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Figure 1. Image synthesis by knowledge transfer. Unlike previous works using GANs as base model and test transfer on relatively narrow
visual domains, we transfer knowledge of generative vision transformers [7, 15] to a wide range of visual domains, including natural
(e.g., scene, flower), specialized (e.g., satellite, medical), and structured (e.g., road scenes, infograph, sketch) with a few training images.
Notably, the prompt tuning significantly improves the prior best FID on two benchmarks ImageNet (85.9—16.3) and Places (71.3—24.2).

Abstract

Learning generative image models from various domains
efficiently needs transferring knowledge from an image syn-
thesis model trained on a large dataset. We present a recipe
for learning vision transformers by generative knowledge
transfer. We base our framework on generative vision trans-
formers representing an image as a sequence of visual to-
kens with the autoregressive or non-autoregressive trans-
formers. To adapt to a new domain, we employ prompt tun-
ing, which prepends learnable tokens called prompts to the
image token sequence and introduces a new prompt design
for our task. We study on a variety of visual domains with
varying amounts of training images. We show the effective-
ness of knowledge transfer and a significantly better image
generation quality.'

1. Introduction

Image synthesis has witnessed tremendous progress re-
cently with the advancement of deep generative models [2,

Inttps://github.com/google-research/generative_
transfer

12,20,67,69]. An ideal image synthesis system generates
diverse, plausible, and novel scenes capturing the appear-
ance of objects and depicting their interactions. The success
of image synthesis does heavily rely on the availability of a
large amount of diverse training data [73].

Transfer learning, a cornerstone invention in deep learn-
ing, has proven indispensable in an array of computer vision
tasks, including classification [35], object detection [18,19],
image segmentation [23,24], etc. However, transfer learn-
ing is not widely used for image synthesis. While recent
efforts have shown success in transferring knowledge from
pre-trained Generative Adversarial Network (GAN) mod-
els [46,60,71,76], their demonstrations are limited to nar-
row visual domains, e.g., faces or cars [46,76], as in Fig. 1,
or requiring a non-trivial amount of training data [60,71] to
transfer to out-of-distribution domains.

In this work, we approach transfer learning for image
synthesis using generative vision transformers, an emerg-
ing class of image synthesis models, such as DALL-E [53],
Taming Transformer [15], MaskGIT [7], CogView [13],
NUWA [75], Parti [79], among others, which excel in im-
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age synthesis tasks. We closely follow the recipe of trans-
fer learning for image classification [35], in which a source
model is first trained on a large dataset (e.g., ImageNet) and
then transferred to a diverse collection of downstream tasks.
Except, in our setting, the input and output are reversed and
the model generates images from a class label.

We present a transfer learning framework using prompt
tuning [38,40]. While the technique has been used for trans-
fer learning of discriminative models for vision tasks [1,29],
we appear to be the first to adopt prompt tuning for trans-
fer learning of image synthesis. To this end, we propose a
parameter-efficient design of a prompt token generator that
admits condition variables (e.g., class), a key for control-
lable image synthesis neglected in prompt tuning for dis-
criminative transfer [29, 38]. We also introduce a marquee
header prompt that engineers learned prompts to enhance
generation diversity while retaining the generation quality.

We conduct a large-scale study to understand the me-
chanics of transfer learning for generative vision transform-
ers. Two types of generative transformers — AutoRegressive
(AR) and Non-AutoRegressive (NAR) — are examined. AR
transformers (e.g., DALL-E [53], Taming Transformer [15],
Parti [79]) generate image tokens sequentially with an
autoregressive language model. NAR transformers (e.g.,
MaskGIT [7], MUSE [6]) or diffusion models (e.g., Ima-
gen [58], Latent Diffusion [57]) decompose image synthe-
sis as a series of refinement or denoising steps. In this work,
we study transfer learning of class-conditional AR [15] and
NAR [7] transformer models trained on ImageNet to com-
ply with existing transfer learning settings [60,71]. In addi-
tion to investigating proposed prompt tuning, we also con-
duct an analysis of two other transfer learning methods, i.e.
full fine-tuning and adapter tuning, in the context of gener-
ative transfer learning using vision transformers. We com-
pare their strengths and weaknesses in Sec. 4.1.

Our study shows that generative vision transformers with
prompt tuning outperform state-of-the-art methods using
GANSs [60, 71] by a vast margin, which is verified on 19
tasks of diverse visual distributions and drastically different
amounts of training data in VTAB [81]. Fig. 1 compares
domains, showing the great expansion of downstream do-
mains to what is achieved by previous works. On the on-
manifold domains on which previous studies have focused,
our method slashes the prior state-of-the-art in FID from
71 to 24 on Places [85] and 86 to 16 on Animal Face [61]
datasets. Moreover, our method shows highly-competitive
data efficiency, generating diverse images following the tar-
get distribution when trained from a few images per class.

In summary, our contributions are as follows:

e We present a generative visual transfer learning frame-
work for vision transformers with prompt tuning [38],
proposing a new prompt token generator design.

e We conduct a large-scale empirical study for genera-

tive transfer learning to validate our proposed prompt
tuning and relevant transfer learning methods (e.g., full
fine-tuning, adapter tuning) on several visual domains
(e.g., VTAB) and scenarios (e.g., few-shot). We show
state-of-the-art image synthesis performance.

e To our knowledge, we are first to propose the use of
prompt tuning for transfer learning of generative trans-
formers. Importantly, we provide the quantitative evi-
dence on the necessity of generative knowledge trans-
fer on VTAB [81], the common and challenging trans-
fer learning benchmark.

2. Preliminary

2.1. Generative Vision Transformers

This paper uses generative vision transformers to denote
vision transformers for image synthesis. Broadly, there are
two types of generative transformers, AutoRegressive (AR)
and Non-AutoRegressive (NAR) transformers, both consist-
ing of two stages — image quantization and decoding. The
two models share the same first stage: image quantization
by a Vector-Quantized (VQ) auto-encoder [15, 54, 67, 78].
The VQ encoder converts image patches into indices (or to-
kens) in a codebook. The 2D image is then flattened into
a 1D sequence to which a special token indicating its class
label is prepended.

Pretrain on ImageNet
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Figure 2. Our method transfers knowledge from generative vision
transformers (e.g., autoregressive [15] or non-autoregressive [7])
trained on a large dataset to various visual domains by prepending
learnable prompt tokens (green) to visual tokens (blue).

AR and NAR transformers differ in the second stage. AR
transformers [8, 13, 15, 53,75, 79], such as DALL-E [53],
Taming Transformer [15], learn an AR decoder on the flat-
tened token sequence to generate image tokens sequentially
from previously generated tokens. As in Fig. 2, the genera-
tion follows a raster scan ordering, generating tokens from
left to right, line-by-line. Finally, the generated tokens are
mapped to the pixel space using the VQ decoder.
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Figure 3. Prompt token generators and their use in transformer. (a) a straightforward extension of baseline prompt token generators [29,38,
40] with a class condition. When using an MLP with a single dense layer of P units, the number of trainable parameters is P-(C-S+D).
(b) The proposed parameter efficient prompt token generators that factorizes data dependent conditions (e.g., class, instance) and token
position. Under a similar design choice as baseline models, the number of trainable parameters is P-(F-(C+S)+D), which could be
significantly fewer when < min(C, S). (c) Number of parameters for prompt token generators with respect to the sequence length (S),
while setting P = 768, D = 768, and C' = 100 with different number of factors F'.

NAR or diffusion models, including DALL-E 2 [52],
MaskGIT [7], Latent Diffusion [57], or Imagen [58], de-
compose image synthesis as a series of refinement or de-
noising steps. For prompt tuning, we need a NAR model
with the transformer backbone [7,17,21,36,37,39,83], and
use a leading NAR image transformer called MaskGIT [7].

NAR transformers are trained on the masked modeling
proxy task [11]. For inference, the model adopts a non-
autoregressive decoding method to synthesize an image in a
few steps [7,21,36,39]. As in Fig. 2, the NAR transformer
starts from a blank canvas with all tokens masked, and gen-
erates an image in 8 steps or so. In each step, it predicts all
tokens in parallel and retains the ones with the highest pre-
diction scores. The remaining tokens are masked out and
predicted in the next iteration. NAR transformers [7, 39]
have shown faster inference than AR transformers.

2.2. Prompt Tuning

Prompt tuning [38,40] is introduced recently in natural
language processing as a way of efficiently adapting pre-
trained large language models to downstream tasks. Here,
prompt is a sequence of additional tokens prepended to a
token sequence. In prompt engineering [3], their values are
often chosen by heuristic. On the other hand, in prompt
tuning [38, 40], tokens are parameterized by learnable pa-
rameters and their parameters are updated via gradient de-
scent to adapt transformers to the downstream tasks. Due to
its simplicity and as transformers’ central role in language
foundation models, prompt tuning has been applied to some
vision tasks for knowledge transfer, e.g., image classifica-
tion [1,29], detection and segmentation [45], but not yet for
image synthesis.

3. Visual Prompt for Generative Transfer

Fig. 2 overviews the proposed generative transfer learn-
ing framework. We aim at transferring a generative prior,

parameterized by generative vision transformers, while uti-
lizing the same VQ encoder and decoder trained from the
large source dataset. We use prompt tuning to adapt to
the target distributions while leaving the transformer pa-
rameters frozen. We discuss how to learn visual prompts
(Sec. 3.1), a new prompt generator for conditional image
synthesis (Sec. 3.2), and a prompt design for generating vi-
sually diverse images (Sec. 3.3).

3.1. Learning Visual Prompt

A sequence of prompt tokens is prepended to the visual
tokens to guide the pretrained transformer models to the tar-
get distribution. Prompt tuning, learning the parameters of
the token generator, is optimized by gradient descent with
respective loss functions, while fixing the parameters of the
pretrained transformers. To be specific, let Z = {z; fiﬁw
be a sequence of visual tokens (i.e., an output of VQ en-
coder followed by the vectorization) and Py = {ps.s}5_;
be a sequence of prompt tokens. For the AR transformer,

the loss is given as follows:
EAR ZExNPX[—IOgPQ(Z|'P¢)] (1)
HxW
Py(2IPg) =], Polzilz<i,Po) )
For the NAR transformer, we follow that of MaskGIT [7]:
LNAR = Bonpy vinrn [ —l0g Po(Z0| 257, Py)] (3
Py(Z2m| 2537, Py) = HieM Py(zi| 257, Py) D)

where M C {1, ..., HxW} is a set of visual token indices
sampled from a masking schedule distribution Pp4, M is its
complement, and Z5; = {z;}; ¢ pr. Prompt tuning proceeds
by minimizing the respective loss with respect to the prompt
parameters ¢ while fixing the transformer parameters 6:

"= arg;nin LAR/NAR (%)
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(a) Image synthesis using instance-conditioned prompts.
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(c) Image synthesis using a marquee header prompt between instance-conditioned prompts (blue and red).

Figure 4. Iterative decoding of NAR transformers. (4a) instance prompts generate images of high-fidelity but with low diversity. Marquee
header prompts enhance generation diversity by interpolating (4b) from instance to class prompts or (4c) between instance prompts.

While we focus on the prompt tuning due to the virtue of
effectiveness and compute-efficiency for large source trans-
formers, we note that the proposed learning framework is
amenable with other methods, such as adapter [28] or fine-
tuning [35], with learnable prompts. See a detailed compar-
ison in Appendix B.4.
After prompt tuning, we generate visual tokens for image

synthesis by iterative decoding. For AR transformer,

1: fori <+ 1to H x W do

2: iiNPQ(Zi‘2<i,P¢)

3: end for
For the NAR model, parallel decoding [7] is used:
Require: M ={}, T, {ni,...,nr}, > 1 ne=HxW

1: fort < 1to7 do

2 3~ Py(zi| 2y, Py).Vie M

3: M(—MU{argtopkieM(Pg(i'i\éﬁﬂ%),k:nt)}

4: end for
where {ni,...,nr} is a masking schedule that decides the
number of tokens to decode at each step. We refer to [7] for
details on decoding for NAR transformers. Illustrations of
decoding steps for both models are in Fig. 2.

3.2. Prompt Token Generator Design

For transfer learning of discriminative tasks, prompts are
designed without condition variables [29]. For generative
tasks, it is beneficial to have condition variables (e.g., class,
attribute) for better control in generation. We achieve this
with a simple design of treating class conditions as another
prompt, as in Fig. 3a.

One critical issue is that the number of learnable param-
eters increases as the product of three factors: the number
of classes C, the prompt sequence length S and the feature

dimension P. For example, when using a prompt of length
S5=128, hidden P=768 and embedding dimension D=768,
the token generator would introduce 10.4M parameters for
C=100 class conditions, as in Fig. 3c. The bottleneck oc-
curs at the 3d weight tensor of size C'x.Sx P.

To make it parameter efficient, we propose a factorized
token generator (Fig. 3b). We encode class and sequence
position index via MLP¢ and MLPp with F' factors, respec-
tively. The MLP outputs are element-wise summed, multi-
plied by a 1d factor vector from MLPg, and reduced along
the factor dimension. The output is then fed to MLPrt to
produce a prompt of length S. As in Fig. 3c, the number of
parameters of the proposed architecture is greatly reduced,
requiring only 0.76M parameters, down from 10.4M, for
a prompt of length 128 when F' =1.> We empirically find
that F' =1 is sufficient for NAR transformers. For AR trans-
formers, extra capacity is needed by setting F' = 16.

Moreover, we build a new type of prompt tokens condi-
tioned on individual data instances, inspired by the instance-
conditioned GAN [5]. We assign each data a unique index
and map it into a distinct embedding via MLPc. When both
class label and instance index are used, instance index is
simply treated as an extra class, indexed from C. To train
the model, we sample between class label and instance in-
dex. As we explain below in Sec. 3.3, instance-conditioned
prompts add more fine-grained control on generation.

3.3. Engineering Learned Prompts

Given the wealth of learned prompts conditioned on the
class and instance proposed in Sec. 3.2, we propose a new

2The proposed factorization can be extended to incorporate the “depth”
position of deep visual prompt [29] to reduce the number of parameters.
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Model (# tr params) || Mean Mean (<10K) || C101 | Flowers | Pet | DTD | Kitti | SUN | EuroSAT | Resisc
MineGAN [71] (88M) 1515 114.0 1024 | 132.1 | 130.1 | 874 | 1179 | 77.5 | 1115 | 810
cGANTransfer [60] (105M) 85.1 63.8 89.6 | 61.6 | 486 | 703 | 489 | 31.1 | 456 50.3
Prompt (S =1) (0.67M) 53.7 19.7 135 | 138 | 119 | 258 | 323 | 7.3 45.9 285

Non-Autoregressive PrOmPt (5 =16) (0.68M) 39.9 18.6 127 | 132 | 1L1 | 260 | 300 | 74 358 249
€ Prompt (S = 128) (0.76M) 36.4 18.6 129 | 134 | 109 | 259 | 299 | 77 384 24.8

Scratch (172M) 427 60.0 727 | 572 | 703 | 66.1 | 33.8 | 92 39.5 32.0

Prompt (S =1) (0.86M) 732 44.1 454 | 289 | 422 | 37.1 | 668 | 188 | 373 35.1

Prompt (S = 16) (0.88M) 474 345 414 | 196 | 366 | 334 | 414 | 164 | 326 28.8

Autoregressive Prompt (S = 256) (1.06M) 39.0 323 39.6 173 349 | 325 | 37.1 15.0 29.6 26.7
Prompt (S =256, F =16)  (5.16M) 36.9 26.6 272 | 141 | 272 | 300 | 346 | 128 | 264 222

Scratch (306M) 39.6 61.8 760 | 561 | 525 | 927 | 31.6 | 13.5 | 194 29.5

Table 1. FIDs (lower the better) on VTAB tasks. The number of trainable parameters (second column) are computed assuming 100 classes.
The mean FID over 19 VTAB tasks (third column), over small-scale datasets (<10K, fourth column) and those with a small to mid-scale
training data are reported. Complete results are in Appendix C.1.3. The best and the second best results are highlighted in each column.

prompt engineering strategy, a “Marquee Header” prompt,
tailored to the non-autoregressive transformer decoding, for
enhancing generation diversity.

We interpolate the learned prompt representations (e.g.,
outputs of MLP¢). To account for the iterative decoding,
the interpolation between prompts is carried out over multi-
ple decoding steps. This is shown in Fig. 4b, where we start
the decoding process using instance-conditioned prompts
(blue header) but gradually transition to a class-conditioned
prompt (red header) over decoding steps. Unlike the gen-
eration in Fig. 4a where the instance-conditioned prompts
are used all along, the marquee header prompt generates di-
verse images while maintaining the generation quality and
following characteristics of reference instances (e.g., pose,
color pattern, hairiness). Fig. 4c shows a consistent trend
when applying the prompt between two image instances.

The marquee header prompt is formulated as follows:

PMT(t) = (1 — w¢)PMT; + w;PMTy (6)
wy = min{< t-1 >2 1} %
‘ Tcutoff -1 ’

where t =1, ..., T is a decoding step, Teutor < 7' is a cutoff
step, and PMT; is a prompt representation (e.g., an output
of MLP¢). The schedule in Eq. (7) makes a smooth tran-
sition of prompts from PMT; to PMTs. We keep Eq. (7)’s
formulation as simple as possible and note that there could
be various other prompt formulations, which we leave their
investigations as our future work.

4. Experiments

We conduct extensive experiments of generative transfer
learning by prompt tuning. Sec. 4.1 evaluates the efficacy
on diverse visual domains on the VTAB benchmark [81].
Sec. 4.2 assess the task of few-shot transfer learning on six
common benchmarks. Sec. 4.3 presents more discussions.

4.1. Generative Transfer on VTAB

Dataset. We employ the visual task adaptation benchmark
(VTAB) [81] — a suite of 19 visual recognition tasks based

on 16 datasets. VTAB covers diverse image domains (e.g.,
natural, structured, and specialized such as medical or satel-
lite imagery) and tasks (e.g., object and scene recognition,
distance classification, and counting). while VTAB serves
as a standard yet challenging benchmark for transferring
representation, this work provides the first study of genera-
tive transfer learning on the VTAB benchmark.

Setting. We train class-conditional image generation mod-
els on the VTAB (full) tasks, where the class-conditional
prompts are trained on the “train” split, using the same hy-
perparameters across tasks. We investigate the generative
transfer of AR [15] and NAR transformers [7] trained on
256x256 images of the ImageNet dataset as source mod-
els. Both models contain 24 transformer layers, comprised
of 306M and 172M model parameters, respectively. See
more implementation details in Appendix C.1.2.

Baselines. We compare our method against state-of-the-
art GAN-based transfer learning methods, including Mine-
GAN [71] and cGANTransfer [60]. Both models use Big-
GAN [2] trained on ImageNet as the source. BigGan’s FID
on the ImageNet validation is 7.4 which is better than our
pretrained AR transformer (18.7) and almost on par with
that of NAR transformer (6.2).

In addition, we compare generative transformers trained
from scratch on VTAB with a comparable number of train-
ing epochs. We provide an analysis under different compute
budgets in Appendix B.4.

Evaluation. We use Frechet Inception Distance (FID) [27].
FID is computed using 20k generated images and 20k real
images randomly sampled from a respective dataset.

Results. We report mean FIDs over 3 runs in Tab. 1. As
shown in Tab. 1, prompt tuning is effective for both AR and
NAR generative transformers, especially when the number
of training images is small (e.g., < 10k). We find that
the NAR model transfers better than the AR model. Nev-
ertheless, both models with class-conditional prompt tun-
ing show significant gains in performance over GAN-based
baselines. These comparisons validate the superiority of
prompt tuning over the prior state-of-the-arts. The result
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Figure 5. Class conditional generation using (a —c) NAR (S=128) and (d - f) AR (5=256, F'=16) transformers with prompt tuning.

Method | #params | 10 epoch | 200 epoch | 800/1600 epoch
Prompt (S =128) 0.76M 27.6 18.5 17.7
Prompt + Adapter 5.43M 20.1 15.7 15.1
Prompt + Fine-tune 172M 19.5 15.0 14.2
Scratch 172M - 60.0 22.7

Table 2. FID vs the number of train epochs for different learn-
ing methods of NAR transformers on VTAB small-scale datasets
(<10k). Each number of trainable parameters is provided in the
second column. Complete results are in Appendix B.1.

also provides the first quantitative evidence on the necessity
of generative knowledge transfer on the VTAB benchmark.

In Fig. 5, we show generated images using 128 prompt
tokens for NAR transformers and 256 prompt tokens (with
F' =16) for AR transformers on a few VTAB tasks. Due to
limited space, we report complete results on all 19 tasks in
Appendix C.1.3 and generated images in Appendix C.1.4.

Tab. 1 also shows that prompt tuning of generative trans-
formers benefits greatly from a long prompt, reducing mean
FID from 53.7 to 36.4 by increasing the length from 1 to
128. This is achieved by only adding extra 0.1M parameters
(0.76M overall), thanks to our parameter-efficient design
of the prompt token generator. Besides, AR transformers
generally require prompts with more learnable parameters,
which needs increasing the number of factors. The perfor-
mance is still on par with that achievable with the baseline
prompt, while using significantly less number of parameters
(5.6M instead of 20.5M), as shown in Appendix B.3. The
above results verify the design of our parameter-efficient
prompt token generator.

Transfer learning settings. We compare prompt tuning
with other transfer learning settings including /) full fine-
tuning, 2) adapter tuning [28], and 3) learning from scratch
on the target domain. To adapt these methods for generative
transfer learning, we integrate prompt tuning with them to
introduce class conditioning for image synthesis.

The results are given in Tab. 2, with detailed results avail-
able in Appendix B.4. Our findings indicate that prompt
tuning is the most efficient approach, making it likely the
only feasible option for transferring from large transform-
ers. However, prompt tuning may not be the most expres-
sive method for transfer learning, as its generation quality
is often outperformed by adapter tuning or full fine-tuning,

which have more tunable parameters. Nevertheless, our re-
sults consistently show the necessity of generative knowl-
edge transfer when learning from limited training data.

4.2. Few-shot Generative Transfer

After validation on VTAB, we examine few-shot trans-
fer learning, where the number of training images is fur-
ther reduced. We focus on studying the transfer of the NAR
transformer, i.e., MaskGIT [7], and provide more compar-
isons to existing few-shot image generation models, either
with [60,71] or without [63, 84] knowledge transfer.

Dataset. We study few-shot generative transfer learn-
ing on three broadly-used benchmarks: Places [85], Ima-
geNet [10], and Animal Face [61]. Following [60, 71], for
Places and ImageNet, we select 5 classes® and use 500 im-
ages per class for training. For Animal Face, we consider
two scenarios — following [60], we use 100 images per class
for training from 20 classes (denoted as “Animal Face” in
Tab. 3); alternatively, following [63, 84], we use all images
of dog (389) and cat (160) classes (denoted as “dog face”
and “cat face” in Tab. 3) for training.

Moreover, we test on three challenging off-manifold do-
mains, i.e. DomainNet Infograph, Clipart (345 classes) [49],
and ImageNet sketch (1000 classes) [70] where only two
training images per class are used for transfer.

Setting. We study the class-and-instance conditional gen-
erative transfer as in Sec. 3.2 that is particularly suitable for
few-shot transfer scenarios

Baselines. In addition to the transfer learning baselines,
i.e., MineGAN [71] and cGANTransfer [60], we compare to
competitive models specially design for few-shot learning,
e.g., DiffAug [84] and LeCam GAN [63].

Evaluation. We report FIDs using 10k generated images,
except for experiments on dog and cat faces, where we gen-
erate 5k images following [84]. For Places, ImageNet, and
Animal Face, we use the entire training data (i.e., 2500 for
Places and ImageNet, 2000 for Animal Face, 389 and 160
for dog and cat faces, respectively) for the reference distri-
bution. We sample 10k images for the reference distribution
to compute FID for DomainNet and ImageNet sketch.

3Cock, Tape player, Broccoli, Fire engine, Harvester for ImageNet, and
Alley, Arch, Art gallery, Auditorium, Ballroom for Places.
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(a) DomainNet Clipart (2 shot; FID=22.4)

(b) DomainNet Infograph (2 shot; FID=20.6)
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(c) ImageNet Sketch (2 shot; FID=14.4)

Figure 6. Class conditional generation of few-shot transfer models. Images in red boxes are two training images of each class.

Dataset ImageNet | Places | Animal Face | Dog Face | Cat Face
(shot) (500) (500) (100) (389) (160)
MineGAN [71] 61.8f 82.3 - 93.0* 54.5%
cGANTransfer [60] - 71.1% 85.9% - -
DiffAug [84] - - - 58.5* 42.4*
LeCam GAN [63] - - - 54.9* 34.2%
Ours (class) 16.9 242 16.3 65.4 40.2
Ours (instance) 19.6 19.5 13.3 26.0 31.2

Table 3. FIDs of image generation models on few-shot benchmark.
Numbers with 1, 1, * are from [71], [60], [63], respectively.

Results. In Tab. 3, we report FIDs of our method using
prompts of S =128. When conditioned on the class, our
method improves FIDs upon existing generative transfer
learning methods. When comparing with few-shot genera-
tion methods on dog and cat face datasets, our method with
a class condition slightly under-performs, likely due to that
dataset having one class. When conditioned on instances,
our models outperform highly-competitive few-shot gener-
ation models such as DiffAug, cGANTransfe, and LeCam
GAN. We provide visualizations in Appendix C.2.1.

We visualize generated images conditioned on the class
by our models in Fig. 6, which shows the two images used
in transfer training for each class in red boxes. We observe
reasonable generalization, achieved by two training images,
to target domains that are visually distinct from the source
ImageNet dataset.

Data Efficiency. We conduct experiments to investigate
data efficiency. We train models on 5, 10, 50, and 100 train-
ing images per class for ImageNet, Places, and Animal Face
datasets. The same number of images is used for the refer-
ence set to make FIDs comparable across settings.

Results are in Fig. 7. Our method shows superior data
efficiency, achieving substantially lower FIDs with only 5
training images per class, to MineGAN [71] or cGANTrans-
fer [60] based on GANS trained with 20 or 100 times more
images per class. We find that using long prompts is not fa-
vorable when the number of training images is too small as
models start to overfit to the small train set. We discuss how
the prompt length affects the adaptation-diversity trade-off
in Appendix B.2. The above results substantiate the efficacy
of our method on the few-shot image synthesis task.

Enhancing Generation Diversity via Prompt Engineer-
ing. As in Sec. 3.3 and Figs. 4b and 4c, our model offers a
way to enhance generation diversity by composing prompts.

EY EY
60- © MineGAN ® ®  MineGAN . ® CGANTT. ]
—e— Prompt (S=1) 80- ® CGANTT. 80 —e— Prompt (S=1)
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50 70° —e— Prompt (5=128) ¢ 7
60 60
O 40
= 50- ¢ 50
30 40 40
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S — 2 S — 2 ""”«“\,_,,
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# image/class # image/class # image/class

(b) Places

(a) ImageNet (c) Animal Face

Figure 7. FIDs for models trained with varying numbers of images
per class for class-conditional few-shot generative transfer.

‘ # params H Small ‘ Medium ‘ Large H Natural ‘ Struct. ‘ Spec.

baseline | 1.81M 18.6 34.6 89.1 23.8 50.9 41.7
S—16 F=1 0.68M 18.6 36.1 89.5 25.2 51.9 41.5
F=4 0.95M 18.6 355 88.4 244 515 414
F=16 2.02M 18.5 35.0 86.8 243 50.8 40.4
baseline | 10.4M 18.2 30.8 86.4 22.0 46.9 39.9
§—128 F=1 0.76M 18.5 30.6 88.9 22.5 47.1 40.5
F=4 1.30M 18.1 31.5 88.0 233 482 38.0
F=16 3.39M 17.9 30.8 86.5 22.6 47.4 37.7

Table 4. Ablation on prompt token generators for NAR transform-
ers on VTAB. We report FIDs averaged by different categoriza-
tions of tasks.

We report quantitative metrics to support our claim.

We conduct experiments on the dog and cat faces dataset
using marquee header prompts with different 7t so1 values.
For the fidelity metric, we compute the FID. To measure the
diversity, we follow [46] and report the intra-cluster pair-
wise LPIPS distance, where we generate 5k samples and
map them to one of the training images.*

Results are in Fig. 8. Ideally, we expect a model with
low FID and high intra-cluster LPIPS scores (yellow star at
top-left corner). When generating samples using the class-
condition prompt (red square), we generate diverse images,
but with poorer fidelity. When conditioned on data in-
stances (green dot), the FID is improved but at the cost of re-
duced diversity. Instance to class Marquee header prompts
(blue) control the generation diversity and fidelity. More-
over, instance to instance Marquee header prompts, which
interpolate the prompts between two instances, shows an
improved trade-off between fidelity and diversity.

4We use a pixel-wise L2 distance for computation efficiency instead of
LPIPS distance in [46].
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Figure 8. Marquee header prompt shows clear tradeoff between
fidelity (FID) and diversity (LPIPS) when interpolating from in-
stance to class (blue). It shows a better tradeoff when interpolating
between instances (orange), achieving low FID and high LPIPS.

4.3. Analysis and Discussion

Parameter-efficiency. Tab. 4 provides results of using dif-
ferent prompt token generators, where the baseline indicates
the non-factorized prompt tuning method. As shown, FIDs
of prompt tuning with the proposed factorization reasonably
match those of the baseline. while achieving comparable or
better FIDs than the baseline using 70% fewer parameters.

Adaptation-Diversity Trade-Off. We study the instance-
conditioned prompts with various lengths. Fig. 9 shows
the generated images with S =1 (top) and S =128 (bot-
tom) where more results can be found in Appendix. With
a longer prompt, the synthesized images follow, more faith-
fully, the conditioned image, but seem less diverse. With
a short prompt, on the other hand, the model still captures
more dominant characters of the conditioned image (e.g.,
color, class), but lacking fine details. The results suggest
that the adaptation and diversity could be controlled with
the prompt length.

5. Related Work

Transfer learning [47,62,74,87] improves the performance
of downstream tasks using knowledge from the source do-
main. It is particularly effective when the amount of train-
ing data is limited for downstream tasks. Knowledge trans-
fer of deep neural networks has been realized in various
forms, such as linear probing [9,26], side-tuning [82], bias-
tuning [4, 80], fine-tuning [35, 51], or adapter [28, 55, 56].
Recently, prompt tuning [38,40-42] has emerged as a pow-
erful tool for transfer learning of transformer-based large
language models in NLP. It has also been applied to vision-
language models [16, 30, 50, 77, 86] that are limited to the
input of text encoders. Since the introduction of Vision
Transformer [14], prompt tuning has been studied for vi-
sion tasks where the pre-trained model is an image en-
coder [1,29]. While previous works have shown the ef-
fectiveness of prompt tuning for discriminative tasks (e.g.,

Figure 9. Instance-conditioned generation with (top) S =1 and
(bottom) S = 128. Images in red are the conditioned instances.

classification [1,29]), this paper proposes an effective visual
prompt tuning approach for image synthesis.

Generative models have been extensively studied for im-
age synthesis, including variational autoencoder [34,64,66],
diffusion [12,57] and autoregressive [48, 65,69] models. A
large volume of progress has been made around the gen-
erative adversarial network (GAN) [20] thanks to its abil-
ity at synthesizing high-fidelity images [2, 31, 32,59]. As
such, generative knowledge transfer has been studied to
transfer knowledge of pretrained GAN models. Transfer-
GAN [72], following a usual practice of fine-tuning on the
target dataset, has demonstrated that transferring knowledge
from pretraining improves the performance when training
with limited data. Freezing a few layers of the discrimi-
nator [44] further improves, while stabilizing the training
process. MineGAN [71] introduces a miner, which projects
random noise into the embedding space of the pretrained
generator, and trains it with discriminator while fixing gen-
erator parameters. cGANTransfer [60] makes explicit trans-
fer of knowledge on classes of the source dataset to new
classes. Albeit showing improvement, these methods still
require careful training (e.g., early stopping) and have eval-
uated on a few datasets. In our work, we extensively test
methods on a wide variety of visual domains (e.g., VTAB)
and show improvement by a large margin over existing
GAN-based generative transfer methods.

6. Conclusion

We present a method for learning image generation mod-
els from diverse data distributions and varying amount of
training data via knowledge transfer from the source model
trained on a large dataset. A simple modification on prompt
token designs allows to learn a parameter and compute effi-
cient class and instance conditional image generation mod-
els of autoregressive and non-autoregressive vision trans-
formers. We provide comprehensive experimental results
of image synthesis across diverse visual domains, tasks, and
the number of training images. In addition, we show how
to apply learned prompts for novel image synthesis in the
form of marquee header prompts using just a few images.

Acknowledgment. We thank Brian Lester for helpful dis-
cussion on prompt tuning, Boqing Gong and David Salesin
for their feedback on the manuscript.
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