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Abstract

Recent work has shown that deep vision models tend
to be overly dependent on low-level or “texture” features,
leading to poor generalization. Various data augmentation
strategies have been proposed to overcome this so-called
texture bias in DNNs. We propose a simple, lightweight
adversarial augmentation technique that explicitly incen-
tivizes the network to learn holistic shapes for accurate
prediction in an object classification setting. Our augmen-
tations superpose edgemaps from one image onto another
image with shuffled patches, using a randomly determined
mixing proportion, with the image label of the edgemap im-
age. To classify these augmented images, the model needs to
not only detect and focus on edges but distinguish between
relevant and spurious edges. We show that our augmenta-
tions significantly improve classification accuracy and ro-
bustness measures on a range of datasets and neural ar-
chitectures. As an example, for ViT-S, We obtain absolute
gains on classification accuracy gains up to 6%. We also
obtain gains of up to 28% and 8.5% on natural adversarial
and out-of-distribution datasets like ImageNet-A (for ViT-
B) and ImageNet-R (for ViT-S), respectively. Analysis us-
ing a range of probe datasets shows substantially increased
shape sensitivity in our trained models, explaining the ob-
served improvement in robustness and classification accu-
racy.

1. Introduction

A growing body of research catalogues and analyzes ap-
parent failure modes of deep vision models. For instance,
work on texture bias [1,7,12] suggests that image classifiers
are overdependent on textural cues and fail against simple
(adversarial) texture substitutions. Relatedly, the idea of
simplicity bias [25] captures the tendency of deep models
to use weakly predictive “simple” features such as color or
texture, even in the presence of strongly predictive com-
plex features. In psychology & neuroscience, too, evidence
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Figure 1. Comparison of the models on robustness and shape-
bias. The shape factor gives the fraction of dimensions that en-
code shape cues [17]. Backbone(T) denotes texture shape debiased
(TSD) models [21]. In comparison, ELEAS denoted by Back-
bone(E) is more shape biased and shows better performance on
ImageNet-C and ImageNet-A datasets.

suggests that deep networks focus more on “local” features
rather than global features and differ from human behav-
ior in related tasks [19]. More broadly speaking, there is
a mismatch between the cognitive concepts and associated
world knowledge implied by the category labels in image
datasets such as Imagenet and the actual information con-
tent made available to a model via one-hot vectors encod-
ing these labels. In the face of under-determined learning
problems, we need to introduce inductive biases to guide
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Figure 2. Representative performance comparison of our model, with the ‘Debiased’ models (TSD [21]) on ImageNet-A, R, C, and
Sketch datasets. The models trained using ELEAS show improved performance on out-of-distribution robustness datasets. The large
performance improvement on the ImageNet-A dataset indicates better robustness to natural adversarial examples.

the learning process. To this end, Geirhos et al. [7] pro-
posed a data augmentation method wherein the texture of
an image was replaced with that of a painting through styl-
ization. Follow-on work improved upon this approach by
replacing textures from other objects (instead of paintings)
and teaching the model to separately label the outer shape
and the substituted texture according to their source image
categories [21]. Both these approaches discourage overde-
pendence on textural features in the learned model; how-
ever, they do not explicitly incentivize shape recognition.

We propose a lightweight adversarial augmentation
technique ELEAS (Edge Learning for Shape sensitivity)
that is designed to increase shape sensitivity in vision mod-
els. Specifically, we augment a dataset with superposi-
tions of random pairs of images from the dataset, where
one image is processed to produce an edge map, and the
other is modified by shuffling the location of image patches
within the image. The two images are superposed us-
ing a randomly sampled relative mixing weight (similar to
Mixup [30]), and the new superposed image is assigned the
label of the edgemap image. ELEAS is designed to specif-
ically incentivize not only edge detection but shape sensi-
tivity: 1) classifying the edgemap image requires the model
to extract and exploit edges – the only features available
in the image, 2) distinguishing the edgemap object cate-
gory from the superposed shuffled image requires the model
to distinguish the overall edgemap object shape (relevant
edges) from the shuffled image edges (irrelevant edges, less
likely to be “shape like”). We perform extensive experi-
ments over a range of model architectures, image classi-
fication datasets, and probe datasets, comparing ELEAS
against recent baselines. Figure 1 provides a small visual
sample of our findings and results; across various models,
a measure of shape sensitivity [17] correlates very strongly
with measures of classifier robustness [11, 12] (see Results

for more details), validating the shape sensitivity inductive
bias. In addition, for a number of model architectures, mod-
els trained with ELEAS significantly improve both mea-
sures compared to the previous SOTA data augmentation
approach [21].

Summing up, we make the following contributions:

• We propose an adversarial augmentation technique,
ELEAS, designed to incentivize shape sensitivity
in vision models. Our augmentation technique is
lightweight (needing only an off-the-shelf edge detec-
tion method) compared to previous proposals that re-
quire expensive GAN-based image synthesis [7, 21].

• In experiments, ELEAS shows increased shape sen-
sitivity on a wide range of tasks designed to probe
this property. Consequently, we obtain increased ac-
curacy in object classification with a 6% improvement
on ImageNet-1K classification accuracy for ViT-Small
among others.

• ELEAS shows high generalizability and out of dis-
tribution robustness with 14.2% improvement in
ImageNet-C classification performance and 5.89% in-
crease in shape-bias for Resnet152.

2. Related work
Texture bias in vision models. In [1,7], convolutional neu-
ral networks are shown to be more sensitive towards the
texture present in the image to classify the object correctly.
Further, in order to mitigate the texture bias, they have sug-
gested a training strategy where they have used modified
images with random texture along with the natural images
during training. However, utilizing images with conflicting
textures leads to an unnatural shift in data distribution, lead-
ing to drops in performance on natural images. Instead, sim-
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ple and naturalistic data augmentations strategies can also
lead to an increase in shape bias of the CNNs without much
loss in performance on natural images [13]. An increase in
shape-bias in the CNN models is associated with an increase
in the robustness of the models [7, 26], however [22] sug-
gested that a more balanced shape or texture biased models
also leads to increase in the model robustness. The study of
texture bias in vision models has been extended to the vi-
sion transformers (ViT) [3], where the transformer models
are found to be less texture biased than the convolutional
models [27].

A measure of shape/texture bias is proposed in [7], where
they used images with conflicting textures obtained using
style-transfer methods. However, this measure ignores a
large portion of test images and is biased toward models
trained using images modified by style-transfer methods.
In [14], Hermann et al. proposed a linear classification layer
in order to measure the shape decodability of the representa-
tions learned by the model. A more fine-grained shape eval-
uation measure was proposed in [18] where they compute
the number of dimensions in the image representation that
correlate with the shape features. Further, they proposed a
shallow read-out module that takes feature representations
from the model and predicts a segmentation map.
Data Augmentation for improving shape-bias In [2, 7],
authors suggested a data augmentation strategy in order to
increase the shape bias in the trained models. They pro-
posed the Stylized-ImageNet dataset, where they strip each
image of its original texture and replace it with the style
of a randomly selected painting through AdaIN style trans-
fer [16]. During training, the model is trained to predict the
category corresponding to the shape in the model, ignoring
the texture, thus leading to an increase in the shape bias of
the models. However, instead of changing the distribution
of training images through style transfer, naturalistic data
augmentation techniques such as can also lead to improve-
ment in the shape bias of the model [13].

3. Methodology
We now describe the training strategy used in ELEAS to

increase the shape sensitivity of deep image classifiers.
Let I, and C be the set of all images and their corre-

sponding categories in the dataset. In standard classifier
training, a classifier Θ is trained to predict the category
c ∈ C of the image i ∈ I. However, the image classi-
fiers trained in this way are sensitive to the texture present
in the natural images. In this work, we propose to use edge
maps along with textures from natural images to increase
the shape sensitivity of image classifiers.
Obtaining shapes and textures: We approximate the
shapes of objects by extracting edge-maps from images and
natural textures by shuffling patches within images. In par-
ticular, for each image i ∈ I, an edge-map is constructed

using an edge detection kernel (i.e., Laplacian kernel) to
produce the set of all edge-maps or “shapes” S. Similarly,
a “texture” dataset T is generated by first dividing an im-
age in I into 4×4 patches and then randomly shuffling the
patches within the image to obtain a patch-shuffled image.
Generating augmentations: We superimpose randomly
selected pairs of images s ∈ S and t ∈ T to create new im-
ages, or augmentations, to add to the training dataset. Each
such augmented image is assigned the label of the shape
image s. The superimposed image is obtained as follows:

is = λ ∗ t+ (1− λ) ∗ s (1)

where λ is drawn randomly from a Beta(α, β) distribu-
tion. The parameters α and β are chosen such that a
higher weight is given to the samples from set T . The ran-
dom weighing parameter λ introduces variation in the aug-
mented image set and helps to obtain better edge-map clas-
sification. Let’s call the set of superimposed images B.1

Training procedure: Training proceeds via minibatch gra-
dient descent, as is standard in current machine learning lit-
erature. We construct each mini-batch to have half of its
images from the set of natural images I ⊂ I and the rest
from the augmented dataset B ⊂ B. During training, we
minimize the cross-entropy loss on natural image samples
as well as our augmentations. In order to carefully control
the degree of shape sensitivity induced by this process, we
compute a weighted mixture of cross-entropy loss on these
two image sets denoted here by L:

L(I,B, yI , yB) = η∗CE(I, yI)+1−η∗CE(B, yB) (2)

where η is varied to control the shape sensitivity, CE is
the cross-entropy loss, yI , yB are the labels corresponding
to the natural and augmented image sets I,B respectively.
To predict augmented images correctly, the model needs to
interpret the edge-map present in the superimposed sam-
ple while at the same time ignoring distracting edges and
textures from the other superimposed image. In this man-
ner, we induce shape sensitivity in learned classifiers. The
minibatch-mixing strategy encourages the model to gener-
alize learned representations across natural and augmented
images, thereby improving shape bias (and consequently
overall accuracy) on natural images as well.

4. Experimental setup
4.1. Models and training setup

We train convolutional neural networks (CNNs) and Vi-
sion Transformers (ViTs) using our methodology. Among
the CNN models, similar to [21], we show results on
ResNet50, ResNet101, and ResNet152. For training the

1Refer to Fig. 1 in the supplementary material for examples of
ELEAS images.
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Model Method IN-A(↑) IN-R(↑) IN-C(↓) IN-Sketch(↑) IN-1K(↑)

Resnet50
Vanilla 2.0 36.2 75.0 23.5 76.4
TSD [21] 3.3 40.8 67.5 28.3 76.9
ELEAS 5.4 41.7 58.5 29.7 77.1

Resnet101
Vanilla 5.6 39.3 69.8 27.1 78.0
TSD [21] 8.8 44.3 62.2 32.3 78.8
ELEAS 13.4 44.4 53.5 32.4 78.6

Resnet152
Vanilla 5.9 41.3 67.2 28.4 78.6
TSD [21] 12.5 45.5 58.9 33.3 79.7
ELEAS 15.4 45.7 53.0 34.7 79.0

ViT-S
Vanilla 16.6 36.1 55.1 33.2 74.6
TSD [21] 27.4 44.4 42.2 32.4 76.4
ELEAS 28.3 44.7 41.5 34.7 80.6

ViT-B Vanilla 34.6 40.7 50.8 45.8 79.5
ELEAS 62.9 56.4 35.9 46.4 85.5

ViT-L Vanilla 63.4 63.3 33.1 52.7 85.8
ELEAS 67.4 65.9 29.5 54.1 86.2

Table 1. Performance comparison on the ImageNet and the robustness datasets. The models trained using ELEAS show an improve-
ment in the ImageNet performance along with better robustness. Except for IN-C the performance is measured in Accuracy@1 (higher is
better). For IN-C, the performance is measured in mean corruption error (mCE) (lower is better). (Refer to Sections 5.1 and 5.2.1)

ResNet models, we supplemented ImageNet data with an
equal number of augmented images. We trained them for
100 epochs with a starting learning rate of 0.2 which is re-
duced by a factor of 10 at the 30th, 60th and 90th epoch.
Similar to TSD, while training the ResNet models, we
also use auxiliary batch norm [29]. As ViTs are compute-
intensive, we finetune ImageNet pretrained ViT models for
20k steps with a cosine learning rate schedule with a start-
ing learning rate of 0.01. The stochastic gradient descent
(SGD) with a momentum of 0.9 is used to train the models.
We train all our models on 8 A100 GPUs with a batch size
of 512 for ResNets, 256 for ViT-Small and ViT-Base and
128 for ViT-Large. We find that values α = 4, β = 1, and
η = 0.65 produce the best results for all models.

4.2. Datasets and evaluation protocol

The models are trained on the ILSVRC 2012 [24] dataset
with 1.28M training and 50k validation images. We evalu-
ate and compare our trained models to answer the follow-
ing questions: (i) Does ELEAS lead to an increase in the
shape-sensitivity of a model? (ii) Does the increased shape
sensitivity result in better classification performance? (iii)
Does the robustness of the models to distribution shift im-
prove with increased shape sensitivity? and (iv) Does an
increase in shape sensitivity lead to improvement in down-
stream tasks such as object detection and instance segmen-
tation?

The shape sensitivity of the models is first evaluated us-

ing the metric proposed in [7]. The authors first created
an image dataset called cue-conflict, using a style-transfer
method to transfer texture from one image to another. They
then defined shape bias as the fraction of the shape decision
when the model predicts either the shape or the texture cate-
gory. However, this metric ignores many a lot of images and
is biased toward the methods that used Stylized-ImageNet
during the training of the models. Further, authors in [17]
proposed a method to quantify the number of dimensions
in the image representation that encode the object’s shape.
They take a pair of images with similar semantic concepts
(i.e., shape) and then count the number of neurons that en-
code that specific concept. They have used Pascal VOC [4]
and Stylized Pascal VOC dataset to create pair of images
with particular semantic concepts. We have used these met-
rics to evaluate the shape bias in this work. Further, similar
to [17], we also evaluate the quality of the shape encoding
from these models by performing the binary and semantic
segmentation on the frozen representations. PASCAL VOC
is image segmentation dataset [4, 8], with 10,582 training
images and 1,449 validation images spanning across 20 ob-
ject categories.

The out-of-distribution generalization of the trained
models is evaluated on four publicly available datasets,
which are, ImageNet-A [12], ImageNet-R [10], ImageNet-
C [11], and ImageNet-Sketch [28]. The ImageNet-A dataset
consists of real-world natural adversarial images and is a
challenging classification dataset. The ImageNet-R dataset
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Model Method Edge Silhouette Cue-conflict Sketch Stylized-IN

Resnet50
Vanilla 13.75 54.38 18.20 59.62 37.13
TSD [21] 22.5 55.62 21.40 67.0 56.13
ELEAS 35.62 54.37 21.41 67.88 46.0

Resnet101
Vanilla 23.85 49.37 19.92 63.12 41.75
TSD [21] 31.25 51.87 24.92 70.12 59.37
ELEAS 45.00 61.25 24.06 71.88 48.25

Resnet152
Vanilla 20.63 56.25 20.70 66.75 41.63
TSD [21] 22.5 58.125 25.31 69.13 57.67
ELEAS 41.88 56.88 23.83 73.38 48.75

ViT-S
Vanilla 25.0 26.25 22.96 49.12 44.25
TSD [21] 22.5 46.87 31.71 68.62 77.5
ELEAS 34.38 43.13 27.66 69.63 53.00

ViT-B Vanilla 13.75 12.05 28.05 51.63 50.08
ELEAS 41.25 66.25 34.92 82.00 59.38

ViT-L Vanilla 55.62 68.75 40.39 83.75 65.50
ELEAS 75.00 69.38 42.11 85.88 66.50

Table 2. Performance comparison on out-of-distribution benchmark proposed in [6]. The proposed method significantly improves
performance over vanilla ResNet models. Debiased models, trained on stylized images, show high performance on datasets utilizing
stylized images for evaluation, such as Cue-Conflict and Stylized-IN. (Refer to Section 5.2.2)

consists of images with various renditions, such as car-
toon art, DeviantArt, graphics, paintings, origami, etc., of
the objects present in the original ImageNet dataset. The
ImageNet-Sketch dataset consists of sketches of 1000 Ima-
geNet object categories. Both ImageNet-R and ImageNet-
Sketch are used to evaluate the out-of-distribution general-
ization capability of the models. The ImageNet-C dataset
consists of images with varying degrees of artificial dis-
tortions like ‘Gaussian Noise’, ‘Motion Blur’, ‘Speckle
Noise’, etc. Hence, it evaluates the robustness of the model
to added distortions.

Besides using classification accuracy for most datasets,
ImageNet-C’s performance is measured using mean corrup-
tion error (mCE). Additionally, we evaluated the models on
the out-of-distribution benchmark proposed in [6].

4.2.1 Baselines

We compare the performance of ELEAS with Shape-
Texture Debiased (TSD) trained models [21], which focus
on both shape and texture cues. TSD uses stylized Ima-
geNet images with conflicting shape and texture cues, and
the models are trained using supervision from both seman-
tic cues. Among ViTs, only ViT-S is trained with TSD due
to the large computation overhead involved in training ViT-
B and ViT-L. In contrast, ELEAS learns the overall object
shape in the presence of conflicting, less ‘shape-like’ edges,
leading to increased shape sensitivity in the trained models.

5. Results and discussion
Our experiments study the impact of ELEAS in the fol-

lowing stages: we show classification accuracy gains on
the ImageNet dataset; we measure the robustness of trained
models to a range of prediction challenges; and we examine
ELEAS’s influence on shape-sensitivity of trained models
and its effect on performance.

5.1. Classification

Along with the increase in shape bias, ELEAS also im-
proves classification performance on the ImageNet dataset,
in many cases by very large margins (Refer Table 1). For in-
stance, we see 5.96% and 5.93% absolute improvement
in ImageNet classification accuracy for ViT-S and ViT-B re-
spectively, compared to vanilla baseline, and a smaller but
still significant 4.22% gain in accuracy compared to TSD
on VIT-S. We also see 0.6%, 0.62%, and 0.44% increase
in performance for ResNet50, ResNet101, and ResNet152
models respectively.

5.2. Out-of-distribution robustness

5.2.1 Evaluation on ImageNet-A, R, C, and Sketch
datasets.

As shown in Table 1, ELEAS significantly improves accu-
racy over both vanilla and TSD-trained models at these ro-
bustness challenges. For ImageNet-A, the considerable im-
provement (4.54% vs. TSD on ResNet101) indicates bet-
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Figure 3. Robustness comparison of ELEAS trained Resnet152 and ViT-B with the human subjects. ELEAS leads to trained models
which are more robust to added distortion and for many of the noise types it is more robust than the human subjects. (Refer to Section 5.2.1)
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Model Method
Shape- Factor |zk|

bias Shape dim Texture dim

Res50
Vanilla 19.75 0.170 0.338
TSD [21] 23.11 0.185 0.285
ELEAS 23.53 0.195 0.299

Res101
Vanilla 22.44 0.178 0.323
TSD [21] 27.69 0.204 0.256
ELEAS 26.04 0.222 0.259

Res152
Vanilla 21.74 0.180 0.298
TSD [21] 28.78 0.207 0.236
ELEAS 27.86 0.228 0.249

ViT-S
Vanilla 33.33 0.214 0.210
TSD [21] 36.56 0.216 0.213
ELEAS 34.64 0.221 0.217

ViT-B
Vanilla 33.12 0.219 0.212
ELEAS 37.90 0.239 0.205

ViT-L
Vanilla 47.04 0.216 0.221
ELEAS 48.10 0.225 0.207

Table 3. Comparison of the shape-bias of the models. The
vision models trained using our strategy shows an increase in the
fraction of ‘Shape’ dimensions. However, the shape-bias metric
proposed by Geirhos et al. [7] is biased towards the models trained
using style-transfer datasets. (Refer to Section 5.3)

ter robustness to naturally occurring adversarial examples.
Similarly, the improvement in mCE on ImageNet-C (8.72%
vs. TSD on ResNet101) showcases robustness to added
distortions of various degrees. Similarly, ELEAS shows
robustness performance improvements on the ViT models.
These large gains are driven primarily by ELEAS’s ability
to better encode object shape (Refer Figure 1 for evidence
supporting this causal link.)

5.2.2 Evaluation on OOD benchmark [6]

We also evaluated trained models on the OOD benchmark
proposed in [6]; results are in Table 2. The datasets in
this benchmark consist of images from different domains
such as ‘Edge’, ‘Silhouette’, ‘Sketch’, ‘Stylized’, and ‘Cue-
conflict.’, which require stronger shape sensitivity for cor-
rect classification. The ‘Cue-conflict’ dataset is generated
using iterative style transfer [5], where the texture from
a source image is transferred to a target image. Since
these images contain cues corresponding to different ob-
jects, it is challenging to classify them without good shape-
sensitive representations. Similarly, the Stylized imagenet
(SIN) is generated by replacing the texture present in an
image with style from a randomly selected painting using
the AdaIN style transfer method [16]. Models trained using
ELEAS can better encode object shapes in images, leading
to large performance improvements on these datasets over
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Figure 4. Shape vs. texture bias for the vision models: The im-
ages with conflicting shape and texture cues are used to calculate
the shape bias of the trained models. The ELEAS trained mod-
els show improvement in shape-bias. We have shown results for
ResNet152 and ViT-B in this figure.(Refer to Section 5.3)

the vanilla model. The better performance of TSD is ex-
pected as these models are trained using images from simi-
lar domains, i.e., the Stylized ImageNet dataset.

We further evaluated robustness to distortion using the
proposed benchmarks (Refer to Figure 3), which shows im-
proved robustness to added distortions of varying degrees
for ELEAS.

5.3. Increasing shape sensitivity

We measure shape-sensitivity using the datasets and pro-
tocols described in Section 4.2; the results are in Tables 3
and 4. Models trained using ELEAS show a large 6.12%
and 4.78% increase in shape-bias for ResNet152 and ViT-L
models, respectively, compared to vanilla baselines and are
comparable to the shape-bias of models trained using TSD.
2 We further added class-wise shape bias comparison with
human subjects in Figure 4.

An alternative measure, the shape factor [17], counts the
number of dimensions in the image representation that en-
codes shape. ELEAS substantially increases the number of

2Note that shape bias [7] has limitations: since it is defined in terms
of a Stylized-ImageNet test set, the metric is biased towards methods that
use SIN as a training augmentation. Further, it ignores images on which
neither of the true shape/texture categories is predicted.
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Model Method Bin Sem

Resnet50
Vanilla 79.8 61.6
TSD [21] 78.9 61.1
ELEAS 79.2 61.9

Resnet101
Vanilla 80.4 63.4
TSD [21] 80.0 64.7
ELEAS 81.0 65.9

Resnet152
Vanilla 80.3 64.4
TSD [21] 79.8 65.5
ELEAS 81.0 66.6

Table 4. Shape decodability of the learned representations:
To evaluate the amount of shape information, read-out modules
are added to the frozen learned representation and used to predict
binary (Bin) and semantic (Sem) segmentation masks [17], with
performance measured by mIoU. The shape decodability of the
models is evaluated using the Pascal VOC dataset. (Section 5.3)

shape dimensions in trained models (Table 3). We further
evaluated shape decodability from learned representations
by predicting the binary and semantic mask of the object
in the image (Table 4). The segmentation is performed by
adding a three-layer readout module on top of the learned
representations. The read-out module is trained on PAS-
CAL VOC 2012 dataset [4].

Resnet(TSD) [21] shows a significant worsening of bi-
nary segmentation performance for all models and seman-
tic segmentation performance for ResNet50, suggesting that
their learned representations cannot predict pixel-wise ob-
ject categories. ELEAS-trained model shows an increase in
Semantic segmentation performance, indicating better de-
codability of pixel-wise semantic categories of objects.

5.4. Instance Segmentation and Object detection
performance

To evaluate the effectiveness of the shape-sensitive im-
age representations in downstream tasks such as object de-
tection and segmentation, we trained the MaskRCNN [9]
model using ResNet101 as the backbone. Results are re-
ported in Tables 5 for models trained on the MS-COCO
dataset. The model trained using ELEAS outperformed
other models by a significant margin in both object detec-
tion (≈ 1.8 mAP) and instance segmentation tasks (≈ 1.3
mAP), indicating that learned shape-sensitive representa-
tions can improve performance in these tasks. In contrast,
TSD showed decreased performance even when compared
to the Vanilla backbone.

5.5. Lightweightness of ELEAS

Compared to previous augmentation methods, ELEAS is
lightweight. Edge maps and shuffled patch images can be

Model Object Detection Instance Segmentation
mAP AP@0.50 AP@0.75 mAP AP@0.50 AP@0.75

Vanilla 39.87 60.21 43.33 36.35 57.39 38.79
TSD [21] 37.82 58.98 41.29 33.87 55.41 35.85
ELEAS 41.65 61.83 45.43 37.63 58.99 40.33

Table 5. Effect of shape sensitivity on Object Detection and
Segmentation performance. The shapes-sensitive ResNet101
(i.e. ELEAS ) backbone leads to improvement in object detection
and instance segmentation performance. The models are evaluated
on the COCO-Val2017 dataset.

precomputed and stored on disk, and obtaining adversarial
augmented images requires only a few operations. In con-
trast, TSD [21] runs a GAN-based stylization to generate
every augmented image, which is much slower.

GAN-based stylized image generation takes almost
twice the time (with all other factors constant – 8 A100
GPUs in our case) compared to computing all edge maps
and shuffled patch images. Both ELEAS and TSD require
new augmented images with different source and texture
images every epoch, but GAN-based augmentation must
be run every time, making it expensive. Therefore, the per
epoch cost of ELEAS is negligible compared to TSD.

Further, once computed, the edge maps and shuffled
patch images used by ELEAS can be reused to train other
models, further reducing the average data generation cost.

6. Conclusion

We propose and evaluate ELEAS – a lightweight adver-
sarial augmentation technique for image classification in
order to induce a shape bias in learned models. Previous
work in this area [7, 21] identified the need for such induc-
tive biases due to the apparent dependence of deep models
on textural features; however, their proposed augmentation
techniques have drawbacks–first, they primarily sever the
dependence on texture, while not explicitly enforcing pro-
cessing and representation of shape, and second, the pro-
posed augmentation process is very expensive. Although
our work, too, proposes only data augmentation and does
not come with guarantees on learned representations, the
augmentations are simple to compute and are designed to
encourage holistic shape representation. Extensive experi-
mentation shows both the value of this inductive bias (shape
factors correlate with model robustness and accuracy across
models) and the substantial gains of our proposal, includ-
ing over 5% absolute accuracy improvements on ImageNet
using vision transformers. An interesting direction for fu-
ture work is to explore richer ways of specifying “shape”
to the models–for instance, using off-the-shelf segmenta-
tion or depth estimation models–and also to explore other
inductive biases that can profitably be incorporated into vi-
sion models.
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