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Abstract
Quantifying motion in 3D is important for studying the

behavior of humans and other animals, but manual pose an-
notations are expensive and time-consuming to obtain. Self-
supervised keypoint discovery is a promising strategy for
estimating 3D poses without annotations. However, current
keypoint discovery approaches commonly process single 2D
views and do not operate in the 3D space. We propose a
new method to perform self-supervised keypoint discovery
in 3D from multi-view videos of behaving agents, without
any keypoint or bounding box supervision in 2D or 3D. Our
method, BKinD-3D, uses an encoder-decoder architecture
with a 3D volumetric heatmap, trained to reconstruct spa-
tiotemporal differences across multiple views, in addition to
joint length constraints on a learned 3D skeleton of the sub-
ject. In this way, we discover keypoints without requiring
manual supervision in videos of humans and rats, demon-
strating the potential of 3D keypoint discovery for studying
behavior.

1. Introduction
All animals behave in 3D, and analyzing 3D posture and

movement is crucial for a variety of applications, includ-
ing the study of biomechanics, motor control, and behav-
ior [27]. However, annotations for supervised training of
3D pose estimators are expensive and time-consuming to
obtain, especially for studying diverse animal species and
varying experimental contexts. Self-supervised keypoint
discovery has demonstrated tremendous potential in discov-
ering 2D keypoints from video [19,20,40], without the need
for manual annotations. These models have not been well-
explored in 3D, which is more challenging compared to 2D
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Figure 1. Self-supervised 3D keypoint discovery. Previous work
studying self-supervised keypoints either requires 2D supervision
for 3D pose estimation or focuses on 2D keypoint discovery. Cur-
rently, self-supervised 3D keypoint discovery is not well-explored.
We propose methods for discovering 3D keypoints directly from
multi-view videos of different organisms, such as human and rats,
without 2D or 3D supervision. The 3D keypoint discovery exam-
ples demonstrate the results from our method.

due to depth ambiguities, a larger search space, and the need
to incorporate geometric constraints. Our goal is to enable
3D keypoint discovery of humans and animals from syn-
chronized multi-view videos, without 2D or 3D supervision.

Self-Supervised 3D Keypoint Discovery. Previous
works for self-supervised 3D keypoints typically start from
a pre-trained 2D pose estimator [25,42], and thus do not per-
form keypoint discovery (Figure 1). These models are suit-
able for studying human poses because 2D human pose esti-
mators are widely available and the pose and body structure

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9001



of humans is well-defined. However, for many scientific
applications [27, 33, 40], it is important to track diverse or-
ganisms in different experimental contexts. These situations
require time-consuming 2D or 3D annotations for training
pose estimation models. The goal of our work is to en-
able 3D keypoint discovery from multi-view videos directly,
without any 2D or 3D supervision, in order to accelerate the
analysis of 3D poses from diverse animals in novel settings.
To the best of our knowledge, self-supervised 3D keypoint
discovery have not been well-explored for real-world multi-
view videos.

Behavioral Videos. We study 3D keypoint discovery
in the setting of behavioral videos with stationary cameras
and backgrounds. We chose this for several reasons. First,
this setting is common in many real-world behavior analy-
sis datasets [2,10,21,28,33,37,39], where there has been an
emerging trend to expand the study of behavior from 2D to
3D [27]. Thus, 3D keypoint discovery would directly ben-
efit many scientific studies in this space using approaches
such as biomechanics, motor control, and behavior [27].
Second, studying behavioral videos in 3D enables us to
leverage recent work in 2D keypoint discovery for behav-
ioral videos [40]. Finally, this setting enables us to tackle
the 3D keypoint discovery challenge in a modular way. For
example, in behavior analysis experiments, many tools are
already available for camera calibration [24], and we can
assume that camera parameters are known.

Our Approach. The key to our approach, which we
call Behavioral Keypoint Discovery in 3D (BKinD-3D),
is to encode self-supervised learning signals from videos
across multiple views into a single 3D geometric bottle-
neck. We leverage the spatiotemporal difference recon-
struction loss from [40] and use multi-view reconstruction
to train an encoder-decoder architecture. Our method does
not use any bounding boxes or keypoint annotations as su-
pervision. Critically, we impose links between our discov-
ered keypoints to discover connectivity across points. In
other words, keypoints on the same parts of the body are
connected, so that we are able to enforce joint length con-
straints in 3D. To show that our model is applicable across
multiple settings, we demonstrate our approach on multi-
view videos from different organisms. To summarize:

• We introduce self-supervised 3D keypoint discovery,
which discovers 3D pose from real-world multi-view
behavioral videos of different organisms, without any
2D or 3D supervision.

• We propose a novel method (BKinD-3D) for end-to-
end 3D discovery from video using multi-view spa-
tiotemporal difference reconstruction and 3D joint
length constraints.

• We demonstrate quantitatively that our work signifi-
cantly closes the gap between supervised 3D methods

Method 3D sup. 2D sup. camera params data type

Isakov et al. [17]
✓ ✓

intrinsics realDANNCE [7] extrinsics
Rhodin et al. [35] ✓ optional intrinsics real
Anipose [24] × ✓

intrinsics realDeepFly3D [12] extrinsics
EpipolarPose [25] × ✓ optional realCanonPose [43]
MetaPose [42] × ✓ × real

Keypoint3D [3] × × intrinsics simulationextrinsics

Ours (3D discovery) × × intrinsics realextrinsics

Table 1. Comparison of our work with representative related
work for 3D pose using multi-view training. Previous works
require either 3D or 2D supervision, or simulated environments to
train jointly with reinforcement learning. Our method addresses a
gap in discovering 3D keypoints from real videos without 2D or
3D supervision.

and 3D keypoint discovery across different organisms
(humans and rats).

2. Related Work
3D Pose Estimation. There has been a large body of

work studying 3D human pose estimation from images or
videos, as reviewed in [36, 44], with recent works also fo-
cusing on 3D animal poses [7, 11, 12, 24, 27]. Most of these
methods are fully supervised from visual data [6, 17, 41],
with some models perform lifting starting from 2D poses [4,
29,32,34]. We focus our discussion on multi-view 3D pose
estimation methods, but all of these models require either
3D or 2D supervision during training. This 2D supervision
is typically in the form of pre-trained 2D detectors [25], or
ground truth 2D poses [42]. In comparison, our method uses
multi-view videos to discover 3D keypoints without 2D or
3D supervision.

Methods more closely related to our work are those that
also leverage multi-view structure to estimate 3D pose (Ta-
ble 1). [17] proposed a supervised method that uses learn-
able triangulation to aggregate 2D information across views
to 3D. Here we study similar approaches for representing
3D information, but using self-supervision instead of super-
vised 3D annotations. Other methods in this space propose
training methods such as enforcing consistency of predicted
poses across views [35], regression to 3D pose estimated
from epipolar geometry of multi-view 2D [25], constrain-
ing 3D poses to project to realistic 2D pose [5], or esti-
mates camera parameters using detected and ground truth
2D poses [42]. While we also leverage multi-view infor-
mation, our goal is different from the work above, in that
our approach aims to discover 3D poses without 2D or 3D
supervision, given camera parameters.

Self-supervised Keypoint Discovery. 2D keypoint dis-
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Figure 2. BKinD-3D: 3D keypoint discovery using 3D volume bottleneck. We start from input multi-view videos with known camera
parameters, then unproject feature maps from geometric encoders into 3D volumes for timestamps t and t + k. We next aggregate 3D
points from volumes into a single edge map at each timestamp, and use edges as input to the decoder alongside appearance features at time
t. The model is trained using multi-view spatiotemporal difference reconstruction. Best viewed in color.

covery has been studied from images [13, 19, 46] and
videos [20,40]. Our approach focuses on behavioral videos,
similar to [40], but we aim to use multi-view information
to discover 3D keypoints, instead of 2D. Many approaches
use an encoder-decoder setup to disentangle appearance and
geometry information [19, 26, 40, 46]. Our setup also con-
sists of encoders and decoders, but our encoder maps in-
formation across views to aggregate 2D information into a
3D geometry bottleneck. The discovery model most sim-
ilar to our approach is Keypoint3D [3], which discovers
3D keypoints for control from virtual agents, using a com-
bination of image reconstruction and reinforcement learn-
ing. However, this setup is designed for simulated data and
does not translate well to real videos, since updating the
keypoints through a reinforcement learning policy requires
videos generated through the simulated environment. Key-
point discovery models typically represent discovered parts
as 2D Gaussian heatmaps [19, 40] or 2D edges [13]. While
we also use an edge-based representation, our edges are in
3D, which enables our training objective to enforce joint
length consistency.

Behavioral Video Analysis. Pose estimation is a com-
mon intermediate step in automated behavior quantifica-
tion; behavioral videos are commonly captured with sta-
tionary camera and background, with moving agents. To
date, supervised 2D pose estimators are most often used
for analyzing behavior videos [8, 9, 14, 23, 30, 37]. How-
ever, 2D pose estimation is inadequate for many applica-
tions: it cannot reliably capture the angle of joints for kine-
matics, fails to generalize across views, is sensitive to oc-
clusion, and cannot incorporate body plan constraints as
skeleton length or range of motion of joints. Thus, there
has recently been an accelerating trend to study behavior

in 3D [7, 11, 24, 27]. These models typically require more
expensive 3D training annotations compared to 2D poses.
While 2D self-supervision has been studied for behavioral
videos [40], 3D keypoint discovery in real-world behavioral
videos have not been well-explored.

3. Method

Our goal is to discover 3D keypoints from multi-view
behavioral videos without 2D or 3D supervision (Figure 2).
Our approach is inspired by BKinD [40], which uses spa-
tiotemporal difference reconstruction to discover 2D key-
points in behavioral videos. In these videos, the camera
and background is stationary, and spatiotemporal difference
provides a strong signal for encoding agent movement.

We develop several approaches for 3D keypoint discov-
ery, but focus on our volumetric model (Figure 2) in this
section, as this model generally performed the best in our
evaluations. More details on other approaches are in Sec-
tion 4.1.2 and supplemental materials.

In our volumetric model (BKinD-3D, Figure 2) we
use multi-view spatiotemporal reconstruction to train an
encoder-decoder architecture with 2D information aggre-
gated to a 3D volumetric heatmap. Projections from the
3D heatmap in the form of agent skeletons are then used to
reconstruct movement, represented by spatiotemporal dif-
ference, in each view.

3.1. 3D Keypoint Discovery

Given behavioral videos captured from M synchronized
camera views, with known camera projection matrix P (i)

for each camera i ∈ {1...M}, we aim to discover a set of
J 3D keypoints Ut ∈ RJ×3 on a single behaving agent, at
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each timestamp t. We assume access to camera projection
matrices so that our model discovers 3D keypoints in the
global coordinate frame.

During training, our model uses two timestamps in the
video t and t+ k to compute the spatiotemporal difference
in each view as the reconstruction target. In other words,
for each camera view i, our training starts with a frame I(i)t

and a future frame I(i)t+k. During inference, only a single
timestamp is required: once the model is trained, the model
only needs I(i)t for each camera view i.

In our model setup, the appearance encoder Φ, geom-
etry decoder Ψ, and reconstruction decoder ψ are shared
across views and timestamps (in previous work [40], these
networks are shared across timestamps, but only a single
view is addressed). The appearance encoder Φ is used to
generate appearance features, which are decoded into 2D
heatmaps by the geometry decoder Ψ. These 2D heatmaps
are then aggregated across views to form a 3D volumetric
bottleneck (Section 3.1.2), which is processed by a volume-
to-volume network ρ. We compute the 3D keypoints us-
ing spatial softmax on the 3D volume. Then, we project
these keypoints to 2D, compute edges between points, and
output these edges into the reconstruction decoder ψ (Sec-
tion 3.1.3) for training. The reconstruction decoder ψ is
only used during training, and not required for inference.

3.1.1 Feature Encoding

To start, we first compute appearance features from frame
pairs I(i)t and I(i)t+k using the appearance encoder Φ: Φ(I(i)t )

and Φ(I
(i)
t+k). These appearance features are then fed

into the geometry decoder Ψ to generate 2D heatmaps
Ψ(Φ(I

(i)
t )) = H

(i)
t and H(i)

t+k. Each 2D heatmap has C

channels, where H(i)
t,c represents channel c of H(i)

t .

3.1.2 View Aggregation using Volumetric Model

To aggregate information across views, we unproject our
2D heatmaps to a 3D volumetric bottleneck. We perform
view aggregation separately across timestamps t and t+ k.

We aggregate 2D heatmaps into a 3D volume similar
to [17], which used previously for supervised 3D human
pose estimation. One important difference is that in the su-
pervised setting, an L×L×L sized volume is drawn around
the human pelvis, with L being around twice the size of a
person. As we perform keypoint discovery, we do not have
information on the location or size of the agent. Instead, we
initialize our volume with L representing the maximum size
of the space/room for the behaving agent.

This process aggregates 2D heatmaps H(i)
t,c for cameras

i ∈ {1...M} and channels c ∈ {1...C} to 3D keypoints Ut,
for timestamp t. Our volume is first discretized into vox-
els Vcoords ∈ RB×B×B×3, where B represents the number

of distinct coordinates in each dimension. Each voxel cor-
responds to a global 3D coordinate. These 3D coordinates
are projected to a 2D plane using the projection matrices in
each camera view i: V (i)

proj = P (i)Vcoords. A volume V (i)
c

is then created and filled for each camera view i and each
channel c using bilinear sampling [18] from the correspond-
ing 2D heatmap: V (i)

c = H
(i)
t,c{V

(i)
proj}, where {·} denotes

bilinear sampling.
We then aggregate these V (i)

c across views for each chan-
nel c using a softmax approach [17]:

V agg
c =

∑
i

exp(V
(i)
c )∑

j exp(V
(j)
c )

⊙ V (i)
c .

V agg is then mapped to 3D heatmaps corresponding to
each joint using a volumetric convolutional network [31]
ρ: V agg∗ = ρ(V agg). We compute the 3D spatial softmax
over the volume, for each channel j of V agg∗

j , j ∈ {1...J},
to obtain the 3D keypoint locations Ut for timestamp t,
as in [17]. In many supervised works, the keypoint loca-
tions Ut are optimized to match to ground truth 3D poses;
however, we aim to discover 3D keypoints, and train our
network by using Ut to decode spatiotemporal difference
across views.

3.1.3 Projection and Reconstruction

In this step, we project the discovered 3D keypoints to a
2D representation in each view using camera parameters.
For training, 2D representations in timestamps t and t +
k are used as input to the reconstruction decoder ψ. We
train the 3D keypoints Ut at each timestamp t using multi-
view spatiotemporal difference reconstruction. The target
spatiotemporal difference is computed using the 2D image
pair I(i)t and I(i)t+k at each view i.

First, we project the 3D keypoints using camera projec-
tion matrices into 2D keypoints u(i)t = P (i)Ut. We create
an edge representation for each view for each timestamp,
which enables us to discover connections between points
and enforce 3D joint length constraints. For each keypoint
pair u(i)t,m and u(i)t,n, we draw a differentiable edge map as a
Gaussian along the line connecting them, similar to [13]:

E
(i)
t,(m,n)(p) = exp(d(i)m,n(p)

2/σ2),

where σ controls the line thickness and dm,n(p)
(i) is the

distance between pixel p and the line connecting u(i)t,m and

u
(i)
t,n. We then aggregate the edge heatmaps at each times-

tamp using a set of learned weights wm,n for each edge,
where wm,n is shared across all timestamps and all views.
An edge is active and connects two points if wm,n > 0, oth-
erwise the points are not connected. Finally, we aggregate
all edge heatmaps using the max across all edge pairs [13]:

E
(i)
t (p) = max

m,n
wm,nEt,(m,n)(i)(p).
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In our framework, for each view i, the decoder ψ uses
the edge maps E

(i)
t and E

(i)
t+k as well as the appear-

ance feature Φ(I
(i)
t ) for reconstructing the spatiotempo-

ral difference across each view. The ground truth spa-
tiotemporal difference is computed from the original im-
ages S(I(i)t , I

(i)
t+k). The reconstruction from the model is

Ŝ = ψ(E
(i)
t , E

(i)
t+k,Φ(I

(i)
t )), through the 3D volumetric

bottleneck in order to discover informative 3D keypoints for
reconstructing agent movement.

3.2. Learning Formulation

The entire training pipeline (Figure 2) is differentiable,
and we train the model end-to-end. We note that our model
is only given multi-view video and corresponding camera
parameters, without keypoint or bounding box supervision.

3.2.1 Multi-View Reconstruction Loss

Our multi-view spatiotemporal difference reconstruction is
based on the single-view spatiotemporal difference studied
for 2D keypoint discovery [40]. We compute the Struc-
tural Similarity Index Measure (SSIM) [45] as a reconstruc-
tion target in each view. SSIM has been used to measure
perceived differences between images based on luminance,
contrast, and structure features. Here, we use SSIM as a
reconstruction target and we compute a similarity map us-
ing local SSIM on corresponding patches between I(i)t and
I
(i)
t+k. This similarity map is negated to obtain the dissimi-

larity map used as the target: S(I(i)t , I
(i)
t+k).

We use perceptual loss [22] in each view between the tar-
get S and the reconstruction Ŝ. This loss computes the L2
distance between features of the target and reconstruction
computed from the VGG network ϕ [38]:

L(i)
recon =

∥∥∥ϕ(S(I(i)t , I
(i)
t+T ))− ϕ(Ŝ(I

(i)
t , I

(i)
t+T ))

∥∥∥
2
. (1)

The error is computed by comparing features from interme-
diate convolutional blocks of the network. Our final percep-
tual loss is summed over each view Lrecon =

∑
i L

(i)
recon.

3.2.2 Learned Length Constraint

Since many animals have a rigid skeletal structure, we en-
courage that the length of active edges (wm,n > 0 for point
pairs m and n) are consistent across samples. We do not as-
sume that these lengths and connections are known, such as
previous work [42]; rather, they are learned during training.
We do this by maintaining a running average of the length
of all active edges lavg(m,n), and minimizing the difference
between the average length and each sample lm,n:

Llength =
∑
m

∑
n

1wm,n>0

∥∥lavg(m,n) − lm,n

∥∥
2
. (2)

During training, we update lavg(m,n) using an exponen-
tial running average and wm,n indicating edge weights for
every pair is learned. Both of these parameters are shared
across all viewpoints and timestamps. Notably, the length
constraint is only applied to active edges, since there are
many point pairs without rigid connections (e.g. elbow to
feet), while we want to enforce this constraint only for rigid
connections (e.g. elbow to wrist).

3.2.3 Separation Loss

To encourage unique keypoints to be discovered, we apply
separation loss to our 3D keypoints, which has been pre-
viously studied in 2D [40, 46]. On a set of 3D keypoints
Uit, where i is the index of a keypoint and t is the time, the
separation loss is:

Ls =
∑
i ̸=j

exp

(
−(Uit − Ujt)

2

2σ2
s

)
, (3)

where σs is a hyperparameter that controls the strength of
separation.

3.2.4 Training Objective

Our full training objective is the sum of the multi-view spa-
tiotemporal reconstruction loss Lrecon, learned length con-
straints Llength, and separation loss Ls:

L = Lrecon + 1epoch>e(ωrLlength + ωsLs). (4)

Our model is trained using curriculum learning [1]. We only
apply Llength and Ls when the keypoints are more consis-
tent, after e epochs of training using reconstruction loss.

4. Experiments
We demonstrate BKinD-3D using real-world behavioral

videos, using a human dataset and a recently released large-
scale rat dataset (Section 4.1). We evaluate our discovered
keypoints using a standard linear regression protocol based
on previous works for 2D keypoint discovery [19, 40] (also
described in Section 4.1.3). Here, we present results on pose
regression (Section 4.2) with ablation studies (Section 4.3),
with additional results in supplementary materials.

4.1. Experimental Setup

4.1.1 Datasets

We demonstrate our method by evaluating it on two repre-
sentative datasets: Human 3.6M and Rat7M. The datasets
have different environments and focus on subjects of differ-
ent sizes, with humans being about 1700mm tall and rats
about 250mm long.

Human 3.6M. We evaluate our method on Human3.6M
to compare to recent works in self-supervised 3D from
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2D [42]. Human 3.6M [15] is a large-scale motion cap-
ture dataset with videos from 4 viewpoints. We follow the
standard evaluation protocol [17, 25] to use subjects 1, 5,
6, 7, and 8 for training and 9 and 11 for testing. Our
test set matches the set specified in [42] using every 16th
frame (8516 test frame sets). Notably, unlike baselines such
as [17], our method does not require any pre-processing
with 2D bounding box annotations but rather is directly ap-
plied to the full image frame.

Rat7M. We also evaluate our method on Rat7M [7], a
3D pose dataset of rats moving in a behavioral arena. This
dataset most closely matches the expected use case for our
method, which is a dataset of non-human animal behavior
in a static environment. Rat7M consists videos from 6 view-
points captured at 1328×1048 resolution and 120Hz, along
with ground truth annotations obtained from marker-based
tracking. We train on subjects 1, 2, 3, 4, and test on subject
5, as in [7]. We train and evaluate on every 240th frame of
each video (3083 train, 1934 test frame sets).

4.1.2 Model Comparisons

We compare our method with three main categories of base-
lines: supervised 3D pose estimation methods (ex: [17]), 3D
pose estimation methods from 2D supervision (ex: [42]),
and a 3D keypoint discovery method developed for control
in simulation [3]. A more detailed comparison of meth-
ods in this space is in Table 1. For baselines with model
variations, we use evaluation results from the version that
is the closest to our model (multi-view inference, and cam-
era parameters during inference). We note that all previous
methods require additional 3D or 2D supervision, or jointly
training a reinforcement learning policy in simulation [3],
which we do not require for 3D keypoint discovery in real
videos. Another notable difference is that previous methods
typically pre-process video frames using detected or ground
truth 2D bounding boxes [17], while our method does not
require this pre-processing step.

Since 3D keypoint discovery has not been thoroughly
explored, we additionally study methods in this area
using multi-view 2D discovery and triangulation (Tri-
ang.+Reproj.), and multi-view 2D discovery with a depth
map estimates (Depth Map), in addition to our volumet-
ric approach (Section 3, BKinD-3D). For multi-view 2D
discovery and triangulation, we use BKinD [40] to dis-
cover 2D keypoints in each view, and perform triangula-
tion using camera parameters to obtain 3D keypoints. We
then project the 3D keypoints for multi-view reconstruc-
tion. We add an additional loss on the reprojection error
to learn keypoints consistent across multiple views. For
the depth map approach, in each camera view, we estimate
2D heatmaps corresponding to each keypoint alongside a
view-specific depthmap estimate. The final 3D keypoints
are then computed from a confidence-weighted average of

each view’s estimated 3D keypoint coordinates (from the
per-view 2D heatmaps and depth estimates). More details
on each method are in the supplementary materials.

4.1.3 Training and Evaluation Procedure

We train our volumetric approach using the full objective
(Eq 4). We scale images to 256 × 256 for training, with a
frame gap of 0.4s for Human3.6M and 0.66s for Rat7M. We
use a maximum volume size of 7500mm for Human3.6M
and 1000mm for Rat7M. The results are computed for all
3D keypoint discovery methods with 15 keypoints unless
otherwise specified. We train using videos from the train
split with camera parameters provided by each dataset.

We evaluate our 3D keypoint discovery through keypoint
regression based on similar methods from 2D, using a linear
regressor without a bias term [19, 40, 46]. For this regres-
sion step, we extract our discovered 3D keypoints from a
frozen network, and learn a linear regressor to map our dis-
covered keypoints to the provided 3D keypoints in each of
the training sets. We then perform evaluation on regressed
keypoints on the test set.

For metrics, we compute Mean Per Joint Position Error
(MPJPE) in line with previous works in 3D pose estima-
tion [16,17], which is the L2 distance between the regressed
and ground truth 3D poses, accounting for the mean shift
between the regressed and ground truth points. To compare
to methods that require addition alignment before MPJPE
computation (e.g. [42] which does not use camera parame-
ters during inference), we also compute Procrustes aligned
MPJPE (PMPJPE) [16,25,42]. PMPJPE applies the optimal
rigid alignment to the predicted and ground truth 3D poses
before metric computation.

4.2. Results

We evaluate our discovered keypoints quantitatively us-
ing keypoint regression on Human3.6M (Table 2) and
Rat7M (Table 3). Over both datasets with diverse organ-
isms, our approach generally outperforms all other fully
self-supervised 3D keypoint discovery approaches. Addi-
tionally, among all the approaches we developed for 3D
keypoint discovery, BKinD-3D using the volumetric bottle-
neck performs the best overall. Results demonstrate that
BKinD-3D is directly applicable to discover 3D keypoints
on novel model organisms, potentially very different in ap-
pearance or size, without 2D or 3D supervision.

Notably, on Humam3.6M, Keypoint3D [3], developed
for control of simulated videos, does not work well in our
setting with real videos, and qualitative results demonstrate
that this method was not able to discover keypoints that
tracked the agent (supplementary materials).

Qualitative results. We find that the discovered points
and skeletons are reasonable and look similar to the ground
truth annotations for Human3.6M (Figure 3) and Rat7M
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Method Supervision PMPJPE ↓ MPJPE ↓
Supervised 3D

Anipose [24] 2D only - 33
Rhodin et al. [35] 3D/2D 52 67
Isakov et al. [17] 3D/2D - 21

Supervised 2D + self-supervised 3D
CanonPose [43] 2D 53 74
EpipolarPose [25] 2D 67 77
Iqbal et al. [16] 2D 55 69
MetaPose [42] 2D 74 -

3D Discovery + Regression
Keypoint3D [3] × 168 368
Ours:

Triang+reproj × 134 241
Depth Map × 122 161
BKinD-3D × 105 125

Table 2. Comparing performance with related work on Hu-
man3.6M. We note that previous approaches typically require ad-
ditional 2D or 3D supervision, whereas our model discovers 3D
keypoints directly from multi-view video. The 3D keypoint dis-
covery models are evaluated using a linear regression protocol
(Section 4.1.3).

(Figure 4). Furthermore, we find that a volumetric model
with 30 keypoints learns a more detailed human skeleton
representation than a model with 15 keypoints. For exam-
ple, the model with 30 keypoints is able to track both legs,
while the 15 keypoint model only tracks 1 leg; however,
both models miss the knees. Importantly, our model discov-
ers the skeleton in global coordinates, and is able to track
the agent as they move around the space. More examples
are in supplementary materials.

While there exists a gap in terms of quantitative met-
rics between supervised methods and self-supervised 3D
keypoint discovery, supervised methods require users to in-
vest time and resources for annotations. In comparison, our
method can be deployed out-of-the-box on new datasets and
experiments with multi-view cameras. Our approach has
closed the gap substantially to supervised methods com-
pared to previous work, without requiring time-consuming
2D or 3D annotations. Qualitative results demonstrate that
our approach is able to discover structure across diverse
model organisms, providing a method for accelerating the
study of organism movements in 3D.

Downstream Analysis. To further evaluate our key-
point discovery method, we use BKinD-3D keypoints as in-
put to a 1D convolutional neural network (previously used
in [39]) to predict action labels on Human3.6M. Notably,
we found that our keypoints performs similarly to ground
truth 3D points for action recognition, where Top 5 accu-
racy is 64.8% (GT), 61.0% (15 kpts), and 64.9% (30 kpts)
(supplementary material).

Method Supervision PMPJPE ↓ MPJPE ↓
Supervised 3D

DANNCE [7] 3D 11 -
3D Discovery + Regression

Ours:
Triang+reproj × 21 108
Depth Map × 27 56
BKinD-3D × 24 76

Table 3. Comparison with 3D keypoint discovery methods on
Rat7M. Results from the top three 3D keypoint discovery methods
on Rat7M. The 3D keypoint discovery models are evaluated using
a linear regression protocol (Section 4.1.3).

Method PMPJPE ↓ MPJPE ↓
BKinD-3D (8 kpts) 120 149
BKinD-3D (15 kpts) 105 125
BKinD-3D (30 kpts) 109 130
BKinD-3D (point) 110 137
BKinD-3D (edge, without length) 108 129
BKinD-3D (edge, full objective) 105 125

Table 4. Ablation results on Human3.6M. We perform an abla-
tion study of our volumetric bottleneck method comparing differ-
ent numbers of keypoints as well as variations to the edge bottle-
neck with length constraints.

4.3. Ablation

We perform an ablation study of our model (Table 4),
focused on BKinD-3D as it is the best performing ap-
proach on Human3.6M. Results show that 15 keypoints per-
formed the best quantitatively, but 30 keypoints is compa-
rable and qualitatively provides a more informed skeleton
(Figure 3). We perform additional regression experiments
using a 2-layer MLP regressor (supplementary material),
and we found that the keypoints discovered by the 30 key-
points model (94 PMPJPE) perform better relative to 15
keypoints (98 PMPJPE). This suggests that the linear model
may have been underfitting our 30 keypoints model.

We additionally find that adding edge information has
a quantitative improvement on performance and provides
more qualitative information on connectivity between joints
(Figures 3, 4). In our 3D setting, we found that the point
bottleneck (studied in previous works in 2D [19, 40]) did
not work as well as the edge bottleneck (studied in previous
works in 2D [13]). By studying edge bottlenecks in 3D and
expanding beyond 2D, our approach is able to enforce joint
length constraints through the discovered edge connectivity.

5. Discussion
We present a method for 3D keypoint discovery directly

from multi-view video, without any requirement for 2D or
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Projected 3D keypoints Ground truth Ours (15 kpts) Ours (30 kpts)

Figure 3. Qualitative results for 3D keypoint discovery on Human3.6M. Representative samples of 3D keypoints discovered from
BKinD-3D without regression or alignment for 15 and 30 total discovered keypoints. We visualize all keypoints that are connected using
the learned edge weights, and the projected 3D keypoints in the leftmost column are from the keypoint model with 30 discovered keypoints.

Projected 3D keypoints Ground truth Ours Projected 3D keypoints Ground truth Ours

Figure 4. Qualitative results for 3D keypoint discovery on Rat7M. Representative samples of 3D keypoints discovered from BKinD-3D
without regression or alignment. We visualize all connected keypoints using the learned edge weights and visualize the first 4 cameras (out
of 6 cameras) in Rat7M for projected 3D keypoints.

3D supervision. Our method discovers 3D keypoint loca-
tions as well as joint connectivity in behaving organisms
using a volumetric heatmap with multi-view spatiotempo-
ral difference reconstruction. Results show that our work
has closed the gap significantly to supervised methods for
studying 3D pose, and is applicable to different organisms.

Our approach focuses on behavioral videos with station-
ary cameras and background, with known camera param-
eters. The applicability of 3D keypoint discovery can be
further improved with future work to jointly estimate cam-
era parameters, camera movement, and pose from visual
data. Additionally, the lack of publicly available multi-
view datasets of animals could limit model development
and evaluation. Open-sourcing more datasets in this area
would encourage the development of pose estimation mod-

els with broader impacts beyond humans. Despite these
challenges, 3D keypoint discovery has the potential to en-
able studying behavior of diverse organisms, without the
need for expensive and time-consuming annotations. Our
goal is to encourage more efforts in 3D keypoint discovery,
to study the capabilities of vision models and to facilitate
the study of behavior in new organisms and across diverse
experimental setups.
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