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Abstract

Because the subtle differences between the different
sub-categories of common visual categories such as bird
species, fine-grained classification has been seen as a chal-
lenging task for many years. Most previous works focus
towards the features in the single discriminative region iso-
latedly, while neglect the connection between the different
discriminative regions in the whole image. However, the
relationship between different discriminative regions con-
tains rich posture information and by adding the posture
information, model can learn the behavior of the object
which attribute to improve the classification performance.
In this paper, we propose a novel fine-grained framework
named PMRC (posture mining and reverse cross-entropy),
which is able to combine with different backbones to good
effect. In PMRC, we use the Deep Navigator to generate the
discriminative regions from the images, and then use them
to construct the graph. We aggregate the graph by mes-
sage passing and get the classification results. Specifically,
in order to force PMRC to learn how to mine the posture
information, we design a novel training paradigm, which
makes the Deep Navigator and message passing communi-
cate and train together. In addition, we propose the reverse
cross-entropy (RCE) and demomenstate that compared to
the cross-entropy (CE), RCE can not only promote the ac-
curracy of our model but also generalize to promote the ac-
curacy of other kinds of fine-grained classification models.
Experimental results on benchmark datasets confirm that
PMRC can achieve state-of-the-art.

1. Introduction

Fine-grained clssification tasks have been seen as quite
challenging tasks because the visual differences between
the fine-grained classification datasets are hard to recog-
nize. For ordinary people, we can do the normal classifi-
cation easily, but as for the fine-grained classification, only
experts with professional knowledge can do it. Therefore,
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Figure 1. The overview of PMRC. Firstly, we use the Deep Navi-
gator to generate the discriminative regions. Then we construct the
graph. Finally, we aggregate the graph through message passing
and classify the graph.

compared to category-level classification, fine-grained clas-
sification is more chanllenging.

There have been many predecessors on fine-grained clas-
sification. Works in [2,4,7,12,16,25,31,45,48] can achieve
good performance on fine-grained classification. However,
their training and testing phase both need bounding box an-
notations which cost a lot of manual labour and are always
error-prone. Then works in [3, 20] develp the methods and
use the annotations only in training phase. More recent
works develop methods that don’t need bounding box anno-
tations in training phase or testing phase [18, 22, 26, 47]. It
is a general idea to create graph using local regions. How-
ever, related existing method [44, 49] is not easy to trans-
plant, and it is difficult to perceive discriminative regions
with correct context information and the relationship be-
tween regions. We propose a method that can be conve-
niently combined with different backbones, and propose a
novel learning strategy to ensure that the model can per-
ceive the correct discriminative regions and their relation-
ships (posture information). In addition, our RCE is simple
to implement and has better performance than CE.

The framework we propose, which we term PMRC (pos-
ture mining and RCE), use the Deep Navigator and graph
neural network to mine the posture information from the
fine-grained images and use RCE to promote the perfor-
mance. PMRC is able to combine with different backbones
to good effect. We design the loss to make PMRC learn
the way to mine the posture information from the images,
which include guide the Deep Navigator to search the dis-
criminative regions and guide the message passing module
to percept the posture information based on the discrimina-
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tive regions. Besides, the reason we use RCE instead of CE
is that although CE can be seen as an appropriate loss func-
tion for the normal classification, in training phase, for each
sample, it focuses on completing the correct classification
as much as possible. In network learning phase, it only con-
centrates on improving the score of positive labels output
by softmax layer, while ignoring the information contained
in negative labels. Because of the characteristics of fine-
grained classification, negative labels which contain sub-
tle inter-class difference information are very significant.
Compared with CE, RCE learns the inter-class difference
information by reversing the label score of softmax output
layer, so that it has a better effect on fine-grained classifica-
tion. Specifically, our PMRC has three main steps (see in
Figure. 1).

The main contributions of this paper are as follows: (1)
We propose a simple framework to mine the posture infor-
mation in fine-grained classification images, our framework
is able to combine easily with different backbones to good
effect. (2) We design a novel learning strategy. For the
posture mining part, the loss of the Deep Navigator and
the loss of message passing communicate with each other
to make the model learn how to mine the posture infor-
mation. For the classification part, we use RCE loss func-
tion which can effectively learn the inter-class differences of
the samples. (3) PMRC can be trained end-to-end without
bounding-box/part annotations. We achieve state-of-the-art
on commonly used benchmark.

2. Related Work

2.1. Fine-grained classification

The previous studies on fine-grained data can be di-
vided into three types according to the use of the supervised
bounding box labels. The first type is the earliest work,
which is fully supervised and needs to use bounding box an-
notations in the whole phase of training and testing. Berg et
al. [2] learned large set of discriminative intermediate-level
feature to achieve good performance on bird species identi-
fication and face verification. The second method is devel-
oped from the fully supervised method. Branson et al. [3]
proposed a graph-based clustering algorithm to learn a com-
pact pose normalization space. This method only needs to
use all the supervised information during training. Diao et
al. [8] explored a unified and strong meta-framework for
fine-grained visual classification, but still need extra train-
ing data. The third method does not need to use extra train-
ing data at any stage of training and testing. Yang et al. [47]
proposed navigator-teacher-scrutinizer without extra train-
ing data. Zhu et al. [51] proposed a dual cross-attention
learning algorithm to coordinate with self-attention learn-
ing. PIM [6] can be used as a plug-in, but the improve-
ment in accuracy is not high enough. GCL [44] extracted

graph from image, but the pipeline is complicated and not
easy to transplant. Our method can automatically mine ex-
tra data (posture information) only with image-level anno-
tations, and can be transplanted on different backbones.

2.2. Graph-based Classification

Graph neural network can infer and learn from unstruc-
tured data. It is widely used in social networks [10], recom-
mendation systems [42], knowledge graph [36], and other
fields. Recent studies show that nodes can be selected from
images or videos to build graph neural networks. Yan et
al. [46] constructed a spatio-temporal graph to realize pose
estimation and behavior classification of videos. For fine-
grained classification, it is a general idea to create graph us-
ing local regions. [44] and [49] extracted graph from image.
But they are not easy to transplant. We propose a simple
framework that can be conveniently combined with differ-
ent backbones, and propose a novel learning strategy to en-
sure that the model can perceive the correct discriminative
regions and their relationships (posture information).

3. Methodology
3.1. Network Architecture

The network architecture is shown in Figure. 2. The in-
put of our method is an image. We obtain the feature maps
from the backbone as the shallow feature of the image. The
Deep Navigator generates the discriminative regions of the
object from the image according to the shallow feature ex-
pression, which can be used as the unique attributes of the
object. We construct the graph structure of the object ac-
cording to the position of the disciminative regions in the
image. Further, we extract features from the discrimina-
tive regions, and correspond these features with the node
features of the graph structure to form a complete graph
data. Graph data not only contains abstract feature infor-
mation, but also contains the behavior information of the
object which is helpful to improve the accuracy of classifi-
cation. We apply message passing to graph data, fuse the
association between nodes, and further extract the features
of nodes. Finally, we calculate the average feature expres-
sion of all nodes according to the graph structure, and use
the classifier to classify the average features of nodes. Addi-
tionally, our method can be easily combined with different
backbones and yield good classification performance.

3.2. Deep Navigator and Graph Construction

For fine-grained image classification, the differences be-
tween object classes are usually tiny, which makes the label-
ing of object feature areas need more knowledge of experts.
Therefore, we hope to find a weakly supervised method to
reduce the annotation cost of datasets and make the model
automatically learn some unique attributes of various ob-
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Figure 2. The architecture of PMRC. The PMRC include the Deep Navigator module to generate discriminative regions, the Construct
graph module to generate the posture information and the message passing module to fuse the posture information.

jects. Deep Navigator is a lightweight object detection head.
We design three different forms of grids in the image to de-
tect discriminative regions with different scales. We use a
top-down architecture to detect multi-scale regions through
horizontal connection, and use convolutional networks to
calculate the hierarchical expression of features layer by
layer. Finally, we can get the feature maps at three scales.
In the large-scale feature maps, anchors correspond to small
regions, and in the small-scale feature maps, anchors corre-
spond to large regions. The architecture of the Deep Navi-
gator is shown in Figure. 2 lower left. The supervised signal
comes from the discrminative features through the message
passing. The design makes the discriminative regions de-
tected by the Deep Navigator corresponds to the behavior
of the object. The implementation details of Deep Naviga-
tor can be found in supplementary material section 2.

We use the discrimitavie regions generated by the Deep
Navigator to construct the graph of the object. The graph

data of the object should be a complete graph. We regard
each discriminative region as a node in the graph data, and
map the distance between each region into the weight of the
edge. We use Gaussian Radial Basis Function(RBF) to ex-
press the distance between regions as the weight of edges.
The construction process of the graph structure is shown in
Figure. 2 lower right. For the features of nodes, we can
directly use bilinear interpolation sampling on the feature
maps of the backbone to obtain the features of the discrim-
inant region, and compress the features of the discriminant
region into vectors through global average pooling. The im-
plementation details of graph construction can be found in
supplementary material section 3.

3.3. Message Passing and Graph Classification

The graph of an object contains two types of informa-
tion. One is the semantic features of the discriminative re-
gions. The other is the spatial association between different
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discriminative regions, which is used to express the posture
and behavior of objects. We fuse two kinds of information
in graph based on message passing, and then classify the
graph. We define message passing as:

h
(l+1)
N(i)

= aggregate({wji · h(l)
j ,∀j ∈ N(i)}) (1)

h
(l+1)
i = sigmoid(W1 · concat(h(l)

i , h
(l+1)
N(i)

)) (2)

h
(l+1)
i = h

(l+1)
i /

∥∥∥h(l+1)
i

∥∥∥
2

(3)

where N(·) represents the neighbor of the acquisition node,
aggregate(·) represents the aggregation mode of the mes-
sage, concat(·) represents the concate of tensors, and h(l)

represents the node features of the layer l. W1 is a learnable
parameter in message passing. Through message passing,
we classify the whole graph. Whole graph classification
includes graph aggregation and classification of the whole
graph. The process can be defined as:

score = W2 · (
1

|V |
∑
v∈V

hv) (4)

where score represents the score of graph data in category,
W2 represents a learnable parameter in the whole graph
classification stage, and V is the node set of graph.

3.4. Loss Function and Optimization

First, we record the M discriminative regions by the
Deep Navigator as {R1, ..., RM} and the informative-
ness corresponding to the M discriminative regions as
{I1, ..., IM}. We use the posture and behavior information
of the object to guide the Deep Navigator learning. Con-
sidering the graph after message passing, we record the fea-
tures of nodes as {h1, ..., hM}. The global average pool-
ing and sigmoid function are used to convert the features of
each node into a value (0-1). We name this value as node
confidence, which is used to reflect the probability of the
existence of the discriminative regions. We record the node
confidence as {C1, ..., CM}, and construct the loss function
of the Deep Navigator as:

Lnavigator =
∑

(m,n)|Cm<Cn

max{1− (In − Im), 0} (5)

where Lnavigator indicates that the higher the node con-
fidence has, the higher informativeness the corresponding
discriminative regions have. Lnavigator helps the model
take the posture and behavior information of the object
as the supervised signal of the Deep Navigator in training
stage.

In order to guide the model to correspond node features,
we define CE loss for each discriminative region and aggre-
gate it into message passing loss. The classifier in the whole

graph classification stage is used to classify the nodes, and
the classification score of the nodes is recorded as s. The
node classification score is calculated as:

{si}Mi=1 = {W2 · hi}Mi=1 (6)

We define the loss of message passing stage as:

Lmessage = −
M∑
i=1

log(
exp(si[label])∑classnum

j=1 exp(si[j])
) (7)

where label is the real category annotation of the samples
and classnum is the number of categories.

Lnavigator uses the posture and behavior information of
the object to guide the Deep Navigator to search the dis-
criminative regions. Lmessage based on discriminative re-
gions guides the massage passing model to perceive the pos-
ture and behavior information of the object. The two loss
functions promote each other and train together, and make
the model learn to mine the posture and behavior informa-
tion of the object from the image.

Node features lack the global information. In order to
add more context information in the process of model rea-
soning, we obtain the output by backbone, map the features
into the scores of categories, and record them as raw. We
define the CE loss for the score of features as:

Lbackbone = −log(
exp(raw[label])∑classnum

j=1 exp(raw[j]))
(8)

where Lbackbone improves the perception ability of the
model for global information.

According to the final network classification results
score, we define RCE for the whole graph classification
phase of the training. We invert the network classification
results and calculate the probability distribution as:

score′ =
exp(−score)∑classnum

j=1 exp(−score[j])
(9)

In fact, RCE is simple and reasonable. We reverse the
one-hot code of the real category annotations and record
the reverse code as Rlabel. In the coding vector, the corre-
sponding values of the real category are 0, the correspond-
ing values of other categories are 1/(classnum− 1), and
the CE loss after inversion is:

Lgraph = −RT
labellog(score

′) (10)

Based on the guidance of Lgraph, in the reverse results
score′ of the model, the recognition probability of the cor-
rect categories will decrease and the probability of other
categories will increase. From the perspective of a single
sample, the loss function forces the model to output prob-
ability distribution of other categories balanced. From the
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perspective of a large number of samples, the probability
of correct categories output by the model will also be bal-
anced. This property can help the model reduce intra-class
differences and increase inter-class differences, so as to im-
prove the effects of the model on fine-grained classification.

Then, we aggregate these losses and train the model with
total loss:

L = αLbackbone + βLnavigator + γLmessage + θLgraph

(11)
where α, β, γ, θ are used for numerical balance of various
losses. Training our method only needs category annota-
tions. We itemize the training steps in supplementary mate-
rial section4.

4. Datasets and Experiments Configurations
4.1. Datasets

Our experiment datasets include: CUB-200-2011 [39],
Stanford Cars [21], FGVC Aircraft [29], Stanford Dogs
[19].

CUB-200-2011 It contains 11,788 images of 200 sub-
categories belonging to birds, 5,994 for training and 5,794
for testing. Each image has detailed annotations: 1 subcat-
egory label, 15 part locations, 312 binary attributes and 1
bounding box. It is generally considered as one of the most
competitive datasets since each species has only 30 images
for training.

Stanford Cars It consists of 196 classes of cars with a
total of 16,185 images taken from the rear. The data is di-
vided into almost a 50-50 train/test split with 8,144 training
images and 8,041 testing images. The classes are typically
at the level of production year and model.

FGVC Aircraft It contains 10,200 images of aircraft,
with 100 images for each of 102 different aircraft model
variants, most of which are airplanes. The (main) aircraft
in each image is annotated with a tight bounding box and a
hierarchical airplane model label.

Stanford Dogs It contains 20,580 images of 120 classes
of dogs from around the world, which are divided into
12,000 images for training and 8,580 images for testing.

4.2. Experiments Configurations

We use the Top-1 accuracy to evaluate model’s perfor-
mance. For data preprocessing and hyperparameter settings
see supplementary material section5.

In ablation experiment, we set the number of multiple
discriminative regions as {3,4,5,6,7,8}. We compare the
recognition results and reasoning speed for the graph clas-
sification between message passing network and concating
the node features directly. We compare the recognition re-
sults between using RCE and using CE.

We conduct a large number of model comparison exper-
iments. We applied our method to four datasets: CUB-200-

2011, Stanford Cars, Stanford Dogs, FGVC Aircraft, and
obtain the recognition results. We compare our method with
the best weakly supervised models. In addition, although
we do not use any bounding box or part annotations, we still
compare with methods which depend on those annotations.

Finally, we conduct more in-depth experiments on RCE.
We test the training results of RCE and CE on four datasets.
By comparing the training results of a large number of mod-
els, the effectiveness of RCE is verified.

5. Results and Discussion

5.1. Ablation study

We analyze the impact of message passing and RCE on
the overall architecture. We set the number of multiple
discriminative regions as {3,4,5,6,7,8}. We compare the
recognition results and reasoning speed for the graph clas-
sification between message passing network and concating
the node features directly. And we also compare the results
between using RCE and using CE.

Table 1. Ablation study with Top-1 accuracy of Message Passing
and RCE on CUB-200-2011(%), backbone: ResNet50.

Regions number 3 4 5 6 7 8
Message(RCE) 90.9 91.0 91.3 91.8 91.5 91.4
Concat(RCE) 88.6 88.9 89.3 89.1 89.0 89.1
Message(CE) 89.2 89.4 90.1 90.6 90.4 90.4
Concat(CE) 87.3 87.4 87.6 87.6 87.3 87.5

Table 2. Reasoning Speed and Accuracy Test on CUB-200-2011
(Top-1 Accuracy)

Method backbone Speed (fps) Accuracy(%)
ResNet50 (RCE) - 91 85.7
ResNet50 (CE) - 91 84.5

Message+6 Regions (RCE) ResNet50 85 91.8
Message+7 Regions (RCE) ResNet50 84 91.5
Message+6 Regions (CE) ResNet50 85 90.6
Message+7 Regions (CE) ResNet50 84 90.4

SwinTrans (RCE) - 49 91.2
SwinTrans (CE) - 49 90.3

Message+6 Regions (RCE) SwinTrans 45 94.3
Message+6 Regions (CE) SwinTrans 45 93.5

As can be seen from Table 1, the overall results of us-
ing the message passing mechanism is better than that of
directly concating the discriminative region features. Mes-
sage passing integrates the behavior information of the ob-
ject, which improves the recognition effect of the model on
fine-grained images. In addition, the model trained with
RCE is also better than the model trained with CE. RCE
forces the model to further learn the inter-class differences
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of fine-grained objects, and improves the recognition ability
of the model for difficult classification objects.

We test the reasoning speed of PMRC. The results are
shown in Table 2. Based on Table 1, we select the first two
settings with the highest accuracy: 6 regions and 7 regions,
and compare the reasoning speed and accuracy. It can be
seen from Table 2 that PMRC only adds a small amount of
extra time overhead to the backbone, the accuracy is much
higher than its backbone. Importantly, PMRC (SwinTrans-
former) trained only with CE has achieved state-of-the-art
on CUB-200-2011 (compare with Table 3).

The results of ablation experiments on other datasets and
the results of different loss ratios (α, β, γ, θ) can be found
in supplementary material section6.

5.2. Comparisons with existing approaches

Our comparisons focus on the weakly supervised meth-
ods because the proposed model only utilizes image-level
annotations. Table 3 shows the performance of different
methods on CUB-200-2011, Stanford Cars, FGVC Aircraft,
Stanford Dogs. In Table IV from top to bottom, the meth-
ods are separated into four groups, which are (1) supervised
methods, (2) recent weakly supervised methods, (3) back-
bones, (4) our method PMRC.

Strong supervised methods rely on the object and even
part annotations to achieve comparable results. However,
using the object or part annotations limits the performance
due to the fact that human annotations only give the coordi-
nates of important parts rather than the accurate discrimina-
tive region location. Weakly supervised methods gradually
exceed the strong supervised methods though picking out
discriminative regions. PMRC outperforms the strong su-
pervised methods such as DATL and MetaFormer, showing
the importance of PMRC for discriminative feature learn-
ing. PMRC outperforms the weakly supervised methods
such as PIM and DCAL. This shows that we can make
the recognition result surpass the latest method based on
vision transformer by introducing posture information to
fine-grained tasks. Compared with API net, PMRC does
not need to build image pairs based on datasets. PMRC
achieves better classification effect by learning the posture
information in a single image. GCL tries to learn the asso-
ciation of different regions in the image and achieves good
recognition effect. PMRC further mines the posture in-
formation hidden in the image, and uses RCE to improve
the ability of the model to learn the inter-class differences.
Therefore, the recognition effect of PMRC is obviously bet-
ter than GCL. NTS-Net only considers the prediction of dis-
criminative regions and ignores the correlation between dif-
ferent regions. Therefore, the recognition effect of PMRC is
better than NTS-Net. PMRC has achieved excellent recog-
nition results on four widely used datasets.

Separated from the complex backbone, the method of

Figure 3. Comparison of training effects between CE and RCE.
We compare the effectiveness of CE and RCE on the four datasets
(CUB-200-2011, Stanford Cars, Stanford Dogs, FGVC Aircraft).
After every 50 epochs, we test Top-1 accuracy on the test datasets.

learning the posture information from images and using
RCE to increase the differences of heterogeneous objects
can be widely applied to the tasks related to fine-grained
classification. PMRC can be easily combined with differ-
ent backbones and get good fine-grained recognition per-
formance.

5.3. RCE for Fine-grained Classification

We have verified the excellent performance of RCE in
fine-grained classification through a large number of exper-
iments. In Figure. 3, we visualize the training effects of the
PMRC on the four datasets (CUB-200-2011, Stanford Cars,
Stanford Dogs, FGVC Aircraft) to compare the effective-
ness of CE and RCE. We set the model to train 500 epochs.
After every 50 epochs, we use the model for testing, and
record the classification accuracy of each category. It can
be clearly seen in Figure. 3 that the minimum accuracy line
of CE is always under the counterpart of RCE in all the
four datasets, which means that for the category which is
the most difficult to classify, the effectiveness of using RCE
is better than use CE. And the maximum accuracy line of
RCE is always above the counterpart of CE, which means
that for the category which is not difficult to classify, the
effective of using RCE is better than CE. As for the over-
all accuracy, RCE is also better than CE. So, we can draw a
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Table 3. Comparison of Different Methods on CUB-200-2011, Stanford Cars, FGVC Aircraft and Stanford Dogs. (Top-1 Accuracy(%))

Method Extra Supervision CUB-200-2011 Stanford Cars FGVC Aircraft Stanford Dogs speed params
MetaFormer [8] ✓ 92.9 95.4 92.8 - - -

DATL [17] ✓ 91.2 94.5 93.1 92.2 - -
TA-FGVC [23] ✓ 88.1 - - 88.9 - -
PA-CNN [20] ✓ 85.4 92.8 - - - -

BoT [43] ✓ - 92.5 88.4 - - -
FCAN [27] ✓ 84.3 91.3 - 88.9 - -

MG-CNN [40] ✓ 85.1 - 86.6 - - -
PIM [6] × 92.8 - - - - -

DCAL [51] × 92.0 95.3 93.3 - - -
Vit-SAC [9] × 91.8 94.5 93.1 - - -

CAP [1] × 91.8 - 94.9 - - -
TransFG [13] × 91.7 94.8 - 92.3 - -

FFVT [41] × 91.6 - - 91.5 - -
CAL [33] × 90.6 95.5 94.2 - - -

Inception-v4 [32] × - 95.3 - - - -
API-Net [52] × 90.0 95.3 - 90.3 - -

DenseNet161+MM+FRL [50] × 88.5 95.2 - - - -
GCL [44] × 88.3 95.1 93.2 90.5 - -

NTS-Net [47] × 87.5 91.4 93.9 - - -
SwinTransformer [28] × 90.3 92.7 90.6 91.1 49fps 88M

ResNet50 [24] × 84.5 88.6 87.2 84.7 91fps 25M
DenseNet161 [15] × 86.6 90.4 90.9 88.3 38fps 29M

VGG16 [37] × 77.8 83.3 85.3 81.6 68fps 138M
Our PMRC (SwinTransformer) × 94.3 96.9 96.7 95.2 45fps 89M

Our PMRC (ResNet50) × 91.8 95.4 94.8 93.1 85fps 26M
Our PMRC (DenseNet101) × 91.3 95.2 94.0 92.7 36fps 30M

Our PMRC (VGG16) × 86.3 89.1 91.3 89.9 63fps 139M

Table 4. Comparison of CE and RCE in previous fine-grained
tasks with the increment of Top-1 accuracy(%).

Method Extra.S CUB Cars Aircraft Dogs
ResNet50 [14] × +1.23 +0.62 +0.54 +1.16

DenseNet161 [15] × +0.37 +0.70 +1.09 +0.71
Xception [5] × +1.17 +1.52 +1.19 +1.60

Incep.V3 [38] × +1.11 +1.27 +1.73 +1.82
MobileNetV2 [35] × +1.13 +1.69 +1.04 +1.28

B-CNN [26] × +1.68 +0.97 +0.99 +1.42
NTS-Net [47] × +1.72 +1.60 +2.12 +1.45

DATL [17] ✓ -0.28 +0.27 -0.19 +0.11
DAT [30] ✓ +1.20 +1.25 +1.53 +1.25

TResNet-L-V2 [34] ✓ -0.07 +0.42 +0.18 +0.36
SAM [11] ✓ +1.12 +1.68 +1.96 +1.65

MG-CNN [40] ✓ +1.62 +1.28 +1.02 +1.41

conclusion that, for fine-grained classification, RCE is more
suitable compared to CE. Besides, we visualize the embed-
ding (learned from CE and RCE, respectively) with t-sne in
supplementary material section7.

We use RCE to the fine-grained classification models and
test the recognition effect. Record the change of Top-1 ac-
curacy compared with CE training, see Table 4. From Table
4, it can be seen that RCE improves the test performance of
various algorithms on four datasets as a whole. There are
only a few cases where the recognition results decline, but

the degree of decline is very small compared with the de-
gree of improvement. Therefore, we can believe that RCE
can maintain or improve the recognition effect of these al-
gorithms. On the four benchmark datasets, a large num-
ber of algorithms have improved their performance, which
proves that RCE has good generalization. Therefore, for
fine-grained image classification tasks, we can use RCE as
a simple and practical loss function.

5.4. Discussion of Posture Mining

For fine-grained image classification, it is meaningful for
us to mine posture information in images. It can be ex-
plained from the following view:

It is not comprehensive to simply consider the features
of discriminative regions. For example, for the fine-grained
classification of animals, consider a common phenomenon:
the hair on the head of one kind of animal is very similar
to the abdominal hair of another kind of animal. Suppose
that we get a region in which the content is hair, if there is
no posture information from space, the model cannot dis-
tinguish whether it is head hair or abdomen hair, which is
easy to cause errors in the classification results of objects. If
we introduce posture information, the model can accurately
distinguish head hair from abdominal hair, which will fur-
ther improve the ability of the model to perceive the differ-
ences between different categories. Therefore, the mining
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Figure 4. Based on four datasets, the visualization of the discriminative regions and posture. The first row to the fourth row correspond
to CUB-200-2011, Stanford Cars, FGVC Aircraft, Stanford Dogs. Bounding boxes represent the discriminative regions of the object, and
graph represents the posture of the object.

of posture information is meaningful to image classifica-
tion.

For this view, we visualize the discriminative regions and
posture information of four datasets, as shown in Figure. 4.
PMRC can extract discriminative regions from the image
and roughly estimate the posture information of the object.
Based on posture information, we can get a complete ex-
pression with spatial context information by using message
passing and fusing the features of discriminative regions.
For birds and dogs, their posture information describes the
relationship between head, abdomen and tail. For cars and
aircrafts, their posture information comes from their me-
chanical structure.

Posture information is essentially the spatial relationship
between discriminative regions. The posture information is
useful, because in the process of PMRC learning the posture
information, it can promote the model to capture the correct
context information, so as to obtain the correct discrimi-
nant region closely related to the object. This is an adap-
tive detection of discriminant regions. Existing methods
do not attempt to learn posture information, which leads to
discriminative regions found by existing methods that may
contain useless contextual information. Therefore, PMRC
always has excellent performance by combining with dif-

ferent backbones.

6. Conclusion

In this paper, we propose a novel method for fine-
grained classification by introducing the posture informa-
tion. PMRC is a framework that can be combined with
different backbones and is trained by weakly supervised
signals. We claim three major contributions. First, we
propose a simple module to mine the posture information,
the module is able to combine conveniently with existing
backbones. Second, we design a novel learning strategy to
force PMRC to learn how to mine the posture information.
Third, we demonstrate that compared to using traditional
CE loss, RCE loss is more suitable to fine-grained classi-
fication tasks. Combining the above approaches produces
PMRC which achieve state-of-the-art on four benchmark
datasets.
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