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Abstract

Self-supervised audio-visual source localization aims to
locate sound-source objects in video frames without extra
annotations. Recent methods often approach this goal with
the help of contrastive learning, which assumes only the au-
dio and visual contents from the same video are positive
samples for each other. However, this assumption would
suffer from false negative samples in real-world training.
For example, for an audio sample, treating the frames from
the same audio class as negative samples may mislead the
model and therefore harm the learned representations (e.g.,
the audio of a siren wailing may reasonably correspond to
the ambulances in multiple images). Based on this obser-
vation, we propose a new learning strategy named False
Negative Aware Contrastive (FNAC) to mitigate the prob-
lem of misleading the training with such false negative sam-
ples. Specifically, we utilize the intra-modal similarities
to identify potentially similar samples and construct corre-
sponding adjacency matrices to guide contrastive learning.
Further, we propose to strengthen the role of true negative
samples by explicitly leveraging the visual features of sound
sources to facilitate the differentiation of authentic sound-
ing source regions. FNAC achieves state-of-the-art perfor-
mances on Flickr-SoundNet, VGG-Sound, and AVSBench,
which demonstrates the effectiveness of our method in mit-
igating the false negative issue. The code is available at
https://github.com/OpenNLPLab/FNAC_AVL.

1. Introduction
When hearing a sound, humans can naturally imagine

the visual appearance of the source objects and locate them
in the scene. This demonstrates that audio-visual corre-
spondence is an important ability for scene understand-
ing. Given that unlimited paired audio-visual data ex-
ists in nature, there is an emerging interest in developing
multi-modal systems with audio-visual understanding abil-
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Figure 1. False negative in audio-visual contrastive learning.
Audio-visual pairs with similar contents are falsely considered as
negative samples to each other and pushed apart in the shared la-
tent space, which we find would affect the model performance.

ity. Various audio-visual tasks have been studied, including
sound source localization [8, 19–21, 26–28], audio-visual
event localization [32, 33, 35, 39], audio-visual video pars-
ing [11, 18, 31] and audio-visual segmentation [37, 38]. In
this work, we focus on unsupervised visual sound source lo-
calization, with the aim of localizing the sound-source ob-
jects in an image using its paired audio clip, but without
relying on any manual annotations.

The essence of unsupervised visual sound source local-
ization is to leverage the co-occurrences between an audio
clip and its corresponding image to extract representations.
A major part of existing methods [8, 19–21, 28] formulates
this task as contrastive learning. For each image sample,
its paired audio clip is viewed as the positive sample, while
all other audio clips are considered as negative. Likewise,
each audio clip considers its paired image as positive and
all others as negative. As such, the Noise Contrastive Es-
timation (NCE) loss [24, 30] is used to perform instance
discrimination by pushing closer the distance between a
positive audio-image pair, while pulling away any nega-
tive pairs. However, the contrastive learning scheme above
suffers from the issue of false negatives during training,
i.e., audio/image samples that belong to the semantically-
matched class but are not regarded as a positive pair (due to
the lack of manual labeling). A typical example is shown
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in Fig. 1. Research shows [4, 16, 29, 36] that these false
negatives will lead to contradictory objectives and harm the
representation learning.

Motivated by this observation, we assess the impact of
false negatives in real-world training. We discover that with
a batch size of 128, around 40% of the samples in VGG-
Sound [9] will encounter at least one false negative sample
during training. We then validate that false negatives indeed
harm performance by artificially increasing the proportion
of false negatives during training, and observing a notice-
able performance drop. To make matters worse, larger batch
sizes are often preferred in contrastive learning [24], but
it may inadvertently increase the number of false negative
samples during training and affect representation quality.

To this end, we propose a false-negative aware audio-
visual contrastive learning framework (FNAC), where we
employ the intra-modal similarities as weak supervision.
Specifically, we compute pair-wise similarities between all
audio clips in a mini-batch without considering the visual to
form an audio intra-modal adjacency matrix. Likewise, in
the visual modality, we obtain an image adjacency matrix.
We found that the adjacency matrices effectively identify
potential samples of the same class within each modality
(Fig. 4). The information can then be used to mitigate the
false negatives and enhance the effect of true pairings.

Specifically, we propose two complementary strategies:
1) FNS for False Negatives Suppression, and 2) TNE for
True Negatives Enhancement. First, when optimizing the
NCE loss, FNS regularizes the inter-modal and intra-modal
similarities. Intrinsically, intra-modal adjacency explores
potential false negatives by the similarity intensities and the
pulling forces applied to these false negatives are canceled
accordingly. Furthermore, we introduce TNE to empha-
size the true negative influences in a region-wise manner,
which in turn reduces the effect of false negative samples
as well. We adopt the audio adjacency matrix to identify
dissimilar samples, i.e., true negatives. Intuitively, dissimi-
lar (true negative) sounds correspond to distinct regions, so
the localized regions across the identified true negatives are
regularized to be different. Such a mechanism encourages
the model to discriminate genuine sound-source regions and
suppress the co-occurring quiet objects. we conduct exten-
sive analysis to demonstrate the effectiveness of our pro-
posed method and report competitive performances across
different settings and datasets. In summary, our main con-
tributions are:

• We investigate the false negative issue in audio-visual
contrastive learning. We quantitatively validate that
this issue occurs and harms the representation quality.

• We exploit intra-modal similarities to identify poten-
tial false negatives and introduce FNS to suppress their
impact.

• We propose TNE, which emphasizes true negatives us-
ing different localization results between the identified
true negatives, thus encouraging more discriminative
sound source localizations.

2. Related Work

False Negatives in Contrastive Learning. Typical con-
trastive learning employs instance discrimination [34] as a
pretext task, in which two augmented views of the same
image are considered as positive pairs, while views of all
other images are treated as negative pairs, regardless of
semantic similarities. Such a scheme inevitably suffers
from the False Negatives issue [10, 13, 16, 36], which indi-
cates that instances sharing the same semantic concepts are
falsely treated as negatives, thus misleading model learn-
ing. Based on this, some works attempt to incorporate sim-
ilar instances into model training to eliminate the impact
of false negatives. For example, Zheng et al. [36] model a
nearest neighbor graph for each batch of instances and ex-
ecute a KNN-based multi-crop strategy to detect false neg-
atives. Similarly, Dwibedi et al. [13] sample nearest neigh-
bors from the dataset and treat them as positives for con-
trastive learning. More recently, [16] and [10] study how
to identify false negatives without class labels and explic-
itly remove detected false negatives by two strategies, elim-
ination and attraction, to improve contrastive loss. Other
works use clustering-based methods to encode semantic
structures [5, 7, 17] and then perform contrastive learning
on these semantically similar cluster centers. In this paper,
we propose and explore a similar problem in self-supervised
audio-visual learning.

Self-Supervised Sound Source Localization. Sound
source localization aims to learn to locate sound-source
regions in videos. Recent approaches extensively lever-
age contrastive learning based on audiovisual correspon-
dence to address this issue. For example, [2, 3, 28] adopt
a dual-stream architecture to extract unimodal features re-
spectively and then calculate a contrastive loss to update the
audiovisual network. The final localization map is usually
obtained by calculating the cosine similarity between audio
and visual features. Following the paradigm, Mo et al. [21]
further propose an object-guided localization (OGL) mod-
ule, an extra pre-trained visual encoder, to introduce vi-
sual priors into the localization results. Nevertheless, these
works assume that the paired audio-visual signals are reg-
ularly aligned and all mismatched samples are heteroge-
neous. As aforementioned, the assumption ignores the se-
mantic similarities between samples. Accordingly, Chen et
al. [8] incorporate explicitly background regions with low
correlation to the given audio into the framework and re-
gard them as hard negatives. In a slightly different task
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Figure 2. Impact of false negatives on audio-visual represen-
tation learning. We adopt Consensus Intersection over Union
(CIoU) [28] as an evaluation metric (higher is better) and report
results on FlickrSoundNet [6] and VGG-SS [9] test sets, depicted
by blue and brown, respectively. An obvious performance decline
is observed as the proportion of false negative samples increases.

setting of audio-visual instance discrimination, false neg-
ative issues are also investigated. [23] detects false nega-
tives by defining sets of positive and negative samples via
cross-modal agreement, where positive samples are defined
as similar samples in both modalities. [22] considers both
false positive and false negative issues. For false negatives,
they estimate the similarity across instances to compute a
soft target distribution over instances so the contributions
of false negatives are down-weighted. One work that ex-
plores a similar problem to us is [29], which treats top-K
semantically similar audio-visual pairs as hard positives and
explicitly integrates them into the contrastive loss. Unfortu-
nately, this method relies on manually selected hypermeters
K and a hard threshold. Unlike the previous methods, this
paper uses intra-modal adjacency matrices to adaptively de-
tect false negatives and eliminate their impact.

3. Method
In this section, we first investigate the problem raised by

false negative samples in Sec. 3.1, and then propose to mit-
igate the problem. From two aspects, without supervision
we identify the false negative samples to explicitly suppress
them in training (Sec. 3.2), and use region-wise comparing
learning to enhance the roles of true negative samples which
hence relatively suppresses false negatives (Sec. 3.2).

3.1. Revisiting Audio-visual Contrasting Learning

Various methods for audio-visual localization [18,21,28]
employ a contrastive learning framework, in a manner of
instance discrimination. Arguably, it assumes the audio-
visual scenes from different videos are distinctive. There-
fore the paired audio and image from the same video are
considered a positive pair while the samples (audio or im-
age) from other pairs are regarded as negatives. Specifically,
we denote an audio-visual dataset as D ∈ {(ai, vi), i ∈

[0, n)}, where (ai, vi) represents a sample with paired
audio-visual content. Usually, a two-stream network is used
to encode audio and visual signals and then map them into
a shared latent space. The audio and visual representa-
tions extracted from (ai, vi) are denoted as Za

i ∈ R1×d and
Zv
i ∈ R1×d with d as feature dimension. Ideally, Za

i and
Zv
i represent the same semantic concept from the visual and

audio perspectives, e.g., playing the drum. The optimization
objective of contrastive learning is to maximize the sim-
ilarity between audio and visual representations from the
same video while minimizing the similarity between fea-
tures from different videos. Mathematically, it can be for-
mulated in a modal-symmetric way for a pair (ai, vi) as:

Lcontrast i = − log
exp

[
1
τ sim(Za

i , Z
v
i )
]∑b

j exp
[
1
τ sim(Za

i , Z
v
j )
]

− log
exp

[
1
τ sim(Zv

i , Z
a
i )
]∑b

j exp
[
1
τ sim(Zv

i , Z
a
j )
] , (1)

where τ is a temperature hyper-parameter, b denotes batch
size and sim represents the similarity function. Intuitively,
this loss implies that each audio feature Za

i is pushed close
to its paired visual feature Zv

i in the shared latent space,
while pulled apart from the rest (b − 1) visual features
Zv
j,j ̸=i. However, as discussed, there exist Ẑa

j and/or Ẑv
j

that are semantically similar to (Za
i , Z

v
i ), i.e., false nega-

tives. In this situation, forcing sim(Za
i , Ẑ

v
j ) or sim(Zv

i , Ẑ
a
j )

to be small might perplex the model training and lead to a
non-optimal representation.

Impact of False Negatives. Based on this observation,
we conduct several pilot experiments to verify the issue of
false negatives and their influence on audio-visual represen-
tation learning. For simplification, we reasonably assume
that samples that share the same manually labeled category
are False Negatives. Firstly, we examine the data distri-
bution during the training procedure. We find that over
39.27% samples suffer from at least one false negative
sample when training with a batch size of 128 on the VGG-
Sound dataset [9] covering 309 categories. This ratio will
undoubtedly increase when employing bigger batch sizes
or fewer categories. Secondly, we examine how the false
negative issue might affect audio-visual localization perfor-
mance. Following prior works [8, 21], we adopt ResNet-18
as the backbone to encode audio and visual features and a
standard NCE loss [24] is used. In particular, we manually
substitute the true negatives with false negatives in the train-
ing samples. As shown in Fig 2, when the false negative
rate is progressively increased, a significant performance
decline is found, indicating that the model is perplexed by
these similar samples. The experiments above demonstrate
that false negatives substantially impact the model quality
and cannot be disregarded.
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Figure 3. An overview of False Negative Suppression (FNS). The main optimization objective is NCE [24] loss on audio-visual pairs.
The audio adjacency matrix and visual adjacency matrix are respectively constructed to suppress false negatives by regularizing NCE loss.
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Figure 4. Qualitative samples of the found potential false negatives in visual and audio modalities. We report the nearest sample for
every anchor. For the audio modality, we show the corresponding images here.

3.2. Mitigating False Negatives in Audio Visual
Learning

As discussed in Sec. 3.1, we prove that the unpaired pos-
itive samples (i.e., false negatives) existed in every mini-
batch that may harm the representations. Correspondingly,
we propose to solve this problem by FNAC with two com-
plementary methods, False Negatives Suppression (FNS)
and True Negatives Enhancement (TNE). For the same goal
of mitigating the false negative issue, FNS identifies the
false negative samples and regularizes to reduce their ef-
fects, while TNE enhances the contribution of true nega-
tives by region-wise comparison, which also inadvertently
suppresses false negatives. Both methods can be seamlessly
integrated into the audio-visual contrastive framework as
regularization terms.

FNS: False Negatives Suppression. To suppress the
false negative effects, two challenges are posed. First, dis-
tinguishing the potential false negative samples within the
current mini-batch without extra supervision such as class
labels. Second, eliminating the misleading effects of the
identified false negatives.

For the first challenge, we propose to leverage the uni-
modal feature representations to calculate pair-wise sample
similarities, i.e., adjacency matrix. As shown in Fig. 3, the
audio clips are fed into an audio encoder to obtain audio
features Za ∈ Rb×d, then we calculate a dot product with

(Za)T followed by a row-wise softmax to obtain the pair-
wise self-similarity matrix Sa ∈ Rb×b, i.e., the audio adja-
cency matrix. Likewise, we average-pool the image features
and obtain a visual adjacency matrix Sv ∈ Rb×b. Such
adjacency matrices encode pair-wise similarities across a
batch without considering inter-modal connection. For each
audio-visual sample, we show its nearest sample by query-
ing the adjacency matrices, as shown in Fig 4. It indicates
that intra-modal adjacency matrices can effectively identify
potential class-matched samples.

Regarding the second challenge, we propose to im-
pose intra-modal adjacency as a soft supervision signal
for inter-modal contrastive learning, i.e., audio-visual sim-
ilarities should be statistically consistent with the intra-
modal similarities. In other words, if two scenes are close,
their audio features similarity value sim(Za

i , Z
a
j ) should be

high, the visual similarity sim(Zv
i , Z

v
j ) should match, and

the cross-modal similarities sim(Za
i , Z

v
j ) or sim(Zv

i , Z
a
j )

should also show consistency. Therefore, we leverage intra-
modal similarity as a supervision signal for audio-visual
contrastive learning. Technically, we could utilize hard
thresholds to achieve pseudo labels from intra-modal simi-
larity like [8, 29, 36], which can serve to identify potential
false negatives samples or areas. However, such methods
require parameter tuning, and misassigned labels can exac-
erbate the false-negative problem. Differently, we propose
FNS that directly regularizes the similarity scores. For a
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sound-source visual feature adjacency matrix. The audio adjacency matrix is used to regularize the sound-source visual feature adjacency
matrix to enhance true negatives.

sample i, its optimization objective is formulated as:

LFNS 1 =
1

b

b∑
j

Ldist(sim(Za
i , Z

v
j ), sim(Za

i , Z
a
j )) (2)

LFNS 2 =
1

b

b∑
j

Ldist(sim(Za
i , Z

v
j ), sim(Zv

i , Z
v
j )) (3)

For an audio sample ai, the NCE loss Lcontrast i
in Eq. 1 pushes all negatives away by encouraging
sim(Za

i , Z
v
j )j∈[0,n),j ̸=i to be close to 0, whereas FNS pulls

back false negatives to suppress their effects. The suppres-
sion intensity corresponds to the values of sim(Za

i , Z
a
j ) and

sim(Zv
i , Z

v
j ). In Eq. 3, the visual contrastive loss is calcu-

lated symmetrically. In practice, we calculate L1 distances
between the inter-modal contrastive matrix and intra-modal
adjacency matrices as shown in Fig. 3, so all pair-wise sim-
ilarities are considered. Such a regularization term yields a
parameter-free process so that we do not need to choose a
hard threshold to determine the real false negatives, as the
false negative effects can be adaptively regularized.

TNE: True Negatives Enhancement. To further reduce
the misleading effect of false negatives, we propose to en-
hance the contribution of true negatives by region-wise
comparison. As opponents, the impact of true negatives
and that of false negatives are relative, so if the role of true
negatives is raised, the role of false negatives would be sup-
pressed. To improve the effect of true negatives in audio-
visual learning, we turn back to its core concept, i.e., that
the sound source objects are different both audibly and vi-
sually between the true negatives. Therefore, it is straight-
forward to put a particular emphasis on the possible regions
of genuine sound-emitting objects.

Specifically, we localize the sound-source objects by
paired audio-visual samples, pop up their regional visual
features, and encourage those of true negative samples to

be pulled away. The process is called true negative en-
hancement (TNE). It is worth noting that similar regular-
izations have been mentioned but disregarded by previous
methods [8,21,29] because they did not distinguish the true
negatives and false negatives samples.

We show the paradigm of TNE in Fig. 5. Given an
audio-visual pair (ai, vi), we obtain its localization result
and use the localization map as a mask to extract the lo-
calized visual representation Zs

i ∈ Rd×h×w, where s indi-
cates it is sounding region visual representation. In other
words, Zs

i denotes the visual features that are aligned with
the paired audio features. Then, consider another arbitrary
audio-visual pair (aj , vj) which localizes visual features
Zs
j . If ai and aj are semantically different, i.e., aj is a true

negative of ai, then the Zs
i should be dissimilar to Zs

j . It
encourages the model to focus on different pixels so as to
mine discriminative visual features according to the audio
similarities. To leverage such a constraint in practice, we
regularize the audio adjacency matrix and the similarities
between the sounding region visual features. Formally, the
TNE regularization is:

LTNE =
1

b

b∑
j

Ldist(sim(Za
i , Z

a
j ), sim(Zs

i , Z
s
j )) (4)

FNS and TNE are two general mechanisms for multi-
modal contrastive learning. FNS adopts audio and visual
adjacency matrices to explore the potential false negatives
and suppress their misleading effects on the NCE loss. TNE
uses audio adjacency to discriminate the sound-source lo-
calization so the model tends to discover the genuine sound
sources. Both methods can be seamlessly integrated with
the existing contrastive learning framework as extra regu-
larization terms. Our final optimization objective for the
i-th sample pair is:

Li = Lcontrast i + αLFNS 1 + βLFNS 2 + γLTNE (5)
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Table 1. Quantitative results of the model trained with Flickr 10k and 144k. Note that ’EZ-VSL + OGL’ corresponds to the main results
reported in [21]. ’EZ-VSL’ indicates our reproduced results without OGL, which are not reported in [21]. We reproduce the results with
the trained weights and code provided by [21].

Train set Method Flickr CIoU(%) Flickr AUC(%) VGG-SS CIoU(%) VGG-SS AUC(%)

Flickr 10k

Attention10k [28] 43.60 44.90 - -
CoursetoFine [26] 52.20 49.60 - -

AVObject [1] 54.60 50.40 - -
LVS [8] 58.20 52.50 - -

EZ-VSL* [21] 62.24 54.74 19.86 30.96
Ours 84.33 63.26 35.27 38.00

EZ-VSL + OGL [21] 81.93 62.58 37.61 39.21
Ours + OGL 84.73 64.34 40.97 40.38

Flickr 144k

Attention10k [28] 66.00 55.80 - -
DMC [15] 67.10 56.80 - -
LVS [8] 69.90 57.30 - -

HardPos [29] 75.20 59.70 - -
EZ-VSL* [21] 72.69 58.70 30.27 35.92

Ours 78.71 59.33 33.93 37.29
EZ-VSL + OGL [21] 83.13 63.06 41.01 40.23

Ours + OGL 83.93 63.06 41.10 40.44

where α, β, γ are hyperparameters.

4. Experiments
4.1. Experimental Settings

Datasets We train our audio-visual localization model on
two datasets: Flickr SoundNet [6] and VGG-Sound [9].
Flickr SoundNet contains 2 million unconstrained videos
from Flickr. For a fair comparison with the existing meth-
ods [8, 20, 21, 29], we conduct the training on two subsets
of 10k and 144k paired samples from Flicker SoundNet.
VGG-Sound includes 200k video clips from 309 classes.
We also train on two subsets of 10k and 144k paired sam-
ples following the convention.

Localization performances are measured on four bench-
marks, Flickr [6], VGG-SS [9], Heard 110 and AVS-
Bench [38]. The Flickr test set has 250 audio-visual pairs
with manually labeled bounding boxes. VGG-SS is more
challenging with 5,000 audio-visual pairs over 220 cate-
gories. Heard 110 is another subset of VGG-Sound to test
the open-set learning ability. Its train set has 110 classes and
the val set has another disjoint 110 unheard/unseen classes.
Finally, AVSBench [38] is a recently proposed audio-visual
dataset with 5,356 videos over 23 classes. It provides pixel-
wise labels for fine-grained localization evaluation.

Implementation Details We implement our method with
PyTorch. The images are resized and randomly cropped
into 224× 224 resolution, together with random horizontal
flipping. The audio inputs are extracted from 3 seconds of
audio clips and converted into log spectrogram maps. We
also apply audio augmentation including Frequency mask
and Time mask [25]. For both visual and audio encoders,
we adopt ResNet18 [14] and the visual encoder is pre-
trained on ImageNet-1k [12]. The model is optimized for

30 epochs with Adam using a learning rate of 10−4 and a
weight decay of 10−4. To achieve a stable representation,
we warm up the network with only NCE loss for 3 epochs,
then integrate our regularization for the remaining epochs.

4.2. Comparison on Flickr-SoundNet and VGG-SS

Flickr-SoundNet We train our model on Flickr 10k and
144k and report performances in Table 1. FNAC achieves
superior performances over previous methods on both
Flickr and VGG-SS test sets. Notably, compared to pre-
vious state-of-the-art EZ-VSL [21] on the Flickr test set,
FNAC achieves a striking improvement of 22.09% CIoU
with 10k training samples and 6.02% CIoU with 144k train-
ing samples. When tested on the more challenging VGG-
SS, FNAC also outperforms EZ-VSL by 15.41% CIoU and
3.49% CIoU respectively. Finally, Object-Guided localiza-
tion (OGL) is a post-processing strategy that adopts pure
visual-based localization results to refine audio-visual lo-
calization. For a fair comparison, we integrate FNAC with
OGL to compare with EZ-VSL which also uses OGL. As
shown, FNAC also outperforms EZ-VSL in most cases.

VGG-SS Performance of the model trained on VGG-
Sound 10k and 144k is reported in Table 2. FNAC also
beats all previous methods with a clear margin. For exam-
ple, on the VGG-SS test set, we outperform EZ-VSL by
11.45% CIoU with 10k and 5.31% CIoU with 144k.

We highlight two results as demonstrated in Table 1 and
Table 2. First, FNAC achieves similar results on 10k and
144k training sets in both Flickr SoundNet and VGGSound,
which is not observed in previous models. We believe that
small-scale datasets (Flickr 10k, VGG-Sound 10k) have
fewer semantic classes and will encounter more false neg-
atives during training, so previous methods have substan-
tial performance gaps between the 10k and 144k training
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Table 2. Quantitative results of models trained with VGG-SS 10k and 144k.

Train set Method Flickr CIoU(%) Flickr AUC(%) VGG-SS CIoU(%) VGG-SS AUC(%)

VGGSound 10k

LVS [8] 61.80 53.60 - -
EZ-VSL* [21] 63.85 54.44 25.84 33.68

Ours 85.74 63.66 37.29 38.99
EZ-VSL + OGL [21] 78.71 61.53 38.71 39.80

Ours + OGL 82.13 63.64 40.69 40.42

VGGSound 144k

Attention10k [28] - - 18.50 30.20
DMC [15] - - 29.10 34.80

AVObject [1] - - 29.70 35.70
LVS [8] 73.50 59.00 34.40 38.20

HardPos [29] 76.80 59.20 34.60 38.00
EZ-VSL [21] 79.51 61.17 34.38 37.70

Ours 84.73 63.76 39.50 39.66
EZ-VSL + OGL [21] 83.94 63.60 38.85 39.54

Ours + OGL 85.14 64.30 41.85 40.80

Table 3. Quantitative results on Heard 110 and Unheard 110. For
a fair comparison, the results of EZ-VSL [21] and ours are inte-
grated with the OGL module.

Test Set Method CIoU(%) AUC(%)

Heard 110
LVS [8] 28.90 36.20

EZ-VSL [21] 37.25 38.97
Ours 39.54 39.83

Unheard 110
LVS [8] 26.30 34.70

EZ-VSL [21] 39.57 39.60
Ours 42.91 41.17

sets. It indicates that FNAC can effectively address the
false negative issue and has a strong ability for represen-
tation learning on small-scale datasets. Second, we show
cross-dataset evaluation results in both tables, i.e., train on
Flickr and test on VGG-SS or vice versa. FNAC achieves
strong results and outperforms existing methods, which val-
idates the cross-dataset generalization ability of FNAC. We
show qualitative localization results in Fig. 6.

4.3. Comparison on Heard 110 and AVSBench

Heard 110 To assess the generalization ability of FNAC
in unseen/unheard audiovisual scenes, we conduct an open
set experiment. We use the 70k samples covering 110 cate-
gories randomly sampled from VGGSound for training and
then evaluate the model on the same 110 heard categories
and another disjoint set with 110 unheard categories. As
shown in Table 3, FNAC considerably outperforms pre-
vious methods, especially on Unheard 110 (42.91% vs.
39.57% of CIoU), which demonstrates the generalization
ability of FNAC in unconstrained audio-visual data.

AVSBench AVSBench [38] is a newly proposed audio-
visual segmentation benchmark with pixel-level annota-
tions, which can be regarded as a fine-grained sound source
localization task and used to accurately evaluate the lo-
calization ability of models. We directly perform a zero-
shot evaluation on the AVSbench with metrics of mIoU and

Table 4. Zero-shot results on AVSBench S4 and MS3 [38]. All
models are pretrained on VGGSound-144k dataset.

Test set Method mIoU FScore

S4
LVS 23.69 .251

EZ-VSL 26.43 .292
Ours 27.15 .314

MS3
LVS 18.54 .174

EZ-VSL 21.36 .216
Ours 21.98 .225

Table 5. Analysis of each component of the proposed FNAC. aud
adj: audio adjacency matrix. img adj: image adjacency matrix.

FNS TNE Flickr CIoU(%) VGG-SS CIoU(%)aud adj img adj
77.91 33.93

✓ 79.91 35.85
✓ 81.92 36.58

✓ ✓ 84.33 36.92
✓ 81.12 36.04

✓ ✓ ✓ 85.74 37.29

F-Score in two settings, Single Sound Source Segmenta-
tion (S4) and Multiple Sound Source Segmentation (MS3),
without any fine-tuning. The results are reported in Table 4.
The proposed method achieves outstanding performance on
both S4 and MS3 settings, e.g., 27.15% and 21.98% mIoU
when trained on VGGSound 144k. These results on the
fine-grained localization benchmark validate the effective-
ness of the TNE, which enables the model to discriminate
authentic sound-source regions.

4.4. Ablation Analysis of FNAC

We propose different regularization terms to guide
audio-visual contrastive learning. In Table 5, we ablate each
component individually. All results are obtained following
the same hyperparameter setting on VGG-SS 10k and the
baseline is trained with only NCE loss. First, the audio ad-
jacency matrix and visual adjacency matrix are obtained in
FNS to suppress the false negatives. We show that each
adjacency matrix can improve the performances over the
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Figure 6. Visualization comparison on Flickr-SoundNet (left) and VGG-SS (right) test sets.

baseline, which indicates that potential false negatives can
be effectively suppressed in both audio and visual modal-
ities. By combining the two adjacency matrices together,
FNS achieves 84.33% CIoU on Flickr and 36.92% CIoU
on VGG-SS. Second, by only deploying TNE, we achieve
improved results over baseline (81.12% CIoU on Flickr and
36.04% CIoU on VGG-SS), indicating the effectiveness of
TNE in enhancing true negatives. Finally, the combination
of FNS and TNE achieves significant improvement over
the baseline, showing the effectiveness of FNAC. We refer
readers to supp. mat. for further ablation studies.

4.5. Mining the Potential False Negatives

In this section, we show quantitative and schematic anal-
ysis of the false negative mining ability of our method. In-
tuitively, a good audio-visual model should be able to gen-
erate similar feature representations for class matched sam-
ples. To validate this intuition, we construct a batch where
all samples belong to the same category, i.e., all false nega-
tives, and show the audio-visual similarity matrices of EZ-
VSL [21] and ours in Fig. 7. As shown in the left, EZ-
VSL only highlights the diagonal, since each audio feature
is only similar to the paired image feature while all others
are dissimilar despite all samples being from the same class.
Differently, the similarity distribution of our matrix is more
evenly spread as the majority of the samples are regarded
as similar. It indicates that FNAC has implicitly learned
semantically-aware features and clustered them in the la-
tent space, so false negatives will be effectively identified
as they are closer in terms of feature distance.

Further, we show quantitative results of audio-visual
similarities in Table 6 . When the batch contains all true
negatives, our average similarity score is lower than pre-
vious methods [8, 21]. When the batch contains all false
negatives, our average similarity score is higher. The mar-
gin between the two similarities demonstrates our ability to
distinguish false negatives and true negatives.

Figure 7. Cross-modal similarity matrix predicted by EZ-VSL
(left) and ours (right) when all samples in the batch belong to the
same category, namely, they are false negatives of each other. All
values are normalized between 0 to 1.

Table 6. Audio-visual similarities with different data. TN: all sam-
ples in the batch belong to different categories. FN: all samples in
the batch belong to the same category.

Method TN ↓ FN ↑
LVS 0.4484 0.5102
EZ-VSl 0.5858 0.5938
Ours 0.3812 0.6554

5. Conclusion

In this paper, we propose a simple yet effective strategy
named FNAC to deal with the false negative issue in audio-
visual sound source localization. We propose two comple-
mentary strategies to suppress false negatives (FNS) and
enhance true negatives (TNE). The intra-modal adjacency
matrices of audio and visual are generated to identify false
negatives. Then two regularization terms are seamlessly
incorporated with contrastive learning, which enable the
model to learn semantic-aware features from audio-visual
pairs. We show that FNAC can effectively mitigate the false
negative issues and achieve state-of-the-art performance on
several audio-visual localization benchmarks. We hope that
our method can facilitate future research in audio-visual
learning and other multi-modal tasks.
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