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Abstract

Synthesizing high-fidelity complex images from text is
challenging. Based on large pretraining, the autoregres-
sive and diffusion models can synthesize photo-realistic im-
ages. Although these large models have shown notable
progress, there remain three flaws. 1) These models re-
quire tremendous training data and parameters to achieve
good performance. 2) The multi-step generation design
slows the image synthesis process heavily. 3) The synthe-
sized visual features are challenging to control and require
delicately designed prompts. To enable high-quality, effi-
cient, fast, and controllable text-to-image synthesis, we pro-
pose Generative Adversarial CLIPs, namely GALIP. GALIP
leverages the powerful pretrained CLIP model both in the
discriminator and generator. Specifically, we propose a
CLIP-based discriminator. The complex scene understand-
ing ability of CLIP enables the discriminator to accurately
assess the image quality. Furthermore, we propose a CLIP-
empowered generator that induces the visual concepts from
CLIP through bridge features and prompts. The CLIP-
integrated generator and discriminator boost training ef-
ficiency, and as a result, our model only requires about 3%
training data and 6% learnable parameters, achieving com-
parable results to large pretrained autoregressive and diffu-
sion models. Moreover, our model achieves ∼120×faster
synthesis speed and inherits the smooth latent space from
GAN. The extensive experimental results demonstrate the
excellent performance of our GALIP. Code is available at
https://github.com/tobran/GALIP.

1. Introduction
Over the last few years, we have witnessed the great suc-

cess of generative models for various applications [4, 47].
Among them, text-to-image synthesis [3, 5, 16, 19–22, 26,
29, 30, 34, 43, 48, 50–53, 60] is one of the most appealing
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Figure 1. (a) Existing text-to-image GANs conduct adversarial
training from scratch. (b) Our proposed GALIP conducts adver-
sarial training based on the integrated CLIP model.

applications. It generates high-fidelity images according to
given language guidance. Owing to the convenience of lan-
guage for users, text-to-image synthesis has attracted many
researchers and has become an active research area.

Based on a large scale of data collections, model size,
and pretraining, recently proposed large pretrained autore-
gressive and diffusion models, e.g., DALL-E [34] and
LDM [36], show the impressive generative ability to syn-
thesize complex scenes and outperform the previous text-to-
image GANs significantly. Although these large pretrained
generative models have achieved significant advances, they
still suffer from three flaws. First, these models require
tremendous training data and parameters for pretraining.
The large data and model size brings an extremely high
computing budget and hardware requirements, making it
inaccessible to many researchers and users. Second, the
generation of large models is much slower than GANs.
The token-by-token generation and progressive denoising
require hundreds of inference steps and make the generated
results lag the language inputs seriously. Third, there is no
intuitive smooth latent space as GANs, which maps mean-
ingful visual attributes to the latent vector. The multi-step
generation design breaks the synthesis process and scatters
the meaningful latent space. It makes the synthesis process
require delicately designed prompts to control.
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To address the above limitations, we rethink Generative
Adversarial Networks (GAN). GANs are much faster than
autoregressive and diffusion models and have smooth latent
space, which enables more controllable synthesis. How-
ever, GAN models are known for potentially unstable train-
ing and less diversity in the generation [7]. It makes current
text-to-image GANs suffer from unsatisfied synthesis qual-
ity under complex scenes.

In this work, we introduce the pretrained CLIP [31] into
text-to-image GANs. The large pretraining of CLIP brings
two advantages. First, it enhances the complex scene un-
derstanding ability. The pretraining dataset has many com-
plex images under different scenes. Armed with the Vision
Transformer (ViT) [9], the image encoder can extract in-
formative and meaningful visual features from complex im-
ages to align the corresponding text descriptions after ade-
quate pretraining. Second, the large pretraining dataset also
enables excellent domain generalization ability. It contains
various kinds of images, e.g., photos, drawings, cartoons,
and sketches, collected from a variety of publicly available
sources. The various images make the CLIP model can map
different kinds of images to the shared concepts and en-
able impressive domain generalization and zero-shot trans-
fer ability. These two advantages of CLIP, complex scene
understanding and domain generalization ability, motivate
us to build a more powerful text-to-image model.

We propose a novel text-to-image generation framework
named Generative Adversarial CLIPs (GALIP). As shown
in Figure 1, the GALIP integrates the CLIP model [31] in
both the discriminator and generator. To be specific, we pro-
pose the CLIP-based discriminator and CLIP-empowered
generator. The CLIP-based discriminator inherits the com-
plex scene understanding ability of CLIP [31]. It is com-
posed of a frozen ViT-based CLIP image encoder (CLIP-
ViT) and a learnable mate-discriminator (Mate-D). The
Mate-D is mated to the CLIP-ViT for adversarial training.
To retain the knowledge of complex scene understanding
in the CLIP-ViT, we freeze its weights and collect the pre-
dicted CLIP image features from different layers. Then,
the Mate-D further extracts informative visual features from
collected CLIP features to distinguish the synthesized and
real images. Based on the complex scene understanding
ability of CLIP-ViT and the continuous analysis of Mate-
D, the CLIP-based discriminator can assess the quality of
generated complex images more accurately.

Furthermore, we propose the CLIP-empowered genera-
tor, which exerts the domain generalization ability of CLIP
[31]. It is hard for the generator to synthesize complex im-
ages directly. Some works employ sketch [11] and lay-
out [21, 23] as bridge domains to alleviate the difficulty.
However, such a design requires additional labeled data.
Different from these works, the excellent domain general-
ization of CLIP [31] motivates us that there may be an im-

plicit bridge domain, which is easier to synthesize but can
be mapped to the same visual concepts through the CLIP-
ViT. Thus, we design the CLIP-empowered generator. It
is composed of a frozen CLIP-ViT and a learnable mate-
generator (Mate-G). The Mate-G first predicts the implicit
bridge features from text and noise. Then the bridge feature
will be mapped to the visual concepts through CLIP-ViT.
Furthermore, we add some text-conditioned prompts to the
CLIP-ViT for task adaptation. The predicted visual con-
cepts close the gap between text features and target images
which enhances the complex image synthesis ability.

Overall, our contributions can be summarized as follows:
• We propose an efficient, fast, and more controllable

model for text-to-image synthesis that can synthesize
high-quality complex images.

• We propose the CLIP-based discriminator, which as-
sesses the quality of complex images more accurately.

• We propose the CLIP-empowered generator, which syn-
thesizes images based on text features and predicted CLIP
visual features.

• Extensive experiments demonstrate that the proposed
GALIP can achieve comparable performance with large
pertaining models based on significantly smaller compu-
tational costs.

2. Related Work
Text-to-Image GANs. GAN-INT-CLS [35] first adopted
conditional GANs to synthesize images from text descrip-
tions. To enable higher resolution synthesis, the Stack-
GAN [57, 58], AttnGAN [50], and DM-GAN [60] stacks
multiple generators and discriminators. Tao et al. [44]
proposed a simpler yet effective text-to-image framework
called DF-GAN that enables one-stage high-resolution gen-
eration. LAFITE [59] introduces CLIP text-image con-
trastive loss for text-to-image training and shows large im-
provements on CC3M [41].
Text-to-Image Large Models. Large pretrained autore-
gressive and diffusion models have shown impressive
performance on text-to-image synthesis. DALL-E [34],
CogView [7], and M6 [24] leverage VQ-VAE [45] or VQ-
GAN [10] to tokenize the images into discrete image to-
kens. Then they take the word tokens and image tokens to-
gether to pre-train a large unidirectional transformer for an
autoregressive generation. Parti [54] proposes a sequence-
to-sequence autoregressive model to treat text-to-image
synthesis as a translation task. Cogview2 [8] employs hier-
archical transformers and local parallel autoregressive gen-
eration for faster autoregressive image generation. Some
works try to employ the diffusion model [6, 14, 15, 27, 42]
to overcome the slow generation defect of the autoregres-
sive model. VQ-Diffusion [12] combines the VQ-VAE [45]
and diffusion model [15, 27] to eliminate the unidirectional
bias and avoids accumulated prediction errors. GLIDE [28]
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Figure 2. The architecture of the proposed GALIP for text-to-image synthesis. Armed with the CLIP-based discriminator and CLIP-
empowered generator, our model can synthesize more realistic complex images.

applies guided diffusion to the problem of text-conditional
image synthesis. DALL-E2 [33] combines the CLIP rep-
resentation and diffusion model to make a CLIP decoder.
Latent Diffusion Models (LDM) [36] apply the diffusion
model in the latent space to enable the training on limited
computational resources while retaining image quality. Im-
agen [39] introduces the large language model [32] to pro-
vide high-quality text features and proposes an Efficient U-
Net for diffusion models.

3. Generative Adversarial CLIPs

In this paper, we propose a novel framework for text-
to-image synthesis named Generative Adversarial CLIPs
(GALIP). To synthesize high-quality complex images, we
propose: (i) a novel CLIP-based discriminator that inherits
the complex scene understanding ability of CLIP [31] for
more accurate image quality assessment. (ii) a novel CLIP-
empowered generator that exerts the domain generalization
ability of CLIP [31] and induces the CLIP visual concepts
to close the gap between text and image features. In the fol-
lowing of this section, we first present the overall structure
of our GALIP. Then, we introduce the CLIP-based discrim-
inator and CLIP-empowered generator in detail.

3.1. Model Overview

As shown in Figure 2, the proposed GALIP is composed
of a CLIP text encoder, a CLIP-based discriminator, and a
CLIP-empowered generator. The pretrained CLIP text en-
coder takes the text description and yields a global sentence
vector T . After the text-encoder is the CLIP-empowered

generator and CLIP-based discriminator under the GAN
framework. The CLIP-empowered generator comprises a
frozen CLIP-ViT and a mate generator (Mate-G). There
are three main modules in the Mate-G, the bridge feature
predictor (Bridge-FP), the prompt predictor, and the image
generator. The CLIP-empowered generator has two inputs,
the sentence vector T encoded from the text encoder and
the noise vector Z sampled from the Gaussian distribution.
The noise vector ensures the diversity of the synthesized im-
ages. In the CLIP-empowered generator, the sentence vec-
tor and noise are first fed into the bridge feature predictor.
The bridge feature predictor translates the sentence vector
and noise to the bridge feature for the CLIP-ViT. Further-
more, we add several text-conditioned prompts to the trans-
former blocks (TransBlock) in CLIP-ViT for task adapta-
tion. Finally, the image generator takes the predicted visual
concepts, bridge features, sentences, and noise vectors to
synthesize high-quality images.

The CLIP-based discriminator comprises a frozen CLIP-
ViT and a mate discriminator (Mate-D). The CLIP-ViT
converts images into image features through a convolution
layer and a series of transformer blocks. The CLIP feature
extractor (CLIP-FE) in Mate-D collects the image features
from different layers in CLIP-ViT. Then it further extracts
informative visual features from collected CLIP features for
the quality assessor. Lastly, an adversarial loss will be pre-
dicted by the quality assessor based on the extracted in-
formative features and sentence vectors. By distinguishing
synthesized images from real ones, the discriminator pro-
motes the generator to synthesize higher-quality images.
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Figure 3. The architecture of the proposed Mate-D for text-to-image synthesis. It further extracts informative visual features from collected
CLIP features and assesses the image quality more accurately.

3.2. CLIP-based Discriminator

In this section, we detailed the proposed CLIP-based dis-
criminator, which is composed of a frozen CLIP-ViT and
a Mate-D. The CLIP-based discriminator inherits the com-
plex scene understanding ability from the frozen CLIP-ViT.
Furthermore, we propose the Mate-D, which is mated to
the CLIP-ViT, to further extract informative visual features
and distinguish real and synthesized images. The CLIP-ViT
and Mate-D enable the discriminator to assess the quality of
generated complex images more accurately.

As shown in Figure 3, the Mate-D consists of a CLIP-
FE and a quality assessor. To fully utilize the knowledge
of complex scene understanding in CLIP-ViT, the CLIP-FE
takes the CLIP image features from multilayers. There are
N CLIP features collected for the CLIP-FE. We name them
CLIP Feature 1 to N , which are collected from shallow to
deep layers in CLIP-ViT. To further extract informative vi-
sual features from these CLIP features, we design a CLIP-
FE. It contains a sequence of extraction blocks, and each
block contains two convolution layers and two ReLU active
functions. And the extracted image feature is summed with
the shortcut and the next CLIP feature. There are N − 1
extraction blocks stacked in CLIP-FE. Since the CLIP fea-
ture N is only added to the processed image features in the
last extraction block. To fuse the CLIP feature N , we ap-
pend two convolution layers without the CLIP feature addi-
tion behind. The CLIP-FE extracts informative visual fea-
tures for the quality assessor. Then the sentence vector is
replicated and concatenated with the extracted image fea-
tures. An adversarial loss is predicted by two convolution
layers to evaluate the image quality. Furthermore, to stabi-
lize the adversarial learning process of Mate-D, we apply
the matching-aware gradient penalty (MAGP) [44] on the
collected CLIP features and corresponding text features.

Based on the complex scene understanding ability of
CLIP-ViT, the CLIP-based discriminator can extract more
informative visual features from complex images. The
higher-quality extracted visual features make it easier for
the discriminator to detect unreal image parts, which im-
proves the discriminative efficiency, thus prompting the
generator to generate more realistic images.

3.3. CLIP-empowered Generator

In this section, we detail the proposed CLIP-empowered
generator, which is composed of a frozen CLIP-ViT and
a Mate-G. The CLIP-empowered generator exerts the do-
main generalization ability of the CLIP-ViT. Furthermore,
we propose the Mate-G, which is mated to the CLIP-ViT to
induce useful visual features from the CLIP-ViT and gen-
erate images from text and induced visual features. The
Mate-G consists of a Bridge Feature Predictor (Bridge-FP),
a prompt predictor, a frozen CLIP-ViT, and an image gen-
erator (see Figure 2). We detail them next.
Bridge Feature Predictor. The structure of the Bridge-
FP is shown in Figure 4, as highlighted by the red dashed
box. The Bridge-FP consists of an FC (Fully-Connected)
layer and M fusion blocks (F-BLKs). The input noise is
fed into the FC layer and reshaped to (7, 7, 64) as an ini-
tial bridge feature. The initial bridge feature output by the
FC layer still contains a lot of noise. Therefore, we apply
a sequence of F-BLKs to fuse text information and make it
more meaningful. The F-BLK is composed of two convo-
lution layers (Conv) and two deep text-image fusion blocks
(DFBlock) [44]. The DFBlock has shown its effectiveness
in fusing text and image features through stacked affine
transformations. Thus, we adopt it to fuse text features
and intermediate bridge features. There is a shortcut ad-
dition in F-BLK for effective information propagation and
gradient back-propagation. Through the Bridge-FP, the sen-
tence and noise vectors will be translated to the bridge fea-
ture, which is adjusted to induce meaningful visual concepts
from CLIP-ViT.
Prompt Predictor. The CLIP-ViT is pretrained to predict
visual features from image data. There is a large gap be-
tween text and image data. To alleviate the difficulty of
bridge feature translation from text features, we employ
prompt tuning [17], which has shown effectiveness on do-
main transferring for ViT. We design a prompt predictor,
which predicts prompts based on sentence and noise vec-
tors through an FC layer. The predicted text-conditioned
prompts are appended behind the visual patch embeddings
in CLIP-ViT. Furthermore, we find that it is better not to
add prompts to the last few layers in CLIP-ViT. The last
few layers summarize the visual features and output the last
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Figure 4. The architecture of the proposed CLIP-empowered generator for text-to-image synthesis. Armed with bridge feature predictor
and prompt predictor, it can induce meaningful visual concepts from the frozen CLIP-ViT for image synthesis.

image representations. The prompt predicted from text and
noise in the last few layers may defect its performance.
Image Generator. The image generator consists of K
generation blocks (G-BLKs). We sum the predicted vi-
sual concepts and bridge features through shortcut addition
for effective information propagation and gradient back-
propagation. The image generator receives the summed vi-
sual features as input and fuses sentence and noise vectors
through the DFBlocks [44] in each G-BLK. The interme-
diate image features grow larger during the generation pro-
cess by the upsample layers. Finally, the image features are
converted into high-resolution RGB images.

3.4. Objective Functions
To stabilize the training process of adversarial learning,

we employ the hinge loss [55] and one-way discriminator
[44]. Finally, the whole formulation of our GALIP is shown
as follows:
LD =− Ex∼Pr [min(0,−1 +D(C(x), e))]

− (1/2)EG(z,e)∼Pg [min(0,−1−D(C(G(z, e)), e))]

− (1/2)Ex∼Pmis [min(0,−1−D(C(x), e))]

+ kEx∼Pr [(∥∇C(x)D(C(x), e)∥+ ∥∇eD(C(x), e)∥)p],
LG =− EG(z,e)∼Pg [D(C(G(z, e)), e)]

− λEG(z,e)∼Pg [S(G(z, e), e)],
(1)

where z is the noise vector sampled from Gaussian distri-
bution; e is the sentence vector; G is the CLIP-empowered
generator; D is the Mate-D; C is the frozen CLIP-ViT in
CLIP-based discriminator; S represents the cosine similar-
ity between the encoded visual and text features of CLIP;
k and p are two hyper-parameters of gradient penalty; λ is
the coefficients of the text-image similarity; Pg , Pr, Pmis

denote the synthetic data distribution, real data distribution,
and mismatching data distribution, respectively.

4. Experiments
In this section, we introduce the datasets, training details,

and evaluation metrics, then evaluate our proposed GALIP
and its variants quantitatively and qualitatively.
Datasets. We conduct experiments on four challenging
datasets: CUB bird [46], COCO [25], CC3M [41], and

CC12M [2]. For the CUB bird dataset, there are 11,788
images belonging to 200 bird species, with each image cor-
responding to ten language descriptions. The train and vali-
dation splits of the CUB bird dataset are implied as previous
works did [44,50,57,58,60]. Since there are various shapes,
colors, and postures of birds in the CUB dataset, it is always
employed to evaluate the performance of fine-grained con-
tent synthesis. For COCO dataset, it contains 80k images
for training and 40k images for testing. Each image corre-
sponds to 5 language descriptions. The image in the COCO
dataset is complex and always contains multiple objects un-
der different scenes. The COCO dataset is always employed
in recent works to evaluate the performance of complex im-
age synthesis. For CC3M and CC12M datasets, they are
two large datasets that contain about 3 and 12 million text-
image pairs. It is always adopted for pretraining and to eval-
uate the zero-shot performance of the text-to-image model.

Training and Evaluation Details. We choose the ViT-B/32
[31] model as the CLIP model in our GALIP. In the CLIP-
based discriminator, the CLIP-FE collects the CLIP feature
from 2nd, 5th, 9th layers in CLIP-ViT. There are two extrac-
tion blocks stacked in CLIP-FE. In the CLIP-empowered
generator, the Bridge-FP contains 4 Fusion Blocks, and the
image generator contains 6 generation blocks for 224×224
image synthesis. The prompt predictor predicts 8 prompts
for TransBlocks 2 to 10 in CLIP-ViT. We conduct some
ablation studies on these designs. The hyper-parameters
of the discriminator k and p are set to 2 and 6 as [44].
The hyper-parameters of the generator λ are set to 4 for
all the datasets. Furthermore, we employ the Adam opti-
mizer [18] with β1=0.0 and β2=0.9 to train our model. Ac-
cording to the two timescale update rule (TTUR) [13], the
learning rate is set to 0.0001 for the generator and 0.0004
for the discriminator. Following the previous text-to-image
works [44, 49, 50, 60], we adopt the Fréchet Inception Dis-
tance (FID) [13] and CLIPSIM [49] to evaluate the image
fidelity and text-image semantic consistency. All GALIP
models are trained on 8×3090 GPUs. We train our GALIP
for 0.5, 1.5, 2, and 3 days on CUB, COCO, CC3M, and
CC12M datasets, respectively.
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Figure 5. Examples of images synthesized by LAFITE [59], VQ-Diffusion [12], and our proposed GALIP conditioned on text descriptions
from the test set of CUB and COCO datasets.

Table 1. The results of FID and CLIPSIM (CS) compared with the
state-of-the-art methods on the test set of CUB and COCO.

Model
CUB COCO

FID ↓ CS ↑ FID ↓ CS ↑

DM-GAN [60] 16.09 - 32.64 -
XMC-GAN [56] - - 9.30 -
DAE-GAN [38] 15.19 - 28.12 -
DF-GAN [44] 14.81 0.2920 19.32 0.2972
LAFITE [59] 14.58 0.3125 8.21 0.3335
VQ-Diffusion [12] 10.32 - 13.86 -
GALIP (Ours) 10.08 0.3164 5.85 0.3338

4.1. Quantitative Evaluation

To evaluate the performance of our GALIP, we com-
pare the proposed model with several state-of-the-art meth-
ods [12, 38, 44, 56, 59, 60], which have achieved impressive
results in text-to-image synthesis. The results are shown in
Table 1. Compared with other leading models, our GALIP
has a significant improvement on both CUB and COCO
datasets. Especially, compared with the recently proposed
LAFITE [59], which employs CLIP text-image contrastive
loss for text-to-image training, our GALIP decreases the
FID metric from 14.58 to 10.08 and improves the CLIPSIM
(CS) from 0.3125 to 0.3164 on the CUB dataset. Further-
more, our GALIP decreases the FID of COCO from 8.21
to 5.85 significantly. Compared with VQ-diffusion [12],
which adopts diffusion models for text-to-image synthesis,
our GALIP also decreases FID from 10.32 to 10.08 on the
CUB dataset and decreases the FID of COCO from 13.86
to 5.85 remarkably. The quantitative comparisons on CUB
and COCO datasets demonstrate that our GALIP is more
effective in synthesizing high-fidelity images, especially for
complex image generation.

Moreover, we evaluate the zero-shot text-to-image syn-
thesis ability of our GALIP. The results are shown in Ta-
ble 2. Compared with LAFITE [59] trained on CC3M, our
GALIP (CC3M) decreases FID from 26.94 to 16.12 signif-

Table 2. We compare the performance of large pretrained autore-
gressive models (AR), diffusion models (DF), and GANs under
zero-shot setting on the COCO test dataset.

Model Type Param [B] Data size[M] Z-FID ↓ Speed [s] ↓

DALL-E [34] AR 12 250 27.5 -
Cogview [7] AR 4 30 27.1 -
Cogview2 [8] AR 6 30 24.0 45.43
Parti [54] AR 20 >800 7.23 -
GLIDE [28] DF 5 250 12.24 -
LDM [36] DF 1.45 400 12.63 4.83
DALL·E 2 [33] DF 6.5 250 10.39 -
Imagen [39] DF 7.9 860 7.27 -
LAFITE [59] GAN 0.15+0.08 3 26.94 0.03
GALIP (CC3M) GAN 0.24+0.08 3 16.12 0.04
GALIP (CC12M) GAN 0.24+0.08 12 12.54 0.04

icantly. It demonstrates that integrating the CLIP model
in the generator and discriminator is more effective than
only introducing the CLIP loss for the GAN model. Com-
pared with autoregressive models (AR) and diffusion mod-
els (DF) which are pretrained with much larger model sizes
and datasets, our GALIP also achieves competitive perfor-
mance. Especially, compared with LDM [36] which is one
of the most important open-source large pretrained models,
our GALIP achieves better performance even with much
smaller model parameters and data size. Furthermore, our
GALIP only requires 0.04s to generate one image which is
∼120×faster than LDM [36]. Besides, our GALIP can be
inference on the CPU fastly without other acceleration set-
tings. This significantly reduces the hardware requirements
of users. In addition, the computational cost to pretrain our
GALIP is quite less than these large pretrained autoregres-
sive and diffusion models. The GALIP of CC12M is only
pretrained on 8×3090 GPUs for 3 days. But these models
require hundreds of GPUs and many weeks to pre-train.

4.2. Qualitative Evaluation

To evaluate the visual quality of synthesized images, we
first compare the images synthesized by LAFITE [59], VQ-
Diffusion [12], and our GALIP which are trained on COCO
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Figure 6. Text-to-Image samples from GALIP (CC12M) and Latent Diffusion (LAION-400M) [36, 37]. We sample 16 images from each
given text description and randomly select one as the final generation result.

in Figure 5. Then, we compare our GALIP (CC12M) with
LDM (LAION-400M) [36, 37] in Figure 6.

As shown in the 1st, 2nd, 4th and 5th columns of Fig-
ure 5, the birds synthesized by LAFITE [59] and VQ-
Diffusion [12] contain break or wrong shapes. Moreover,
both LAFITE [59] and VQ-Diffusion [12] lose some fine-
grained visual features (e.g., 1st, 2nd, 5th and 6th columns),
which makes the synthesized images lack details and look
unreal. However, the images synthesized by our GALIP
have correct object shapes and clear fine-grained contents.

The superiority is more obvious in complex COCO im-
ages, which contain various shapes and multiple objects. As
the results are shown in the 7th, 8th, 9th, 10th columns of
Figure 5, the LAFITE [59] and VQ-Diffusion [12] mod-
els cannot synthesize the right shape of “train”, “children”,
“woman”, and “stuffed bear”. Furthermore, they also can-
not synthesize the right visual concept of “showing off toy
cell phone” and “sitting on a book shelf”. However, armed
with the proposed CLIP-based D and CLIP-empowered
G, our GALIP can cope with more strict visual require-
ments and synthesize various shapes of different objects
(see 8th, 9th, 10th and 12th columns) and present the right
visual concepts in synthesized images. We also observe that
LAFITE [59] and VQ-Diffusion [12] also can not synthe-
size correct human facial features. For example, as shown
in the 8th, 9th, 12th, they can not synthesize realistic hu-
man faces. But our GALIP can synthesize these features
correctly.

Moreover, we compare the images synthesized by the
LDM (LAION-400M) [36, 37] and our GALIP (CC12M)
in Figure 6. As the results are shown in the 1st, 4th, 5th,
8th, 11th columns of Figure 6, the LDM does not gener-
ate the objects (“ghost”, “teddy bear”, “modem”, “person”,
“model”) described in the texts, but our GALIP can synthe-
size these objects correctly. Also, our model can generate
correct visual features such as “shining eyes”, “Blue Light-
house”, “smiling statue”, and “surprised girl” in the 3rd,
6th, 7th, 10th columns. Furthermore, as shown in the 9th,
10th, and 12th columns of Figure 6, our GALIP keeps the
superior performance of human face synthesis. The exten-
sive quantitative evaluation results demonstrate the superi-

Figure 7. Images synthesized by interpolating four-sentence em-
beddings. Our GALIP supports gradual changes when interpo-
lating sentence embeddings describing different image styles. It
makes the degree of stylization of the image controllable and cre-
ates new styles by blending different styles.

ority and effectiveness of our proposed GALIP, which is
able to generate high-fidelity, creative and complex images
with various shapes and multiple objects.

Additionally, we conduct some experiments to show the
smooth latent space of our GALIP. Current autoregressive
and diffusion models are sensitive to input sentences. This
instability makes users need to try a lot of prompts to get sat-
isfied images. Differently, our GALIP inherits the smooth
latent space from GAN, it enables gradual and smooth
changes along with text changes. As shown in Figure 7,
there is a smooth transition of synthesized images from top
to bottom, left to right. The smooth latent space makes the
degree of stylization of the image controllable. The users
can fine-tune synthesized image styles like a style knob, and
it also enables the users to create new styles by blending dif-
ferent image styles, as highlighted by the red dashed lines.

4.3. Ablation Study

To verify the effectiveness of each component in the pro-
posed GALIP, we conduct ablation studies on the test set
of the COCO dataset. The components being evaluated
in this subsection include CLIP-based D (CD) and CLIP-
empowered G (CG). We also further conduct ablation stud-
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Table 3. The performance of different components of our model
on the test set of COCO.

Architecture FID ↓ CS ↑

Baseline 17.31 0.2996
Baseline w/ CD w/ CFE 7.92 0.3221
Baseline w/ CD w/ CCM&CSM 10.77 0.3123
Baseline w/ CD w/ CFE w/ BFP 6.52 0.3301
Baseline w/ CD w/ CFE w/ BFP w/ PP (GALIP) 5.85 0.3338
GALIP w/ CFE (2nd) 13.41 0.3015
GALIP w/ CFE (5th) 8.60 0.3145
GALIP w/ CFE (12th) 10.72 0.3104
GALIP w/ CFE (2nd,5th) 6.70 0.3301
GALIP w/ CFE (2nd,5th,12th) 6.61 0.3305
GALIP w/ CFE (2nd,5th,9th) 5.85 0.3338
GALIP w/ CFE (2nd,5th,8th,9th) 6.01 0.3305

GALIP w/ PP (1st-12th) 6.24 0.3320
GALIP w/ PP (1st-9th) 5.85 0.3338
GALIP w/ PP (1st-6th) 6.40 0.3310
GALIP w/ PP (1st-3th) 6.52 0.3305

ies on Bridge-FP (BFP) and Prompt Predictor (PP) in CLIP-
empowered G, and CLIP-FE (CFE) in CLIP-based D. Fur-
thermore, we compare our CLIP-FE with CCM&CSM of
Projected GAN [40], which yields a U-Net architecture to
enable multi-scale feedback. In addition, we investigate the
layer choice strategy of CLIP-FE and Prompt Predictor. The
results on the COCO dataset are shown in Table 3.
Baseline. Our baseline is a one-stage text-to-image GAN
[44]. It is composed of a CLIP text encoder and CNN-based
generator and discriminator. And it generates complex im-
ages from sentence vectors directly.
Effect of CLIP-based D and CLIP-FE. The CLIP-based
D decreases FID from 17.31 to 7.92 and improves CLIM-
SIM (CS) from 0.2996 to 0.3221. The results demon-
strate that the complex scene understanding ability of CLIP-
ViT promotes the complex image synthesis ability signifi-
cantly. Furthermore, we compared our CLIP-FE (CFE) with
CCM&CSM [40]. Our CLIP-FE achieves better FID and
CLIPSIM. It shows that our CLIP-FE is more effective in
extracting informative visual features from CLIP-ViT.
Effect of CLIP-empowered G and Bridge-FP. The CLIP-
empowered G with Bridge-FP further decreases FID from
7.92 to 6.52 and improves CLIPSIM from 0.3221 to 0.3301.
It demonstrates that predicted bridge features and CLIP-ViT
can enhance the complex image synthesis ability effectively.
Effect of Prompt Predictor. The proposed Prompt Predic-
tor (PP) also decreases FID from 6.52 to 5.85 and improves
CLIPSIM from 0.3301 to 0.3338. The result demonstrates
that the Prompt Predictor makes the CLIP-ViT more suit-
able for generation tasks and induces more meaningful fea-
tures from CLIP-ViT to improve the generative ability.
CLIP Layer Selection. We find that the last few lay-
ers of CLIP-ViT defect the performance of CLIP-based D.
The reason may be that the first layers of CLIP-ViT ex-
tract useful visual features and understand complex images,

Figure 8. Illustration of failure cases. It is still hard for cur-
rent GALIP to synthesize some imaginary images. Enlarging the
model size and training data may improve image quality.

and the last layers focus on generalization ability to align
with high-level concepts in text features. The generalization
ability may defect the performance of CLIP-based D be-
cause it reduces the differences between synthetic and real
images and weakens the discriminator. Conversely, since
CLIP-empowered G requires the generalization ability to
map the bridge feature to meaningful visual features, adding
prompts in the last few layers may defect the generalization
ability. So we extract the CLIP features from 2nd,5th,and
9th layers in CLIP-based D, and add prompts to 1st-9th lay-
ers. And we find that extracting more CLIP features does
not lead to better performance.

4.4. Limitations

Our GALIP shows superiority in text-to-image synthe-
sis, but some limitations should be considered in future
studies. The model size and pretraining dataset are much
smaller than other large pretrained models [1,33,36,39,54],
it limits the synthesis ability of imaginary images (see Fig-
ure 8). Pretraining on a larger dataset with a larger model
size may benefit the performance. We will try to address
these limitations in our future work.

5. Conclusion
In this paper, we propose a novel Generative Adversar-

ial CLIPs (GALIP) for text-to-image synthesis. Compared
with previous models, our GALIP can synthesize higher-
quality complex images. Moreover, we propose a CLIP-
based discriminator and CLIP-empowered generator, which
exerts the complex scene understanding and domain gener-
alization ability of CLIP. Our GALIP achieves significant
improvements on challenging datasets. Furthermore, cur-
rent large models are pretrained for generative or under-
standing tasks. In this work, we integrate the understanding
model (CLIP-ViT) into a generative model and achieve im-
pressive results. It shows that there are some commonalities
between understanding and generative models. This may be
enlightening for building a general large model.
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