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Figure 1. Stable Diffusion is capable of reproducing training data, creating images by piecing together foreground and background objects
that it has memorized. Furthermore, the system sometimes exhibits reconstructive memory, in which recalled objects are semantically
equivalent to their source object without being pixel-wise identical. Here, we show this behavior occurring with a range of prompts
sampled from LAION, and with a hand-crafted prompt (rightmost pair). The presence of such images raises questions about the nature
of data memorization and the ownership of diffusion images. Top row: generated images. Bottom row: closest matches in the LAION-
Aesthetics v2 6+ set. Sometimes source and match prompts are quite similar, and sometimes they are quite different. See Fig. 6 for more
examples with prompts, or the Appendix for prompts from this figure.

Abstract

Cutting-edge diffusion models produce images with high

quality and customizability, enabling them to be used for

commercial art and graphic design purposes. But do diffu-

sion models create unique works of art, or are they repli-

cating content directly from their training sets? In this

work, we study image retrieval frameworks that enable us

to compare generated images with training samples and de-

tect when content has been replicated. Applying our frame-

works to diffusion models trained on multiple datasets in-

cluding Oxford flowers, Celeb-A, ImageNet, and LAION, we

discuss how factors such as training set size impact rates of

content replication. We also identify cases where diffusion

models, including the popular Stable Diffusion model, bla-

tantly copy from their training data. Project page: https:
//somepago.github.io/diffrep.html

1. Introduction

The rapid rise of diffusion models has led to new gen-
erative tools with the potential to be used for commer-
cial art and graphic design. The power of the diffusion
paradigm stems in large part from its reliance on simple de-
noising networks that maintain their stability when trained
on huge web-scale datasets containing billions of image-
caption pairs. These mega-datasets have the power to forge
commercial models like DALL·E [54] and Stable Diffusion

[56], but also bring with them a number of legal and ethical
risks [7]. Because these datasets are too large for careful hu-
man curation, the origins and intellectual property rights of
the data sources are largely unknown. This fact, combined
with the ability of large models to memorize their training
data [9,10,22], raises questions about the originality of dif-
fusion outputs. There is a risk that diffusion models might,
without notice, reproduce data from the training set directly,
or present a collage of multiple training images.

We informally refer to the reproduction of training

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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images, either in part or in whole, as content replication.
In principle, replicating partial or complete information
from the training data has implications for the ethical and
legal use of diffusion models in terms of attributions to
artists and photographers. Replicants are either a benefit or
a hazard; there may be situations where content replication
is acceptable, desirable, or fair use, and others where it is
“stealing.” While these ethical boundaries are unclear at
this time, we focus on the scientific question of whether

replication actually happens with modern state-of-the-art

diffusion models, and to what degree.
Our contributions are as follows. We begin with a study

of how to detect content replication, and we consider a
range of image similarity metrics developed in the self-
supervised learning and image retrieval communities. We
benchmark the performance of different image feature ex-
tractors using real and purpose-built synthetic datasets and
show that state-of-the-art instance retrieval models work
well for this task. Armed with new and existing tools, we
search for data replication behavior in a range of diffusion
models with different dataset properties. We show that for
small and medium dataset sizes, replication happens fre-
quently, while for a model trained on the large and diverse
ImageNet dataset, replication seems undetectable.

This latter finding may lead one to believe that replica-
tion is not a problem for large-scale models. However, the
even larger Stable Diffusion model exhibits clear replica-
tion in various forms (Fig 1). Furthermore, we believe that
the rate of content replication we identify in Stable Diffu-

sion likely underestimates the true rate because the model is
trained on a 2B image split of LAION, but we only search
for matches in the smaller 12M “Aesthetics v2 6+” subset.

The level of image similarity required for something to
count as “replication” is subjective and may depend on both
the amount of diversity within the image’s class as well as
the observer. Some replication behaviors we uncover are
unambiguous, while in other instances they fall into a gray
area. Rather than choosing an arbitrary definition, we fo-
cus on presenting quantitative and qualitative results to the
reader, leaving each person to draw their own conclusions
based on their role and stake in the process of generative AI.

2. Background

Image retrieval and copy detection. The process of
searching a database for images containing reference fea-
tures from a source image is known as image retrieval. The
related task of inexact copy detection requires high seman-
tic similarity between the source and match [17]. Image
retrieval works with image descriptors based on all types
of neural networks [3, 55]. High-performance descriptors
can be fine-tuned specifically for retrieval after unsuper-
vised training [51, 52] using structure-from-motion (SfM)
or contrastive objectives [14, 28]. A natural basis for image

retrieval methods are self-supervised models that inherently
learn strong feature descriptors, matching similar images to
similar representations [11,13,15,29,31]. A particularly rel-
evant SSL method for our purposes is DINO [12], which is
shown to perform competitively on instance retrieval tasks.

Recent approaches adopt strong vision transformers as
architectural backbones for retrieval [6, 19, 27, 35, 61].
Historical progress in this field is tracked by public im-
age similarity challenges [18]. A recent SOTA approach
is SSCD [49], which builds on previous work in self-
supervised representation learning and optimizes a descrip-
tor for copy detection using entropic regularization and an
array of task-specific data augmentations.

In contrast to content-based retrieval techniques dis-
cussed above, there are a few style-based image retrieval
methods [25, 40, 59] though it is not as popular a task as
content-based retrieval.

Memorization in deep learning. While it is widely
known and discussed that large models can memorize their
data, there is no universally accepted definition of mem-
orization. To ML theorists, memorization is synonymous
with overfitting [2, 21, 23]. In the field of membership in-
ference attacks, one seeks to determine whether a chosen
image was part of the training set [8, 33, 66, 67]. Indeed, it
has been shown that models retain a memory of the contents
of their training set, particularly when training samples are
repeated [67]. Note that membership inference can be done
by reconstructing original training data from the model [66],
although this is not the goal of most membership inference
methods. The problem of explicitly reconstructing images
from the training set of a classifier is known as model inver-

sion, and recent research has been able to do this with both
convolutional and transformer models [26, 70]. However, it
is crucial to note the relationship of memorization, mem-
bership inference, inversion and replication: A generative
model that memorizes data might allow for model inversion
or only membership inference, yet the same model might
never spontaneously generate the training data by accident.

Memorization in language. It is well known that gen-
erative language models risk replication from their training
set [9, 10] and the amount of replicated data is broadly pro-
portional to the size of the model, amount of duplication of
the data point in the training set, and the amount of prompt-
ing. Interestingly, such replication behavior occurs even for
models that are not overfitting to their training data [34,63].

Diffusion models. Diffusion is a process for converting
samples from a Gaussian noise distribution into samples
from an arbitrary and more complex distribution, such as
the distribution of natural images.

We consider several variants of diffusion models. Stable

Diffusion is a state-of-the-art text-conditional latent diffu-
sion model [56], trained on the LAION database [60]. The
version we analyze in this work (v1.4) was initially trained
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on over 2B images and then fine-tuned with 600M images
from the LAION Aesthetics v2 5+ subset, which is filtered
for image quality. We search for matches only in the much
smaller 12M LAION Aesthetics v2 6+ split to keep storage
costs manageable.

Related work. Replication behavior in GANs has been
studied in a number of works. Meehan et al [41] describe a
hypothesis test that discerns whether generated images are
on average closer to the training data than a random sample
from a hold-out set. Note that this test is at the popula-
tion level, and is not designed to flag individual instances
of replication. Feng et al. [24] study the conditions that
lead GANs to replicate training data. They look for copies
in pixel-space and find that such replications are inversely
proportional to dataset complexity and dataset size. Web-
ster et al [66] show on face datasets that GANs can occa-
sionally replicate. Interestingly, these models can produce
novel images of known identities from the training data
without making verbatim copies. FID scores for ranking
GANs favor models that memorize training data [4], lead-
ing toward a search for measures of generalization without
memorization [30]. This includes “authenticity scores” that
detect replication [1], but only in the form of noisy pixel-
by-pixel copies of the training data. Similarly, authors of
large-scale diffusion models have investigated image repli-
cation themselves [42], reducing replication through train-
ing data de-duplication, and checking for simple nearest-
neighbor matches.

3. What Counts as Replication?

There are many different notions of replication from cre-
ative work, but we will narrow our scope for the purpose
of designing a detection system for replicated content. We
consider the following (informal) definition:

We say that a generated image has replicated content if it

contains an object (either in the foreground or background)

that appears identically in a training image, neglecting mi-

nor variations in appearance that could result from data

augmentation.

We focus on object-level similarity because it is likely to
be the subject of intellectual property disputes. We also dis-
count minor differences in appearance that can be explained
by data augmentation as these variations would typically not
be relevant to a copyright claim. An alternative notion is
style-wise or semantic similarity. We do not focus on such
definitions here as they are highly subjective, typically are
not considered an infringement of intellectual property, and
also because many images lack a well-defined style (e.g.,
natural, unfiltered images from a standard camera).

(a) (b) (c) (d)

Figure 2. Synthetic datasets. (a) Original images. (b) Segmix gen-
eration. (c) Diagonal outpainting. (d) Patch outpainting. Please
refer to Section 4 for more details.

4. Detecting Content Replication
Our goal is to construct a system to detect replication

as defined above. To find a powerful system, we consider
10 different prototypes of feature extractors drawn from the
SSL and image retrieval literature. We compare and con-
trast these methods using 10 different datasets that we cu-
rate for measuring the performance of replication detectors.

Synthetic datasets. There are currently no existing la-
beled datasets that capture our notion of replication as de-
fined above. Thus, we create 5 synthetic datasets. Our IN-

Cutmix dataset is built by pasting random square patches
from one image into a random location in another. The size
of the pasted patch is randomly chosen. We use ImageNet
as the source for base images [58]. Our IN-Dif-Patch dataset
is created by masking 80% of the image except for a ran-
dom square patch and then outpainting the rest of the pixels
using the method proposed by Lugmayr et al [39].

In the above two datasets, the replicated content lies
inside a square patch. Vision transformer models natu-
rally rely on square patches, and so we create the IN-Dif-

Diagonal dataset by masking a random triangular half of
an ImageNet image (above or below the diagonal) and us-
ing diffusion to outpaint the masked region, resulting in an
image that shares half the content of the original.

Since real world objects may have irregular shapes, we
next use the segmentation masks from the MS COCO [36]
and Pasal VOC [20] datasets to generate the synthetic data.
For a random query image, we choose either a single object
or its background. We then apply a plethora of augmen-
tations (flips, blur, autocontrast, solarize, colorjitter) to the
selected region before pasting it into another random im-
age. If a foreground object is chosen, we also resize and
reposition the object at random. We call these challenging
datasets MSCOCO Segmix and VOC Segmix. See Fig. 2.

Real datasets. Similarity-based image retrieval is
closely related to copy detection, although the matching
criteria is less stringent for retrieval. We choose 5 im-
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Table 1. We present the mAP scores for all 10 models across 10 datasets. The first five datasets are real and the next five are synthetic. In
the last column we show the average rank of each model across datasets. We categorized the models based on the style of training. The
categories are as follows: CD/IR - Copy Detection/ Instance Retrieval, PT - Pre-Trained, SSL - Self-Supervised Learning. Refer Section 4
for more details on models, datasets and the metric. mAP higher the better. Average rank lower the better.

Type Method rOxford5k " rParis6k " CUB-200 " GPR1200 " INSTRE " MSCOCO
Segmix "

VOC-
Segmix "

IN-Cutmix
"

IN-Dif-
Diagonal "

IN-Dif-
Outpaint "

Average
Rank #

CD/IR Multigrain [6], ResNet-50 22.87 44.74 3.67 37.09 56.72 27.77 25.8 67.54 79.44 24.91 5.9
SSCD [49] , ResNet-50 30.16 45.75 2.00 31.42 53.54 67.04 65.82 89.78 99.91 96.11 4.2

PT

ViT [16] S/16, IN1k 31.24 61.5 13.12 40.44 54.11 23.21 22.42 61.99 48.36 14.25 5.5
ViT-B/16, IN12k 13.14 30.43 4.24 16.63 29.15 18.15 15.61 52.74 49.69 10.18 9.2
ViT-B/16, CLIP [53] on LAION [60] 39.92 68.92 8.6 62.13 73.19 20.37 17.91 59.5 47.54 8.76 5.4
Swin Transformer [37], Base, IN1k 40.06 72.07 15.49 54.09 68.46 24.51 24.31 74.79 40.74 14.75 4.1

SSL

MoCo [15], ViT-B/16 30.25 51.6 4.94 37.98 51.88 36.41 32.9 65.98 59.12 20.61 5.1
MoCo, ViT-B/16 + CutMix [71] 25.01 46.73 3.44 32.23 48.58 32.83 26.11 55.74 62.88 46.96 6.5
VicRegL [5], ResNet-50 28.4 53.79 3.02 34.95 50.98 40.58 37.76 69.74 80.02 40.93 5.0
DINO [12], ViT-B/16, split-product 32.14 45.43 5.76 29.41 50.06 46.42 45.29 93.53 98.92 95.86 4.1

age retrieval datasets with high diversity. Oxford [47] and
Paris [48] are geographic landmark datasets where query
and gallery images contain the same building. We use the
cleaned-up version with corrected labels [50]. INSTRE [65]
contains objects like toys or irregularly-shaped products
placed in different locations and conditions. GPR1200 is a
general-purpose content retrieval dataset with 1200 classes
sampled from other datasets such as Google Landmarks
V2 [68], Stanford Online Products [44], IMDB-WIKI [57]
and others. Caltech-UCSD Birds-200 or CUB-200 [64] is a
dataset with fine-grained classes of birds in different back-
grounds, poses and lighting conditions.

Models. Several recent self-supervised (SSL) methods
are competitive with supervised retrieval techniques. To the
best of our knowledge, no rigorous study exists that com-
pares multiple SSL models to retrieval specialist models
across multiple datasets. Our study uses the following can-
didate models and training methodologies.

MultiGrain [6] trains a retrieval model with both clas-
sification and retrieval triplet loss. We used the best-
performing ImageNet pre-trained ResNet-50 checkpoint
from the official repo. SSCD [49] is a self-supervised
copy detection method trained in the style of SimCLR [13]
using InfoNCE loss [45], entropy regularization on latent
space representations, and many strong augmentations. We
used the official ResNet-50 checkpoint trained on Ima-
geNet. Some established methods use pre-trained models
as backbones to perform image retrieval tasks [14]. Hence
we also evaluate 4 models from timm [69] that are trained
in a supervised fashion. ViT-Small/16 [16] pre-trained on
ImageNet, ViT-Base/16 pre-trained on ImageNet-21k, ViT-
Base/32 image encoder from the CLIP [53] model trained
on LAION [60], and finally a Swin-Transformer [37] with
base patch 4 and window 7 trained on ImageNet.

Lastly, we explored 3 self-supervised models. First is a
ViT-Base/16 variant trained with the DINO [12] framework.
We also consider ResNet-50 from VICRegL [5]. Finally we
consider ViT-Base/16 from MoCo v3 [15], and a variant of
MoCo v3 that we fine-tune for 50 epochs with CutMix [71]

as an additional augmentation with the goal of boosting its
copy detection performance.

Computing the similarity. It is common to com-
pare two images via the inner product of feature vec-
tors (either the [CLS] token or average-pooled represen-
tations) [12, 14, 15]. Inner product metrics measure global,
rather than local similarity. This is because inner product
spaces are metric spaces and thus satisfy the triangle in-
equality. To see why this is a problem, consider an ex-
ample in which generated image Igen contains a car and
a tree directly stolen from two unrelated images Icar and
Itree, respectively. Then we would like d(Igen, Icar) and
d(Igen, Itree) to be very small indicating replication. But
by the triangle inequality, the two unrelated images satisfy
d(Icar, Itree)  d(Igen, Icar) + d(Igen, Itree), and are also
scored as similar even though they share nothing.

To bypass this potential problem, we implement a split-

product metric that breaks each feature vector into chunks,
computes inner products between corresponding chunks,
and returns the maximum across these inner products. In vi-
sion transformers, we use the representation corresponding
to each token as a chunk since they are more local in nature
than the [CLS] token. Under this strategy, if d(Igen, Icar)
and d(Igen, Itree) are small, then for each of these two im-
age pairs, at least one such feature vector chunk must yield
a high inner product. However, the locations of these two
chunks, each corresponding to one of the image pairs, may
differ so that d(Icar, Itree) may remain large. We test both
the split-product and standard inner product metric and find
that both can return suitable, and often differing, matches.
Qualitatively, the split product metric is a more semantic
measure of similarity. As expected, the inner product met-
rics enforces a stricter notion of pixel-wise similarity.

4.1. Choosing the Best Replication Detector

We measure model performance using mean-Average-
Precision or mAP [46]. Tab. 1 shows mAP scores for all the
models across different datasets. We also present average
ranks of each model averaged across all datasets (Lower is
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Figure 3. The top two matches (according to different feature
extractors) for generations across diffusion models trained on
datasets of size 300, 3000 and 30000 (whole dataset). Across the
board, we can see full replication in the first 2 models (indicated in
green). Very close but not exact copies are indicated in blue. How-
ever in the model trained on the whole dataset, the first matches are
very similar but not the same. Refer to Section 5 for more details.

better). DINO [12] with split-product performed the best
on average across all 10 datasets. For real datasets, the
winner is Swin Transformer [37], and for synthetic datasets
SSCD [49] does best. For the rest of the paper, we focus
our studies on SSCD, Swin, and DINO (with split-product)
as best performing methods in Tab. 1.

5. Do Diffusion Models Copy?
In this section, we methodically explore diffusion mod-

els trained on different datasets with varying amounts of
training data. We observe that the diffusion models trained
on smaller datasets tend to generate images that are copied
from the training data. The amount of replication reduces
as we increase the size of the training set.

Experimental setup. We train Denoising Diffusion
Probabilistic Models (DDPM) [32] with a discrete denois-
ing scheduler on various datasets using the HuggingFace
implementation. For Celeb-A [38], we train two models on
300 and 3000 training images. We also use the full dataset
pre-trained checkpoint from the official repository. For Ox-
ford Flowers [43], we train models on 100, 1083 (top 5
classes), and 8189 (complete dataset) images. We train all
models with random horizontal flip and random crop aug-
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Figure 4. The histograms of top-1 similarity scores between gen-
erations and the training data and the top-1 self-similarity scores
of training data across 3 diffusion models trained with different
amounts of training data. Varying amount of training data is used
in each plot but 10000 generations are used across all.

mentations. In all cases, we train the models until genera-
tions appear to be high quality, for at least 300k steps and
until the FID [62] scores are lower than 50. We do quanti-
tative analysis on 10000 generations for Celeb-A and 5000
generations for Oxford Flowers.

Finding matches. For each generated image, we search
the training set using dot products between its features
and training samples (except for DINO which uses split-
product). All the generations used in figures are from the
20 generated images with highest top-1 similarity scores for
standard diffusion models, and are among images with sim-
ilarity > 0.5 for Stable Diffusion.

Qualitative observations. Fig. 3 and Fig. 13 show gen-
erated images and their corresponding top matches from the
training dataset. We consider diffusion models (DDPM)
trained with varying amounts of training data. In the case of
Celeb-A, diffusion models trained on 300 and 3000 images
blatantly copy from their training images. However, when
the model is trained on the whole dataset, generations may
appear that are similar to training samples, but not identi-
cal. We observe similar trends in diffusion models trained
on the Oxford Flowers dataset as well (Appendix Fig. 13).

Quantitative observations. To further complement our
visual inspection, we can also examine the distribution of
similarity scores between generated images and training
samples. Fig. 4 contains histograms of similarity scores be-
tween generations and their best match from the training
data. As a baseline, we also draw random training images
and compute the similarity with their closest match from
the remaining training images. If most scores between gen-
erated and training images lie to the right of this baseline,
then the model is generating images that are closer to their
training samples than the training samples are to each other.

Most samples generated by the 300-sample model are
extremely similar to the training data, having very high sim-
ilarity scores. However, the histogram’s mass shifts drasti-
cally to left when we train the model instead on 3000 points.
We do see blatant copies from this model too, but this phe-
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Figure 5. (Left) For each individual class, we plot top-1 similarity between a generation and training data vs the mean of the top-1 similarity
scores of the training data to itself. We also show a few images for some interesting classes. Left image is generation and right image is
closest match. (Right) We show histograms of top-1 similarity scores for all the generations in 100 classes and the self-similarity scores of
training data (within the class).

nomenon occurs infrequently. The histograms of similar-
ity scores computed using the full dataset model are highly
overlapping. This strong alignment indicates that the model
is not, on average, copying its training images any more
than its training images are copies of each other. The his-
togram of generated images (blue) no longer has a long right
tail, indicating that the model is unlikely to generate exact
copies of its training samples. Note that a small proportion
of the dataset self-similarity scores in Fig. 4 (c) are greater
than 0.9, indicating that there are repetitions or near repeti-
tions in the training data.

6. Case Study: ImageNet LDM
Experimental setup. In the previous section, we ob-

served copying behavior when diffusion models are trained
on small datasets, and the rate of copying decreases as mod-
els are trained on more data. In this section, we extend our
study to an off-the-shelf class conditional Latent Diffusion
Model [56] trained on ImageNet. We search for copying
both at the class and the population level. We use the pre-
trained model from the official repo.1 We randomly choose
100 classes and generate 1000 samples per class (compara-
ble to the size of training data per class in ImageNet).

Observations. Qualitatively, we observe no significant
copying in any of the generations by this model. In Fig. 5
(a), we present a scatter plot with x-axis showing the max-
imum similarity scores observed between generations of a
given class and ImageNet training samples. On the y-axis,
we show the average similarity scores per class observed
between training samples in that class. For a few interesting
points, we also show the corresponding generation and the
top match in the training data. We see the similarity scores
never cross 0.65, and when we manually sift through the
high similarity score examples in each of the 100 classes,
they are very similar but never exact copies, and may be
explained by low intra-class diversity

1
github.com/CompVis/stable-diffusion

We also check if there is a relationship between the intra-
class diversity and similarity scores, and indeed classes
with higher self-similarity scores on average have higher
maximum similarity score amongst matches with gener-
ated samples. Specifically, the points in the scatter plot
have a correlation of 0.6 and the line of best fit has slope
0.39. The classes with the highest similarity between gen-
erated images and training data are theater curtain,
peacock, and bananas. Meanwhile sea lion, bee,
and swing are at the lower end of the spectrum. In
Fig. 5 (b), we consolidate our results across the classes into
a histogram of similarity scores between generations and
matches from the training set and the similarity scores of
training images with matches from the remaining training
samples. The average similarity scores are relatively low
for this dataset as well as for this diffusion model showing
that the chance of replication is very low.

7. Case Study: Stable Diffusion
In this section, we evaluate Stable Diffusion v.1.4 [56],

which was trained on the publicly available LAION [60]
dataset. Since it is computationally expensive to store and
search 2 billion+ images, we narrow our search scope to the
smaller LAION Aesthetics v2 6+ dataset which has 12M
images and is a subset of images that were used for the final
rounds of training. We load the model and the checkpoints
via HuggingFace 2.

In the first experiment, we randomly sample 9000 im-
ages, which we call source images, from LAION Aesthet-
ics 12M and retrieve the corresponding captions. Then, we
generate synthetic images by passing these captions into
Stable Diffusion. We study the top-1 matches, which we
call match images, for each generated sample.

We attempt to answer the following questions in this
analysis. 1) Is there copying in the generations? 2) If yes,

2
huggingface.co/CompVis/stable-diffusion-v1-4
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Source caption: Hill Country Castle by R Del Angel

Match caption: Ben Hogan Portrait Golf Legend&quot (2014) by GinetteCallaway

Source caption: Captain Marvel Exclusive Ccxp Poster Released Online By Marvel

Match caption: Marvel Studios releases new poster of 'Captain Marvel'

Caption Source Generation Top Match

Source caption: Rosie Huntington-Whiteley short hair (2015 Vanity Fair Oscar Party) 
(Venturelli, photographer for Getty Images)

Match caption: 2017 Vanity Fair Oscar Party Hosted By Graydon Carter - Arrivals

Figure 6. Selected Stable Diffusion generations using captions sampled from LAION images, with similarity score � 0.5. Also see Fig. 12

Prompt: <The description of the wall art> Canvas Wall Art Print 

Prompt: A painting of  the Great Wave off Kanagawa by Katsushika Hokusai

Figure 7. Including the phrase highlighted in red into a random
prompt for Stable Diffusion leads to exact replications of the sofa
(top row) and wave shape (bottom row).

what kind of copying? 3) Does a caption sampled from
the training set produce an image that matches its original
source? 4) Is content replication behavior associated with
training images that have many replications in the dataset?

In previous experiments, we observed that DINO with
split-product is slightly better than SSCD at finding copies.
But we use SSCD to study Stable Diffusion because of its
much faster speed when crawling through the large 12M
image dataset. We constructed visualizations in this section
by choosing from images with an SSCD similarity > 0.5.

Observations. In Fig. 6, we visualize a few instances
of copying found in samples generated by Stable Diffusion.
We choose them from a small set of points (⇡ 170 im-
ages) whose top-1 similarity scores are > 0.5 (top 1.88 per-
centile). Above this 0.5 threshold, we observe a significant
amount of copying. The first row (where only the paint-
ing changed) shows verbatim usage of an object and back-
ground. The 3rd row show local copying where only the
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Figure 8. Stable Diffusion replicates pixel-level details, structures,
and styles of well known paintings.

background is recycled from the training set. We see sim-
ilar trends in other images with high similarity scores. We
refer the reader to Appendix Fig. 12 for more examples.

While all synthetic images were generated using cap-
tions sourced from LAION, none of the generations match
their respective source image. In fact, sometimes the cap-
tion of the source image is not representative of the source
image content, and the generation is quite different from the
source. This behavior can be seen in the first row of Fig. 6.

In those 170 images, we find instances where replication
behavior is highly dependent on key phrases in the caption.
We show two examples in Fig. 7 and highlight the key
phrase in red. For the first row, the presence of the text
Canvas Wall Art Print frequently (⇡ 20% of
the time) results in generations containing a particular
sofa from LAION (also see Fig 1). Similarly, the second
row shows various generations by tweaking the prompt A
painting of the Great Wave off Kanagawa

by Katsushika Hokusai. We gradually remove
words until only painting and wave remain. All of
the generations have a wave structure that resembles the
original painting. We also notice instances of generations
where style is copied rather than content. This can be
explicitly seen when the name of an artist is used in the
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Figure 9. Stable Diffusion density plots. (Left) Similarity scores
of 1000 random generations with train data and the corresponding
1000 caption source images with train data. (Right) Histogram of
number of training set duplications for 1000 random source im-
ages and 1000 match images. Random data (source) is relatively
repeated more than matched images.

Generation Top match in LAION-
Aesthetics v2 6+

Match in LAION-
Aesthetics v2 5+

Figure 10. Stable Diffusion generates the painting “The Scream.”
This image is within the 600M image LAION-Aesthetics-5+ split
that was used for training, but is not within the 12M image
LAION-Aesthetics-6+ split that we searched in this study.

generation prompt. We generate many paintings with the
prompt style “<Name of the painting> by <Name

of the artist>”. We tried around 20 classical and
contemporary artists, and we observe that the generations
frequently reproduce known paintings with varying degrees
of accuracy. In Fig. 8, as we go from left to right, we see
that content copying is reduced, however, style copying is
still prevalent. We refer the reader to the appendix for the
exact prompts used to generate Figs. 7 and 8.

Role of caption sampling. Several of our studies sam-
ple random captions from LAION itself, and this may lead
to a replica of the caption source image. Fig. 9 (left) shows
histograms of top-1 similarity scores for 1000 random gen-
erations, and the top-1 similarity scores of the 1000 corre-
sponding images from which we sourced the captions. We
find the mean generation similarity scores to be much lower
than those of the source images, indicating that this method
of caption sampling does not typically produce a replica of
the caption source.

Still, captions from LAION will sometimes contain “key
phrases” that are closely associated with dataset images
and therefore conjure a memorized image. For this reason,
LAION-based caption sampling may lead to higher rates of
data replication than other sampling methods. It is difficult
to correct this bias in a scientific way, as there is no baseline
sampler for “typical” captions. Furthermore, captions used

by experienced diffusion users will often exploit powerful
key phrases (e.g. “art station,” “35mm,” or the name of an
artist) that widely appear in LAION.

Role of duplicate training data. Many LAION training
images appear in the dataset multiple times. It is natural to
suspect that duplicated images have a higher probability of
being reproduced by Stable Diffusion. Fig. 9 (right) shows
a histogram of how many times a training image is dupli-
cated in LAION-Aesthetics, where “duplicate” is defined
as having SSCD score > 0.95. We plot a histogram for two
populations. First, the 1000 sampled source images. Sec-
ond, we generate 1000 synthetic images, search for their
closest match in the training set, and plot the duplication
histogram for these “match” images. Surprisingly, a typi-
cal random image from the dataset is duplicated 11.6 times,
which is more often than a typical matched image, which is
duplicated 3.1 times. However, if we look only at very close
matches (> .5 SSCD), these match images are replicated on
average 34.1 times – far more often than a typical image. It
seems that replicated content tends to be from training im-
ages that are duplicated more than a typical image.

8. Limitations & Conclusion
The goal of this study was to evaluate whether diffu-

sion models are capable of reproducing high-fidelity con-
tent from their training data, and we find that they are.
While most of the generations from large-scale models do
not contain copied content, a non-trivial amount of copying
does occur; Stable Diffusion images with dataset similarity
� .5, as depicted in Figs. 1 and 6, account for approximate
1.88% of our random generations.

Note, however, that our search in Stable Diffusion only
covered the 12M images in the LAION Aesthetics v2 6+
dataset. The model was first trained on ⇠ 2 billion images,
and the dataset we searched in our study is a small subset of
this fine-tuning data, comprising less than 0.6% of the total
training data. Examples certainly exist of content replica-
tion from sources outside the 12M LAION Aesthetics v2
6+ split – see Fig 10. Furthermore, replication very likely
exists that our retrieval method is unable to identify. For
both of these reasons, the results here systematically under-
estimate the amount of replication in Stable Diffusion and
other models. Lastly, we refer the reader to Appendix A for
a discussion on potential causes of replication.
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Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, and
Colin Raffel. Extracting Training Data from Large Language
Models. In 30th USENIX Security Symposium (USENIX Se-

curity 21), pages 2633–2650, 2021. 1, 2
[11] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European confer-

ence on computer vision (ECCV), pages 132–149, 2018. 2
[12] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9650–9660, 2021. 2, 4, 5

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on ma-

chine learning, pages 1597–1607. PMLR, 2020. 2, 4
[14] Wei Chen, Yu Liu, Weiping Wang, Erwin M Bakker,

Theodoros Georgiou, Paul Fieguth, Li Liu, and Michael S
Lew. Deep learning for instance retrieval: A survey. IEEE

Transactions on Pattern Analysis and Machine Intelligence,
2022. 2, 4

[15] Xinlei Chen, Saining Xie, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 9640–9649, 2021. 2, 4
[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint

arXiv:2010.11929, 2020. 4
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