of the polynomial with the
depth of MLP. We achieve this by element-wise multiplica-
tion between the feature and affine transformed coordinate
location, obtained after every ReLU layer. The affine pa-
rameters are parameterized by the latent code sampled from
a known distribution. This way, our network learns the re-
quired polynomial order and represents complex datasets
with considerably fewer trainable parameters. In particular,
the key highlights are summarized as follows:

• We propose a Poly-INR model based on polynomial
functions and design a MLP model to approximate
higher-order polynomials.

• Poly-INR as a generative model performs compara-
bly to the state-of-the-art CNN-based GAN model
(StyleGAN-XL [42]) on the ImageNet dataset with
3−4× fewer trainable parameters (depending on output
resolution).

• Poly-INR outperforms the previously proposed INR
models on the FFHQ dataset [22], using a significantly
smaller model.

• We present various qualitative results demonstrating the
benefit of our model for interpolation, inversion, style-
mixing, high-resolution sampling, and extrapolation.

2. Related work
Implicit neural representations: INRs have been widely
adopted for 3D scene representation and synthesis [28, 29,
45]. Following the success of NeRF [29], there has been a
large volume of work on 3D scene representation from 2D
images [3,20,27,35,44,54,56]. They have also been used for
semantic segmentation [11], video [12, 33, 53], audio [12],
and time-series modeling [10]. INRs have also been used
as a prior for inverse problems [38, 43]. However, most
INR approaches either use a sinusoidal positional encoding
[29,49] or a sinusoidal activation function [43], which limits
the model capacity for large dataset representation. In our
work, we represent our Poly-INR model as a polynomial
function without using any positional encoding.
GANs: have been widely used for image generation and
synthesis tasks [13]. In recent work, several improvements
have been proposed [2, 14, 22, 30, 36] over the original ar-
chitecture. For example, the popularly used StyleGAN [22]
model uses a mapping network to generate style codes which
are then used to modulate the weights of the Conv layers.
StyleGAN improves image fidelity, as well as enhances inver-
sion [52] and image editing capabilities [15]. StyleGAN has
been scaled to large datasets like ImageNet [42], using a dis-
criminator which uses projected features from a pre-trained
classifier [41]. More recently, transformer-based models
have also been used as generators [26, 57]; however, the self-
attention mechanism is computationally costly for achieving
higher resolution. Unlike these methods, our generator is
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Figure 2. Overview of our proposed Polynomial Implicit Neural Representation (Poly-INR) based generator architecture. Our model consists
of two networks: 1) Mapping network, which generates the affine parameters from the latent code z, and 2) Synthesis network, which
synthesizes the RGB value for the given pixel location. Our Poly-INR model is defined using only Linear and ReLU layers end-to-end.

free of convolution, normalization, and self-attention mech-
anisms and only uses ReLU and Linear layers to achieve
competitive results, but with far fewer parameters.
GANs + coordinates: INRs have also been implemented
within generative models. For example, CIPS [1] uses
Fourier features and learnable vectors for each spatial loca-
tion as positional encoding and uses StyleGAN-like weight
modulation for layers in the MLP. Similarly, INR-GAN [46]
proposes a multi-scale generator model where a hyper-
network determines the parameters of the MLP. INR-GAN
has been further extended to generate an ‘infinite’-size con-
tinuous image using anchors [47]. However, these INR-
based models have only shown promising results on smaller
datasets. Our work scales easily to large datasets like Ima-
geNet owing to the significantly fewer parameters.

Other approaches have combined CNN with coordinate-
based features. For example, the Local Implicit Image Func-
tion (LIIF) [5] and Spherical Local Implicit Image Function
(SLIIF) [55] use a CNN-based backbone to generate feature
vectors corresponding to each coordinate location. Arbitrary-
scale image synthesis [32] uses a multi-scale convolution-
based generator model with scale-aware position embed-
ding to generate scale-consistent images. StyleGAN model,
further extended by [21] (StyleGAN-3) to use coordinate
location-based Fourier features. In addition, StyleGAN-3
uses filter kernels equivariant to the coordinate grid’s transla-
tion and rotation. However, the rotation equivariant version
of the StyleGAN-3 model fails to scale to ImageNet dataset,
as reported in [42]. Instead of using convolution layers, the
Poly-INR only uses linear and ReLU layers.
Relation to classical geometric moment: Polynomial func-
tions have been explored earlier in the form of geometric
moments for image reconstruction [9, 18, 19, 50]. Unlike the
Fourier transform, which uses the sinusoidal functions as the
basis, the geometric moment method projects the 2D image
on a polynomial basis of the form xpyq to compute the mo-

ment of order p + q. The moment matching method [50]
is generally used for image reconstruction from given finite
moments. In moment matching, the image is assumed to be
a polynomial function, and the coefficients of the polynomial
are defined to match the given finite moments. Similar to
geometric moments, we also represent images on a polyno-
mial basis; however, our polynomial coefficients are learned
end-to-end and defined by a deep neural network.

3. Method
We are interested in a class of functions that represent an

image in the form:

G(x, y) = g00 + g10x+ g01y + ...+ gpqx
pyq, (1)

where, (x, y) is the normalized pixel location sampled
from a coordinate grid of size (H × W ), while the coeffi-
cients of the polynomial (gpq) are parameterized by a latent
vector z sampled from a known distribution and are indepen-
dent of the pixel location. Therefore, to form an image, we
evaluate the generator G for all pixel locations (x, y) for a
given fixed z:

I = {G(x, y; z) | (x, y) ∈ CoordinateGrid(H,W )},
(2)

where, CoordinateGrid(H,W ) = {( x
W−1 ,

y
H−1 ) | 0 ≤

x < W, 0 ≤ y < H}. By sampling different latent vectors
z, we generate different polynomials and represent images
over a distribution of real images.

Our goal is to learn the polynomial defined by Eq. 1 using
only Linear and ReLU layers. However, the conventional
definition of MLP usually takes the coordinate location as
input, processed by a few Linear and ReLU layers. This
definition of INR can only approximate low-order polyno-
mials and hence only generates low-frequency information.
Although, one can use a positional embedding consisting
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of polynomials of the form xpyq to approximate a higher-
order polynomial. However, this definition of INR is limiting
since a fixed-size embedding space can contain only a small
combination of polynomial orders. Furthermore, we do not
know which polynomial order is essential to generate the
image beforehand. Hence, we progressively increase the
polynomial order in the network and let it learn the required
orders. We implement this by using element-wise multi-
plication with the affine-transformed coordinate location at
different levels, shown in Fig 2. Our model consists of two
parts: 1) Mapping network, which takes the latent code z
and maps it to affine parameters space W, and 2) Synthesis
network, which takes the pixel location and generates the
corresponding RGB value.
Mapping Network: The mapping network takes the latent
code z ∈ R64 and maps it to the space W ∈ R512. Our
model adopts the mapping network used in [42]. It consists
of a pre-trained class embedding, which embeds the one hot
class label into a 512 dimension vector and concatenates it
with the latent code z. Then the mapping network consists of
an MLP with two layers, which maps it to the space W. We
use this W to generate affine parameters by using additional
linear layers; hence we call W as affine parameters space.
Synthesis network: The synthesis network generates the
RGB (R3) value for the given pixel location (x, y). As
shown in Fig. 2, the synthesis network consists of multiple
levels; at each level, it receives the affine transformation
parameters from the mapping network and the pixel coordi-
nate location. At level-0, we affine transform the coordinate
grid and feed it to a Linear layer followed by a Leaky-ReLU
layer with negative slope = 0.2. At later levels, we do
element-wise multiplication between the feature from the
previous level and the affine-transformed coordinate grid,
and then feed it to Linear and Leaky-ReLU layers. With
the element-wise multiplication at each level, the network
has the flexibility to increase the order for x or y coordinate
position, or not to increase the order by keeping the affine
transformation coefficient aj = bj = 0. In our model, we
use 10 levels, which is sufficient to generate large datasets
like ImageNet. Mathematically, the synthesis network can
be expressed as follows:

Gsyn = . . . σ(W2((A2X)⊙ σ(W1((A1X)⊙ (3)
σ(W0(A0X)))))),

where X ∈ R3×HW is the coordinate grid of size H ×W
with an additional dimension for the bias, Ai ∈ Rn×3 is
the affine transformation matrix from the mapping network
for level-i, Wi ∈ Rn×n is the weight of the linear layer
at level-i, σ is the Leaky-ReLU layer and ⊙ is element-
wise multiplication. Here n is the dimension of the feature
channel in the synthesis network, which is the same for all
levels. For large datasets like ImageNet, we choose the
channel dimension n = 1024, and for smaller datasets like

FFHQ, we choose n = 512. Note that with this definition,
our model only uses Linear and ReLU layers end-to-end and
synthesizes each pixel independently.
Relation to StyleGAN: StyleGANs [21–23] can be seen
as a special case of our formulation. By keeping the coef-
ficients (aj ,bj) in the affine transformation matrix of x and
y coordinate location equal to zero, the bias term cj would
act as a style code. However, our affine transformation adds
location bias to the style code, rather than just using the
same style code for all locations in StyleGAN models. This
location bias makes the model very flexible in applying a
style code only to a specific image region, making it more ex-
pressive. In addition, our model differs from the StyleGANs
in many aspects. First, our method does not use weight mod-
ulation/demodulation or normalizing [23] tricks. Second,
our model does not employ low-pass filters or convolutional
layers. Finally, we do not inject any spatial noise into our
synthesis network. We can also use these tricks to improve
the model’s performance further. However, our model’s defi-
nition is straightforward compared to other GAN models.

4. Experiments
The effectiveness of our model is evaluated on two

datasets: 1) ImageNet [7] and 2) FFHQ [22]. The ImageNet
dataset consists of 1.2M images over 1K classes, whereas
the FFHQ dataset contains ∼ 70K images of curated hu-
man faces. All our models have 64 dimensional latent space
sampled from a normal distribution with mean 0 and stan-
dard deviation 1. The affine parameters space W of the
mapping network is 512 dimensions, and the synthesis net-
work consists of 10 levels with feature dimension n = 1024
for the ImageNet and n = 512 for FFHQ. We follow the
training scheme of the StyleGAN-XL method [42] and use
a projected discriminator based on the pre-trained classi-
fiers (DeiT [51] and EfficientNet [48]) with an additional
classifier guidance loss [8].

We train our model progressively with increasing resolu-
tion, i.e., we start by training at low resolution and continue
training with higher resolutions as training progresses. Since
the computational cost is less at low resolution, the model is
trained for large number of iterations, followed by training
for high resolution. Since the model is already trained at
low resolution, fewer iterations are needed for convergence
at high resolution. However, unlike StyleGAN-XL, which
freezes the previously trained layers and introduces new lay-
ers for higher resolution, Poly-INR uses a fixed number of
layers and trains all the parameters at every resolution.

4.1. Quantitative results

We compare our model against CNN-based GANs (Big-
GAN [4] and StyleGAN-XL [42]) and diffusion models
(CDM [17], ADM, ADM-G [8], and DiT-XL [34]) on the Im-
ageNet dataset. We also report results on the FFHQ dataset
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Table 1. Quantitative comparison of Poly-INR method with CNN-based generative models on ImageNet datasets. (d) compares the number
of parameters used in all models at various resolutions. The results for existing methods are quoted from the StyleGAN-XL paper.

(a) ImageNet 128× 128

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑

BigGAN 6.02 7.18 6.09 145.83 0.86 0.35
CDM 3.52 - - 128.80 - -
ADM 5.91 5.09 13.29 93.31 0.70 0.65

ADM-G 2.97 5.09 3.80 141.37 0.78 0.59
StyleGAN-XL 1.81 3.82 1.82 200.55 0.77 0.55

Poly-INR 2.08 3.93 2.76 179.64 0.70 0.45

(b) ImageNet 256× 256

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑

BigGAN 6.95 7.36 75.24 202.65 0.87 0.28
ADM 10.94 6.02 125.78 100.98 0.69 0.63

ADM-G 3.94 6.14 11.86 215.84 0.83 0.53
DiT-XL/2-G 2.27 4.60 - 278.54 0.83 0.57

StyleGAN-XL 2.30 4.02 7.06 265.12 0.78 0.53
Poly-INR 2.86 4.37 7.79 241.43 0.71 0.39

(c) ImageNet 512× 512

Model FID ↓ sFID ↓ rFID ↓ IS ↑ Pr ↑ Rec ↑

BigGAN 8.43 8.13 312.00 177.90 0.88 0.29
ADM 23.24 10.19 561.32 58.06 0.73 0.60

ADM-G 3.85 5.86 210.83 221.72 0.84 0.53
DiT-XL/2-G 3.04 5.04 - 240.82 0.84 0.54

StyleGAN-XL 2.41 4.06 51.54 267.75 0.77 0.52
Poly-INR 3.81 5.06 54.31 267.44 0.70 0.34

(d) Number of parameters in millions (M)

Model 642 1282 2562 5122

BigGAN - 141.0 164.3 164.7
ADM 296.0 422.0 554.0 559.0

DiT-XL - - 675.0 675.0
StyleGAN-XL 134.4 158.7 166.3 168.4

Poly-INR 46.0 46.0 46.0 46.0

Table 2. Quantitative comparison of Poly-INR method with CNN
and INR-based generative models on FFHQ dataset at 256× 256.

Model params (M) FID ↓ Inference Time
(sec/img)

StyleGAN2 30.0 3.83 0.016
StyleGAN-XL 67.9 2.19 0.047

CIPS 45.9 4.38 0.067
INR-GAN 72.4 4.95 0.024
Poly-INR 13.6 2.72 0.054

for INR-based GANs (CIPS [1] and INR-GAN [46]) as they
do not train models on ImageNet.
Quantitative metrics: We use Inception Score (IS) [40],
Frechet Inception Distance (FID) [16], Spatial Frechet In-
ception Distance (sFID) [31], random-FID (rFID) [42], pre-
cision (Pr), and recall (Rec) [25]. IS (higher the better)
quantifies the quality and diversity of the generated samples
based on the predicted label distribution by the Inception net-
work but does not compare the distribution of the generated
samples with the real distribution. The FID score (lower the
better) overcomes this drawback by measuring the Frechet
distance between the generated and real distribution in the
Inception feature space. Further, sFID uses higher spatial
features from the Inception network to account for the spatial
structure of the generated image. Like StyleGAN-XL, we
also use the rFID score to ensure that the network is not
just optimizing for IS and FID scores. We use the same
randomly initialized Inception network provided by [42]. In
addition, we also compare our model on the precision and
recall metric (higher the better) that measures how likely the
generated sample is from the real distribution.

Table 1 summarizes the results on the ImageNet dataset
at different resolutions. The results for existing methods
are quoted from the StyleGAN-XL paper. We observe that
the performance of the proposed model is third best after

DiT-XL and StyleGAN-XL on the FID and IS metrics. The
proposed model outperforms the ADM and BigGAN models
at all resolutions and performs comparably to the StyleGAN-
XL at 128× 128 and 256× 256. We also observe that with
the increase in image size, the FID score for Poly-INR drops
much more than StyleGAN-XL. The FID score drops more
because our model does not add any additional layers with
the increase in image size. For example, the StyleGAN-XL
uses 134.4M parameters at 64×64 and 168.4M at 512×512,
whereas Poly-INR uses only 46.0M parameters at every res-
olution, as reported in Table 1(d). The table shows that our
model performs comparably to the state-of-the-art CNN-
based generative models, even with significantly fewer pa-
rameters. On precision metric, the Poly-INR method per-
forms comparably to other methods; however, the recall
value is slightly lower compared to StyleGAN-XL and dif-
fusion models at higher resolution. Again, this is due to the
small model size, limiting the model’s capacity to represent
much finer details at a higher resolution.

We also compare the proposed method with other INR-
based GANs: CIPS and INR-GAN on the FFHQ dataset.
Table 2 shows that the proposed model significantly outper-
forms these models, even with a small generator model. Inter-
estingly the Poly-INR method outperforms the StyleGAN-2
and performs comparable to StyleGAN-XL, using signif-
icantly fewer parameters. Table 2 also reports the infer-
ence speed of these models on a Nvidia-RTX-6000 GPU.
StyleGANs and INR-GAN use a multi-scale architecture,
resulting in faster inference. In contrast, CIPS and Poly-INR
models perform all computations at the same resolution as
the output image, increasing the inference time.

4.2. Qualitative results

Fig. 1 shows images sampled at different resolutions by
the Poly-INR model trained on 512× 512. We observe that
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Level-3 Level-5 Level-7 Level-9 Image

Figure 3. Heat-map visualization at different levels of the synthesis
network. At initial levels, the model captures the basic shape of the
object, and at higher levels, the image’s finer details are captured.

Figure 4. Few example images showing extrapolation outside the
image boundary (yellow square). The Poly-INR model is trained to
generate images on the coordinate grid [0, 1]2. For extrapolation,
we use the grid size [−0.25, 1.25]2. Our model generates continu-
ous image outside the conventional boundary.

our model generates diverse images with very high fidelity.
Even though the model does not use convolution or self-
attention layers, it generates realistic images over datasets
like ImageNet. In addition, the model provides flexibility
to generate images at different scales by changing the size
of the coordinate grid, making the model efficient if low-
resolution images are needed for a downstream task. In
contrast, CNN-based models generate images only at the
training resolution due to the non-equivariant nature of the
convolution kernels to image scale.
Heat-map visualization: Fig. 3 visualizes the heat-map
at different levels of our synthesis network. To visualize a
feature as a heat-map, we first compute the mean along the
spatial dimension of the feature and use it as a weight to
sum the feature along the channel dimension. In the figure,
we observe that in the initial levels (0-3), the model forms
the basic structure of the object. Meanwhile, in the middle
levels (4-6), it captures the object’s overall shape, and in
the higher levels (7-9), it adds finer details about the object.
Furthermore, we can interpret this observation in terms of
polynomial order. Initially, it only approximates low-order
polynomials and represents only basic shapes. However,
at higher levels, it approximates higher-order polynomials
representing finer details of the image.
Extrapolation: The INR model is a continuous function of
the coordinate location; hence we extrapolate the image by
feeding the pixel location outside the conventional image
boundary. Our Poly-INR model is trained to generate images
on the coordinate grid defined by [0, 1]2. We feed the grid
size [−0.25, 1.25]2 to the synthesis network to generate the

extrapolated images. Fig. 4 shows a few examples of extrap-
olated images. In the figure, the region within the yellow
square represents the conventional coordinate grid [0, 1]2.
The figure shows that our INR model not only generates a
continuous image outside the boundary but also preserves
the geometry of the object present within the yellow square.
However, in some cases, the model generates a black or
white image border, resulting from the image border present
in some real images of the training set.

Table 3. FID score (lower the better) evaluated at 512 × 512 for
models trained at a lower resolution and compared against classical
interpolation-based upsampling.

Training Nearest Bilinear Bicubic Poly-INR
Resolution Neighbour

32×32 184.39 112.28 73.86 65.15
64×64 89.24 72.41 42.97 36.30

Sampling at higher-resolution: Another advantage of us-
ing our model is the flexibility to generate images at any
resolution, even if the model is trained on a lower resolution.
We generate a higher-resolution image by sampling a dense
coordinate grid within the [0, 1]2 range. Table 3 shows the
FID score evaluated at 512× 512 for models trained on the
lower-resolution ImageNet dataset. We compare the quality
of upsampled images generated by our model against the
classical interpolation-based upsampling methods. The table
shows that our model generates crisper upsampled images,
achieving a significantly better FID score than the classical
interpolation-based upsampling method. However, we do
not observe significant FID score improvement for our Poly-
INR model trained on 128×128 or higher resolution against
the classical interpolation techniques. This could be due
to the limitations of the ImageNet dataset, which primarily
consists of lower-resolution images than the 512× 512. We
used bilinear interpolation to prepare the training dataset at
512 × 512. As per our knowledge, there are currently no
large and diverse datasets like ImageNet with high-resolution
images. We believe this performance can be improved when
the model has access to higher-resolution images for training.
We also compare the upsampling performance with other
INR-based GANs by reporting the FID scores at 1024×1024
for models trained on FFHQ-256 × 256 as follows: Poly-
INR:13.69, INR-GAN: 18.51, CIPS:29.59. Our Poly-INR
model provides better high-resolution sampling than the
other two INR-based generators.
Interpolation: Fig. 5 shows that our model generates
smooth interpolation between two randomly sampled im-
ages. In the first two rows of the figure, we interpolate in the
latent space, and in the last two rows, we directly interpolate
between the affine parameters. In our synthesis network,
only the affine parameters depend on the image, and other
parameters are fixed for every image. Hence interpolating
in affine parameters space means interpolation in INR space.
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Figure 5. Linear interpolation between two random points. The first two rows represent interpolation in the latent space, while in the last two,
we directly interpolate between the affine parameters. Poly-INR provides smooth interpolation even in a high dimension of affine parameters.
Our model generates high-fidelity images similar to state-of-the-art models like StyleGAN-XL but without the need for convolution or
self-attention mechanism. Comparisons with existing methods are present in the supplementary material.

Source A Source B Fine-to-coarse

Figure 6. Source A and B images are generated corresponding to random latent codes, and the rest of the images are generated by copying
the affine parameters of source A to source B at different levels. Copying the higher levels’ (8 and 9) affine parameters leads to finer style
changes, whereas copying the middle levels’ (7, 6, and 5) leads to coarse style changes.

Figure 7. The Poly-INR model generates smooth interpolation with embedded images in affine parameters space. The leftmost image (first
row) is from the ImageNet validation set, and the last two (rightmost) are the OOD images.
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Source A Source B Style-mixing

Figure 8. Style-mixing with embedded images in affine parameters
space. Source B is the embedded image from the ImageNet valida-
tion set, mixed with the style of randomly sampled source A image.

Our model provides smoother interpolation even in the affine
parameters space and interpolates with the geometrically co-
herent movement of different object parts. For example, in
the first row, the eyes, nose, and mouth move systematically
with the whole face.
Style-mixing: Similar to StyleGANs, our Poly-INR model
transfers the style of one image to another. Our model gen-
erates smooth style mixing even though we do not use any
style-mixing regularization during the training. Fig. 6 shows
examples of style-mixing from source A to source B images.
For style mixing, we first obtain the affine parameters cor-
responding to the source A and B images and then copy the
affine parameters of A to B at various levels of the synthesis
network. Copying affine parameters to higher levels (8 and
9) leads to finer changes in the style, while copying to middle
levels (7, 6, and 5 ) leads to the coarse style change. Mixing
the affine parameters at initial levels changes the shape of the
generated object. In the figure, we observe that our model
provides smooth style mixing while preserving the original
shape of the source B object.
Inversion: Embedding a given image into the latent space
of the GAN is an essential step for image manipulation. In
our Poly-INR model, for inversion, we optimize the affine
parameters to minimize the reconstruction loss, keeping the
synthesis network’s parameters fixed. We use VGG feature-
based perceptual loss for optimization. We embed the Ima-
geNet validation set in the affine parameters space for the
quantitative evaluation. Our Poly-INR method effectively
embeds images with high PSNR scores (PSNR:26.52 and
SSIM:0.76), better than StyleGAN-XL (PSNR:13.5 and
SSIM:0.33). However, our affine parameters dimension is
much larger than the StyleGAN-XL’s latent space. Even
though the dimension of the affine parameters is much higher,
the Poly-INR model provides smooth interpolation for the
embedded image. Fig. 7 shows examples of interpolation
with embedded images. In the figure, the first row (leftmost)
is the embedded image from Val set, and the last two rows
(rightmost) are the out-of-distribution images. Surprisingly,
our model provides smooth interpolation for OOD images.
In addition, Fig. 8 shows smooth style-mixing with the em-
bedded images. In some cases, we observe that the fidelity
of the interpolated or style-mixed image with the embedded

image is slightly less compared to samples from the train-
ing distribution. This is due to the large dimension of the
embedding space, which sometimes makes the embedded
point farther from the training distribution. It is possible to
improve interpolation quality further by using the recently
proposed pivotal tuning inversion method [39], which fine-
tunes the generator’s parameters around the embedded point.

4.3. Discussion

The proposed Poly-INR model performs comparably
to state-of-the-art generative models on large ImageNet
datasets without using convolution or self-attention layers.
In addition to smooth interpolation and style-mixing, the
Poly-INR model provides attractive flexibilities like image
extrapolation and high-resolution sampling. In this work,
while we use our INR model for 2D image datasets, it can
be extended to other modalities like 3D datasets.
Challenges: One of the challenges in our INR method is
the higher computation cost compared to the CNN-based
generator model for high-resolution image synthesis. The
INR method generates each pixel independently; hence all
the computation takes place at the same resolution. In con-
trast, a CNN-based generator uses a multi-scale generation
pipeline, making the model computationally efficient. In ad-
dition, we observe common GAN artifacts in some generated
images. For example, in some cases, it generates multiple
heads and limbs, missing limbs, or the object’s geometry is
not correctly synthesized. We suspect that the CNN-based
discriminator only discriminates based on the object’s parts
and fails to incorporate the entire shape.

5. Conclusion
In this work, we propose polynomial function based im-

plicit neural representations for large image datasets while
only using Linear and ReLU layers. Our Poly-INR model
captures high-frequency information and performs compa-
rably to the state-of-the-art CNN-based generative models
without using convolution, normalization, upsampling, or
self-attention layers. The Poly-INR model outperforms pre-
viously proposed positional embedding-based INR GAN
models. We demonstrate the effectiveness of the proposed
model for various tasks like interpolation, style-mixing, ex-
trapolation, high-resolution sampling, and image inversion.
Additionally, it would be an exciting avenue for future work
to extend our Poly-INR method for 3D-aware image synthe-
sis on large datasets like ImageNet.
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Scene representation networks: Continuous 3d-structure-
aware neural scene representations. Advances in Neural In-
formation Processing Systems, 32, 2019. 2

[46] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elhoseiny.
Adversarial generation of continuous images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10753–10764, 2021. 1, 3, 5

[47] Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elho-
seiny. Aligning latent and image spaces to connect the un-
connectable. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14144–14153, 2021.
3

[48] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 4

[49] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020. 2

[50] Michael Reed Teague. Image analysis via the general theory
of moments. Josa, 70(8):920–930, 1980. 3

[51] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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