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Abstract

There is a growing demand of automatically synthesizing

co-speech gestures for virtual characters. However, it re-

mains a challenge due to the complex relationship between

input speeches and target gestures. Most existing works fo-

cus on predicting the next gesture that fits the data best,

however, such methods are myopic and lack the ability to

plan for future gestures. In this paper, we propose a novel

reinforcement learning (RL) framework called RACER to

generate sequences of gestures that maximize the overall

satisfactory. RACER employs a vector quantized varia-

tional autoencoder to learn compact representations of ges-

tures and a GPT-based policy architecture to generate co-

herent sequence of gestures autoregressively. In particular,

we propose a contrastive pre-training approach to calculate

the rewards, which integrates contextual information into

action evaluation and successfully captures the complex re-

lationships between multi-modal speech-gesture data. Ex-

perimental results show that our method significantly out-

performs existing baselines in terms of both objective met-

rics and subjective human judgements. Demos can be found

at https://github.com/RLracer/RACER.git.

1. Introduction

Gesturing is important for human speakers to improve
their expressiveness. It conveys the necessary non-verbal
information to the audience, giving the speech a more emo-
tional touch so that to enhance persuasiveness and credibil-
ity. Similarly, in virtual world, high-quality 3D gesture ani-
mations can make a talking character more vividly. For ex-
ample, in human-computer interaction scenarios, vivid ges-
tures performed by virtual characters can help listeners to
concentrate and improve the intimacy between humans and

*Equal contribution.
†Corresponding author.

characters [36]. Attracted by these merits, there has been a
growing demand of automatically synthesizing high-quality
co-speech gestures in computer animation.

However, automatically synthesizing co-speech gestures
remains a challenge due to the complicated relationship be-
tween speech audios and gestures. On one hand, a speaker
may play different gestures when speaking the same words
due to different mental and physical states. On the other
hand, a speaker may also play similar gestures when speak-
ing different words. Therefore, co-speech gesture synthe-
sizing is inherently a “many-to-many” problem [21]. More-
over, in order to ensure the overall fluency and consistency,
we must take into consideration both the contextual infor-
mation and the subsequent effect upon playing a gesture
[23, 38]. Therefore, gesture synthesizing is rather a sequen-
tial decision making problem than a simple matching be-
tween speeches and gestures.

Compared with traditional rule-based approaches [35],
data-driven gesture synthesis approaches [10,39] has shown
many advantages, including the low development cost and
the ability to generalize. Most existing data-driven ap-
proaches consider gesture synthesis as a classification task
[6, 26] or a regression task [17] in a deterministic way i.e.
the same speech or text input always maps to the same ges-
ture output. However, these models rely on the assumption
that there exists a unique ground-truth label for each in-
put sequence of speech, which contradicts to the “many-to-
many” nature of the problem. As a consequence, they sac-
rifice diversity and semantics of gestures and tend to learn
some averaged gestures for any input speeches. Some other
works adopt adversarial learning framework, where a dis-
criminator is trained to distinguish between generated ges-
tures and the recorded gestures in dataset [10,38]. Although
they improve the generalizability of the gesture generator to
some extent, they still fail to explore the essential relation-
ship between speeches and gestures.

In order to address the above challenges, we propose

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2331



a novel Reinforcement leArning framework with Contra-
sitive prE-trained Rewards (RACER) for generating high-
quality co-speech gestures. RACER is trained in an of-
fline manner but can be used to generate the next gesture
for a speaking character in real time. RACER consists of
the following three components. Firstly, in order to ex-
tract meaningful gestures from the infinite action space,
RACER adopts a vector quantized variational autoencoder
(VQ-VAE) [32] to learn compact gesture representations,
which significantly reduces the action space. Secondly,
we construct the Q-value network using a GPT-based [28]
model, which has natural advantages of generating coher-
ence sequence of gestures. Thirdly, inspired by the con-
trastive language-image pre-training (CLIP) [27] and recent
advances of contrastive learning [30], we propose a con-
trastive speech-gesture pre-training method to compute the
rewards, which guide the RL agent to explore sophisticated
relations between speeches and gestures. Note that these
rewards evaluate the quality of gestures as a sequence. By
contrast, in conventional supervised learning frameworks,
the focus is on predicting only the next gesture, ignoring
the quality of generated sequence as a whole. To sum up,
the core contributions of this paper are as follows:

(1) We formally model the co-speech gesture synthesis
problem as a Markov decision process and propose
a novel RL based approach called RACER to learn
the optimal gesture synthesis policy. RACER can be
trained in an offline manner and used to synthesis co-
speech gestures in real time.

(2) We introduce VQ-VAE to encode and quantize the
motion segments to a codebook, which significantly
reduces the action space and facilitates the RL phase.

(3) We propose a contrastive speech-gesture pre-training
method to compute the rewards, which guide the RL
agent to discover deeper relations from multi-modal
speech-gesture data.

(4) Extensive experimental results show that RACER
outperforms the existing baselines in terms of both
objective metrics and subjective human judgements.
This demonstrates the superiority and the potential of
RL in co-speech gesture synthesis tasks.

2. Related Work

2.1. Data-driven Motion Synthesis

Human motion synthesis has been studied for a long time
[21, 37]. Traditional approaches such as motion graph [16]
cut the motion capture data and synthesize new motions ac-
cording to crafted transition rules. With the development
of deep learning, using neural networks to synthesize mo-
tions in an end-to-end manner becomes popular. Some of

works focus on motion prediction [13, 15], which could
predict current motion with a high accuracy, but they of-
ten fail to predict longer motion sequences. Recent works
focus more on the motion synthesis, which aims at gen-
erating long-term natural motions such as walking, jump-
ing, waving and dancing. Many advanced techniques have
been applied to long-term motion synthesis, including con-
ditional GANs [33], VAEs [21], auto-regressive models [7]
and Transformers [5, 22]. A most recent work called Bai-
lando explores the potential of RL in synthesizing dances
for given music [29]. However, in Bailando, RL is used
only for fine tuning so that the exact contributions of RL
remain unclear. By contrast, our proposed method RACER
is trained solely by RL and its effectiveness is demonstrated
by extensive experiments.

2.2. Co-speech Gesture Synthesis

Co-speech gesture synthesis is challenging due to the
complicated relations between speeches and gestures that
are hidden in the multi-modal dataset. One line of con-
ventional methods is rule-based generation [35], where the
core idea is to pre-define a set of gesture units and design
rules to connect speech words and the gesture units. How-
ever, it requires too much human effort in designing the
rules, which is costly and inefficient in practice. Bene-
fit from the recent advances in deep learning, many data-
driven approaches have been proposed to learn the match-
ing rules from speech-gesture data. Existing works focus
on exploring the effectiveness of different network archi-
tectures, including the multi-layer perceptron (MLP) [18],
convolutional neural networks (CNNs) [11], recurrent neu-
ral networks (RNNs) [4] and Transformers [18, 29]. Some
recent works incorporate adversarial loss to enhance gesture
fidelity [1,9,10,38]. However, they simply construct a target
gesture as the unique label of the current segment of speech,
ignoring the “many-to-many” nature of the problem. To
model the complicated relation between speeches and ges-
tures, Alexanderson et al. [2] propose a probabilistic model
MoGlow based on normalizing flows [12] which maps in-
put speeches to Gaussian distributions of gestures. How-
ever, the randomly sampled gestures contain non-negligible
noise and therefore suffer from low interpretability.

3. Preliminaries

The underlying environment of reinforcement learning
is typically modeled by a Markov decision process (MDP),
which is defined by a tuple (S,A, P,R, �). S represents the
state space and A represents the action space. The transition
function P (·|s, a) gives the probabilities of transitioning to
the next state after taking action a at state s. R(·|s, a) is
the associated reward function and � 2 [0, 1) represents the
discount factor. A policy ⇡(·|s) maps each state s 2 S to a
distribution over actions. For an agent following the policy
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Figure 1. The overall architecture of RACER. Given a piece of speech audio and the initial gesture code a0, the Q-network represented by
transformer layers autoregressively calculates the Q-values and selects a sequence of actions (a1, · · · , aT ). The action sequence will then
be transformed to quantitative features by querying the codebook and finally be decoded to motion sequences by the decoder of VQ-VAE.

⇡, the action value function, denoted by Q
⇡(s, a), is defined

as the expectation of cumulative discounted future rewards:

Q
⇡(s, a) := E

"
X

t=0

�
t
R(st, at)

#
,

s0 = s, a0 = a, st ⇠ P (·|st�1, at�1), at ⇠ ⇡(·|st).
(1)

The goal in RL is to learn an optimal policy ⇡
⇤ that max-

imizes the expected cumulative reward. We denote by
Q

⇤(s, a) the optimal action value function under the opti-
mal policy ⇡

⇤. The Bellman equations for the optimal Q-
values can be represented by:

Q
⇤(s, a) := R(s, a) + �Es0⇠P max

a02A
Q

⇤(s0, a0). (2)

A standard approach for computing the optimal policy is Q-
learning, which iteratively improves the estimation of Q⇤ by
applying the Bellman operator derived from Eq. (2). While
traditional Q-learning requires interactions with the envi-
ronment, recent advances in offline RL allow us to learn the
optimal policy directly from a fixed dataset, which we will
elaborate in Sec. 4.3.

4. Our Approach

The overview of our proposed framework RACER is
shown in Fig. 1. At each time step t, the state s consists of
the generated action tokens (a1, . . . , at�1) and input audio.

Unlike existing methods which directly learn a mapping
from audio features to the continuous high-dimensional mo-
tion space, we encode and quantize the motion into a fi-
nite codebook Z = {zi}Ni=1 by VQ-VAE, where N is the
size of codebook and each code zi represents a gesture lex-
eme feature. The details of action design are introduced in
Sec. 4.1. We use a GPT-like unidirectional model as the
Q-network that autoregressively outputs action tokens fol-
lowing a greedy strategy. An action token a will be mapped
to a gesture lexeme feature z and then be decoded to a spe-
cific gesture motion. Moreover, we propose a contrastive
speech-gesture pre-training model to compute the imme-
diate rewards for the actions, which will be elaborated in
Sec. 4.2. In addition, we will introduce how to train the
Q-network in a fully offline manner in Sec. 4.3.

4.1. Action Design

Instead of designing handcrafted gestures with expen-
sive manual efforts, our goal is to summarize gesture lex-
emes into a representative codebook from a large gesture
dataset in an unsupervised manner. To collect distinctive
gesture representations and reconstruct them back to real
gestures, we employ a VQ-VAE model which has success-
fully demonstrated its ability to learn effective latent repre-
sentations from temporal data. The structure of VQ-VAE is
shown in Fig. 2. VQ-VAE extends the regular autoencoder
by adding a discrete codebook Z to the network, which con-
sists of a list of vectors with their corresponding indexes. A
piece of motion in raw dataset can be represented by a ma-
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Figure 2. Structure of motion VQ-VAE.

trix M 2 RT⇥J , where T is the number of frames and J

is the dimension of joint features. M can then be trans-
formed to latent features e 2 RT 0⇥C by a 1-D convolu-
tional network, where T

0 is the length of feature sequence
after down-sampling, and C is the channel dimension. Each
row of e, represented by ei, will be substituted by its closest
vector zj in the codebook:

êi = arg min
zj2Z

||ei � zj ||. (3)

Then, the quantized features êi will be decoded to M̂
via a decoder so that to reconstruct M. Following [32], the
encoder and decoder are simultaneously learned by mini-
mizing the following loss function:

LV Q =Lm(M,M̂)

+ ||ê� sg(e)||22 + �||sg(ê)� e||22,
(4)

where sg[·] stands for the stop gradient operator that
prevents the gradient from backpropagating through its
operand. The first term Lm(M,M̂) represents the recon-
struction error, which is expanded as:

Lm(M,M̂) =||M,M̂||1
+ ↵1||M0

,M̂0||1 + ↵2||M00
,M̂00||1,

(5)

where M0 and M00 are the 1st order and 2nd order of partial
derivatives of motion sequence M, representing the veloc-
ity and the acceleration of the motion, respectively. ↵1 and
↵2 are hyper-parameters used to trade-off between the two
losses. We can see from Eq. (5) that VQ-VAE reconstructs
not only the original position of each joints of the character,
but also the velocities and the accelerations of its motions.
Notably, since Z is discrete, we will simply copy the gradi-
ents from the reconstruction error and pass them to the en-
coder during training. The second term in Equation (4) aims

Audio
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Figure 3. Summary of the reward model. The model jointly trains
a motion encoder and an audio encoder to predict the correct pair-
ings of a batch of (motion, audio) training examples.

to optimize the codebook by pushing the ê and its associ-
ated z close to e, which is the output of the encoder. The
last term in Equation (4) aims to optimize the encoder by
pushing e close to its nearest latent vector in the codebook.
The VQ-VAE mode will be trained separately, which means
that its model parameters as well as the codebook remain
unchanged during reward computation and reinforcement
learning. Note that in the reinforcement learning phase, the
indexes of the codebook will be treated as the action tokens,
as introduced in Sec. 4.3.

4.2. Reward Design

Reward function is key to reinforcement learning be-
cause it contains most of the knowledge that the agent can
learn. Regarding to the task of co-speech gesture synthesis,
the original dataset explicitly indicates the ground-truth ges-
tures for given speech audios. However, due to the “many-
to-many” nature of the problem, a ground-truth gesture may
not be optimal under different contexts. This motivates us
to learn a reward model that is able to discover and utilize
deeper relations between speeches and gestures. There are
two advantages of using the reward model. First, if there
are multiple gestures correspond to one speech slice, the re-
ward model is able to distinguish between these gestures
so that to enrich the supervision signals. Second, as the
goal of RL is to maximize the accumulated rewards of ac-
tion sequences, the agent will learn to generate sequences
of gestures that maximize the overall satisfaction.

To get a proper reward function, we train a model to eval-
uate the degree of correspondence between the sequences
of gestures and the sequences of speeches. Since the re-
ward model tells the agent the degree of correspondence
of the speech-gesture pairs, it should be able to distinguish
between matched pairs and unmatched pairs. Moreover, the
reward model should also generalize to speech-gesture pairs
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that are not covered by the dataset. This coincides with the
idea of contrastive learning. Multimodal contrastive learn-
ing techniques have been developed recently, such as CLIP
[27], a well-known visual-text contrastive learning model,
designed to match paired image and caption embeddings.

Similar to CLIP, given a batch of n (motion, audio) pairs,
the reward model is trained to predict which of the n ⇥ n

possible (motion, audio) pairs across a batch actually oc-
curred. To do this, the model converts each input motion
M and audio U into vector representations m and u by a
motion encoder Em and an audio encoder Ea. Two encoders
are jointly trained to maximize the cosine similarity of each
real pair (mi and ui):

LR = `
m!u
i + `

u!m
i , (6)

where

`
m!u
i = � log

exp(mi · ui/⌧)Pn
k=1 exp(mi · uk/⌧)

,

`
u!m
i = � log

exp(ui ·mi/⌧)Pn
k=1 exp(ui ·mk/⌧)

.

(7)

⌧ 2 R+ represents a temperature parameter. In this work,
both encoders are structured as 1-D temporal convolutional
networks and can input sequences of different lengths.

As with VQ-VAE, the training of the reward model is
in a separate phase. During reinforcement learning, two en-
coders of the learned reward model respectively encodes the
generated motion M̂ and input speech U into two vectors,
with their inner product as the reward:

R(M̂,U) = Em(M̂) · Eu(U). (8)

4.3. Offline Reinforcement Learning

Recall that we have defined several essential factors
of the MDP. State s includes the generated action tokens
a0:t�1 and the audio sequence u0:t up to the current time
step t. Each action a corresponds to an index of the code-
book learned by VQ-VAE. The reward r is outputted by
the reward model to evaluate how well the predicted ges-
ture matches the input audio. Now we are able to augment
the original speech-gesture dataset to a trajectory dataset
D = {si, ai, ri, s0i|i = 1, ..., N}). Note that these trajec-
tories can be collected before the start of the reinforcement
learning phase. We denote by ⇡� the behavior policy that
generates these trajectories.

Offline datasets usually do not provide complete state-
action coverage. That is, the set {(s, a)|(s, a, r, s0) 2 D} is
typically a small subset of the full space S ⇥ A. Standard
online reinforcement learning methods such as DDPG [24]
and SAC [31] are not appropriate due to issues with boot-
strapping from out-of-distribution actions. A “safe” strat-
egy to mitigate the distributional shift problem is to be con-

servative: if we explicitly estimate the value of unseen out-
comes conservatively (i.e. assign them a low value), then
the estimated value or performance of the policy that ex-
ecutes unseen behaviors is guaranteed to be small. Us-
ing such conservative estimates for policy optimization will
prevent the policy from executing unseen actions and it will
perform reliably. To this end, we adopt a simple but ef-
fective offline reinforcement learning algorithm called con-
servative Q-learning (CQL) [20] to learn the optimal policy
from the augmented offline dataset.

Specifically, for the conservative off-policy evaluation,
the Q-function, Q̂⇡ := limk!1Q̂k is trained via an itera-
tive update:

Q̂
k+1  argmin

Q

1

2
E

s,a,s0⇠D

h
(Q(s, a)� B̂⇡

Q̂
k(s, a))2

i

+ ↵

0

@ E
s⇠D

a⇠µ(a|s)

[Q(s, a)]� E
s⇠D

a⇠⇡̂�(a|s)

[Q(s, a)]

1

A ,

(9)
where

B̂⇡
Q̂

k(s, a) = Es0⇠P (s0|s,a)[R(s, a)+�Ea0⇠⇡̂k(s,a)Q̂
k(s0, a0)]

(10)
is the Bellman operator. This equation consists the normal
bootstrapping error and the regularization term with a trade-
off factor ↵. Inside the the regularization term, the first term
always pushes the Q-value down on the (s, a) pairs sampled
from the learning policy µ whereas the second term pushes
Q-value up on the (s, a) pairs sampled from the offline data
set. In practice, we selected the binding variant of CQL and
DQN as our model, which can be optimized by minimizing
the following loss function:

min
Q

↵ E
s⇠D

"
log

X

a

exp(Q(s, a))� E
a⇠⇡̂�

[Q(s, a)]

#

+
1

2
E

s,a,s0⇠D

h
(Q(s, a)� B̂⇡

Q̂
k(s, a))2

i
.

(11)
Since we want to use the Q-value function to autoregres-

sively generate the action sequences, we construct a pow-
erful GPT-based backbone model to estimate the Q-values,
as is shown in Fig. 1. To construct the input, each motion
code sequence is embedded to learnable features and con-
catenated with the audio features in the temporal dimension.
We add a learned positional encoding to this concatenated
(2⇥T

0⇥C)-dimensional tensor and feed it to Transformer
layers, whose structure is shown in the left of Fig. 1. Last,
we employ a linear layer to map the output of Transformer
layers to the Q-value q 2 RT 0⇥N , where N is the size of
learned codebook. In the Transformer layer, the attention
is the core component that determines the computational
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dependency among sequential elements of inputs, which is
computed as:

Attention(Q,K,V ,M) = softmax(
QKT

p
C

+M)V ,

(12)
where Q,K,V denote the query, key and value from input,
and V is the mask. In the original GPT model,“causal at-
tention” realizes the intercommunication of the current and
previous data to compute the state for the time of inter-
est. However, our model needs to infer actions from the
speech at each time step, so it needs to process two input
sequences simultaneously. To comply the causality condi-
tioned among features of the audio and the action, M is
designed to be a 2 ⇥ 2 repeated block matrix with lower
triangular matrix of size T

0.
During inference, given the audio of arbitrary length and

the initial motion code a0, the Q-network can output Q-
values of all actions. We will select the action with the max-
imum Q-value and then add it to the input, so that we can
autoregressively generate the entire action sequence.

5. Experiments

5.1. Dataset

In this paper, we use two speech-gesture datasets: the
Trinity dataset and a Chinese dataset collected by us. Trin-
ity Gesture dataset is a large database of speech and gestures
jointly collected by [8]. This dataset consists of 242 min-
utes of motion capture and audio of one male actor talking
on different topics. The actor’s motion was captured with a
20-camera Vicon system and solved onto a skeleton with 69
joints. In this paper, we use the official release version of
The GENEA Challenge 2020 Dataset [19], where 221 min-
utes are used as training data, and the remaining 21 minutes
are kept for testing. Additionally, we collected an 1-hour
high-quality Chinese dataset using motion capture equip-
ment. This dataset contains 3D full-body gestures and the
aligned Chinese speech audio. And we retargeted the skele-
tons to be consistent with the Trinity dataset. In this dataset,
the speaker described various speech scenes in Chinese and
made high-standard common speech gestures, ensuring a
high degree of matching between gestures and speech.

5.2. Implementation Details

All the motion data are downsampled to 20 frames per
second on the Trinity and Chinese datasets. We focus on
upper-body gestures in this work. For visualization, we em-
ploy a character model consist of 16 upper-body joints, in-
cluding a rotational root. The audio features are extracted
by the public audio processing toolbox librosa, including
mel-scaled spectrogram and onset. In VQ-VAE, the code-
book size N and the channel dimension C are both set to

512, and the temporal downsampling rate of encoders is
set to 8. During the training of VQ-VAE, motion data are
cropped to uniform length of T = 120 (6 seconds) and sam-
pled in batch size of 64. The trade-off � in LV Q is set to
0.1. ↵1 and ↵2 in Lm are both 1. We adopt Adam optimizer
with �1 = 0.9 and �2 = 0.999 for 500 epochs on Trinity
but 400 epochs on the Chinese dataset with learning rate
0.00003. During the training of reward model, both audio
and motion data are clipped to 6s. The optimizer settings
are consistent with those of the VQ-VAE. The structure of
the Q network is basically the same as that of the GPT net-
work, where the embedding dimension is 768 and the atten-
tion layer is implemented in 12 heads with dropout prob-
ability 0.1. During the off-line reinforcement learning, the
motion sequences are encoded to motion codes and sampled
to length of 15 and sampled in batch size of 256. The Q-
network is optimized using Adam optimizer with �1 = 0.5
and �2 = 0.999 for 1500 epochs on Trinity but 1200 epochs
on Chinese dataset, where the learning rate is initialized as
0.0001. The discount factor � is set to 0.99. At runtime,
a Gaussian filter with a kernel size of K = 5 is used to
smooth the denormalized gesture sequence along the time
dimension. The entire framework takes 36 hours on Trinity
and 30 hours on the Chinese dataset to complete training on
one NVIDIA Quadro RTX 5000 GPU.

5.3. Evaluation Metrics

We adopt four commonly used evaluation metrics
(MAJE, MAD, FGD and PMB) to compare various meth-
ods quantitatively. Mean absolute joint error (MAJE) mea-
sures the mean of the absolute errors between the gen-
erated joint positions and ground truth over all the time
steps, which indicates how closely the generated joint po-
sitions follow the ground truth. Mean acceleration dif-
ference (MAD) measures the mean of the l2 norm differ-
ences between the generated joint accelerations and ground
truth over all the time steps, which indicates how closely
the ground truth and the generated joint movements match.
Fréchet Gesture Distance (FGD) was proposed by which
measures the difference between the distributions of the
latent features of the generated gestures and ground truth
[38]. The latent features are extracted from an auto-encoder
trained on the Human 3.6M dataset*. Specifically, we use
Ĥ and H represent the latent features of generated gestures
and ground truth. The Fréchet distance is formulated as

FGD(Ĥ,H) = ||µ̂� µ||22 + Tr
⇣
⌃̂+ ⌃� 2

p
⌃̂⌃

⌘
,

(13)
where µ and ⌃ are the first and second moments of the latent
feature distribution of the ground truth H , and µ̂ and ⌃̂ are

*We obtain the codes and models from: https://github.com/
ai4r/Gesture- Generation- from- Trimodal- Context.
git
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Table 1. Comparison of RACER to Style Gesture, Gesticulator, S2AG and Bailando on Trinity datasets. # means the lower is better and "
means the higher is better.

Dataset Method MAJE(mm) # MAD(mm/s
2) # FGD# PMB(%) "

Trinity

Ground Truth 0 0 0 95.74
Style Gesture 97.29 4.26 36.98 54.54
Gesticulator 82.41 3.62 31.04 71.00
S2AG 54.93 1.49 20.36 79.53
Bailando 61.89 1.74 17.29 84.21
Ours 50.33 1.21 13.44 89.58

Chinese Dataset
Style Gesture 62.95 3.46 30.11 53.56
Bailando 45.45 1.29 25.07 68.53
Ours 43.25 1.19 9.21 74.29

the first and second moments of the latent feature distribu-
tion of the generated gestures Ĥ . FGD makes a reasonable
assessment of the perceived plausibility of the synthesized
gestures. The Percentage of Matched Beats PMB is a new
metric to calculating the matching rate of audio and motion
beats for evaluating rhythm performance [3]. In PMB, a
motion beat is considered an matched if the distance to a
nearby audio beat is within the range of �:

PMB(Bm
, B

a) =
1

Nm

NmX

i=1

NaX

j=ba⇤+1

[||bmj � b
a
j ||1 < �],

(14)
where B

m and B
a represent the motion beats and audio

beats, and Nm and Na represent the number of beats. Mo-
tion beat can be obtained by identifying the local minima of
joints deceleration [14]. ba⇤indicates the last matched audio
beat. The � is set to 0.2s, consistent with the original paper.

5.4. Comparison to Existing Methods

In this section, we compare RACER with several state-
of-the-art methods to demonstrate the advances made by
our method. On the Trinity dataset, we compare with the
methods of Style Gesture [2], Gesticulator [18], Speed to
Affective Gesture (S2AG) [4] and Bailando [29]. On the
Chinese dataset, we compared with Style Gesture and Bai-
lando. Style Gesture generates gestures based on only the
speech audio features by a normalizing flow probabilistic
model. Gesticulator leverages the audio and text of the
speech to generate semantically consistent gestures. Com-
pared with these methods, S2AG adds more modality, in-
cluding speaker identity and seed gesture poses. Different
from other methods, Bailando is a novel music-to-dance
framework with a choreographic memory and actor-critic
GPT model. Since Bailando’s model architecture is simi-
lar to ours and both incorporate reinforcement learning into
the training process, we apply it as a key contrast method
to the gesture synthesis task. The hyperparameter setting is

consistent with the original paper and the open source code,
and the feature processing of the training data is consistent
with ours. For a fair comparison, we keep the same skeleton
and motion frame rate as the comparison systems.

Quantitative experimental results are listed in Tab. 1.
According to the comparison, our proposed model consis-
tently performs favorably against all the other methods on
all evaluations. Specially, on Trinity, our method improves
4.60(8.37%) and 0.28(18.79%) than the best compared
baseline model S2AG on MAJE and MAD, respectively.
In terms of FGD and PMB, Bailando, with its advanced
network structure and reinforcement learning fine-tuning
process, also obtained better evaluation results (17.29 and
84.21%) than S2AC (20.36 and 79.53%). Our approach fur-
ther achieves significantly higher performance (13.44 and
89.58%) in both items. Similarly, our method has also
achieved excellent performance in Chinese dataset com-
pared with Style Gesture and Bailando, especially on FGD
(9.21) and PMB (74.29%). The superiority of our method
on all evaluation metrics reveals that RACER can rely on of-
fline RL not only to synthesize more real-like motion than
compared baseline methods, but also but also to achieve
outstanding performance in motion quality and rhythm.

User Study. We conducted a user study to further as-
sess the real visual performance of our method in a pairwise
manner. We choose Style Gesture and Bailando to compare.
We randomly sampled 10 30-second long slices generated
from the test set of Trinity dataset. Each motion slice is
bound to the Mixamo [25] model and rendered as a video by
Blender. The experiment is conducted with 12 participants.
The participants are asked to rate the slices from the fol-
lowing three aspects respectively: (1) realism, (2) speech-
to-gesture matching, (3) speech-to-gesture rhythm match-
ing. The scores assigned to each rating are in the range of
1-5, corresponding from worst to best. Rating statistics re-
sults are shown in Fig. 4. Notably, our method significantly
surpasses the compared other methods.
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Table 2. Ablation study results on the Trinity dataset.

Method MAJE(mm) # MAD(mm/s
2) # FGD# PMB(%) " Reward"

RACER(Supervised Learning) 56.22 1.81 16.69 78.54 -
RACER(Distance Reward) 58.96 2.94 23.55 72.09 -
RACER(DQN) 59.44 1.81 15.46 76.63 4.23
RACER(Actor-Critic) 60.18 1.76 17.69 78.02 3.93
Ours 50.33 1.21 13.44 89.58 9.34

Figure 4. User study results comparing RACER against Bai-
lando and Style Gesture. Bars with different colors represent rank
counts. In total, 120 comparisons have been rated. The total scores
are listed on the right.

5.5. Ablation Studies

To gain more insights into the proposed components of
our method, we test some variants of RACER on Trin-
ity dataset: (1)“Supervised Learning” indicates that we di-
rectly treat gesture code sequences as labels to train GPT-
like models through supervised learning instead of rein-
forcement learning. (2)“Distance reward” indicates that
our reward function is is replaced by the Euclidean dis-
tance calculation between the predicted poses and ground
true, which is equivalent to taking the supervision signal
in the traditional regression problem directly as the re-
ward. (3)“DQN” means that we use the online RL algo-
rithm DQN [34] instead of offline RL to learn the policy.
The Q-value network of RACER(DQN) keeps consistent
with ours. (4)“Actor-Critic” means that we use the online
RL algorithm Actor-Critic instead of offline RL to learn
the policy. For RACER(Actor-Critic), we regard the last 3
Transformer layers of GPT model with a additional linear-
softmax layer as the branch of actor network. Besides, we
add 3 Transformer layers as the branch of critic network to
estimate the V-values.

The quantitative scores are shown in Tab. 2. Firstly,
we explore the effectiveness of offline reinforcement learn-
ing itself. Compared to RACER, the evaluation metrics
of RACER(Supervised Learning) sharply drops 5.89(11%),
0.60(50%), 3.25(24%) and 11.04%, respectively. This

shows that offline RL with proposed reward function can
help the model learn to generate sequences of discrete to-
kens better than supervised learning. Secondly, to ex-
plore the advantages of the contrastive multi-modal reward,
we evaluate the performance of RACER(Distance Reward).
Our method has achieved better performance, especially on
the MAD and PMB matrics. This confirms that the con-
trastive multi-modal reward function we propose can han-
dle the feature relationship between multiple modes and im-
prove the matching degree of motion and speech. Moreover,
to verify the advantages of offline RL over online RL, we in-
troduce two classic online RL algorithms, DQN and Actor-
Critic, to determine the variations. Under the same number
of training steps, DQN and AC algorithms can only get the
highest rewards of 4.23 and 3.93 respectively, which is a
significant gap compared to CQL. Naturally, other matrices
are also significantly worse than CQL.

6. Discussion and Conclusion

In this paper, we propose a novel co-speech gesture syn-
thesis framework called RACER. RACER regards the mo-
tion generated procedure as a sequential decision making
process and employs reinforcement learning to learn the
autoregressive gesture synthesis policy. There are mainly
three sub-components of RACER. First, a vector quantized
variational autoencoder (VQ-VAE) is employed to learn
compact representations of gestures from massive real-
world gesture data. Second, RACER uses a GPT-based ar-
chitecture as policy network, which could autoregressively
generate the next gestures given a sequence of speech au-
dio. Thirdly, we propose a contrastive pre-training approach
to calculate the rewards, which integrates contextual infor-
mation into action evaluation and successfully captures the
complex relationships between multi-modal speech-gesture
data. We conduct extensive experiments to evaluate the
performance of RACER. The experimental results show
that RACER significantly outperforms the existing base-
lines in various objective and subjective metrics. Moreover,
RACER shows a great generalization ability with respect to
different contexts, which indicates the potentials of RACER
in more complex motion synthesis tasks.
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